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Abstract 
A theoretical model for the non steady-state response of a pH-based potentiometric biosensor 
immobilizing organophosphorus hydrolase (OPH) is discussed. The model is based on a system of 
five coupled nonlinear reaction-diffusion equations under non steady-state conditions for enzyme 
reactions occurring in potentiometric biosensor that describes the concentration of substrate and 
hydrolysis products within the membrane. New approximate analytical expressions for the con-
centration of the substrate (organophosphorus pesticides (OPs)) and products are derived for all 
values of Thiele modulus and buffer concentration using new approach of homotopy perturbation 
method. The analytical results are also compared with numerical ones and a good agreement is 
obtained. The obtained results are valid for the whole solution domain. 
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1. Introduction 
A potentiometric biosensor is a type of chemical sensor that may be used to find the concentration of some 
components of the analyte. These sensors measure the electrical potential of an electrode when no voltage is 
present. The potentiometric biosensors have been widely used in environmental, medical and industrial applica-
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tions [1]. Also potentiometric biosensor can be used for detection of all OPs but they don’t have low enough 
limits of detection [2].  

The theoretical modeling of biosensors involves solving the system of linear/non-linear reaction-diffusion 
equations for substrate and product with a term containing a rate of biocatalytical transformation of substrate. 
The complications of modeling arise due to solving the partially differential equations with non-linear reaction 
term and with complex initial and boundary conditions. The modeling of biosensor is analyzed by numerical [1] 
and analytical method [3] of partial differential equation with various boundary conditions. Recently Meena and 
Rajendran (2010) discussed a theoretical model of a pH-based potentiometric biosensor immobilizing organo-
phosphorus hydrolase (OPH) for steady state conditions [4]. 

Rahamathunissa and Rajendran (2008) implemented He’s variational iteration method in nonlinear boundary- 
value problems in enzyme substrate reaction diffusion processes in amperometric biosensor [5]. Manimozhi et al. 
[6] presented the solution of steady-state substrate concentration in the action of biosensor response with mixed 
enzyme kinetics under a Michalis-Menten scheme. Analytical solutions for the steady-state current at a micro-
disk chemical sensor have been reported by Dong and Che [7] and by Lyons et al. [7] [8]. Recently, Eswari and 
Rajendran [9] derived the concentration profile of the product of the enzyme reaction and the electrode current 
for all values of Michalis-Menten constant using the Homotopy perturbation method.  

To our knowledge, no general analytical expressions of the concentrations of the substrate, hydrolysis prod-
ucts, added external buffer and hydrogen ions have been reported for all values of parameters. The purpose of 
this communication is to derive an analytical expression of non-steady state concentrations of OPs and the de-
protonation products for all values of reaction parameter using new homotopy perturbation method. 

2. Mathematical Formulation of the Problem 
The complete description of the problem is given in [4] [10]. For the sake of completeness the brief description 
is given in this section and Appendix-A. A schematic diagram of the pH-based potentiometric biosensor immo-
bilizing organophosphorus hydrolase (OPH) is represented in Figure 1. 

In this figure, S denotes the substrate of organophosphorus pesticides (OPs). hP H  and ZH  are represent 
the hydrolysis products of organophosphodiester and alcohol respectively. AH  is the added external buffer and 

hP− , Z − , A− , H +  are the deprotonation products. The general scheme that represents an enzyme-cata- lyzed 
reaction within enzyme membrane can be written as follows: 

2H O
E

hS P H ZH→ +                                      (1) 

p

p

k

h hk
P H P H− −

′
⇔ +                                        (2) 

 

 
Figure 1. Schematic representation of pH-based potentiometric biosensor immobilizing OPs 
(organophosphorus pesticides).                                                        
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ZH Z H− +

′
⇔ +                                      (3) 

.
A

A

k

k
AH A H− +

′
⇔ +                                     (4) 

The non-linear reaction-diffusion equations for non-steady state condition can be described as follows 

( )
2

2
i i

i i
C CD R C
t x

∂ ∂
= +

∂ ∂
                                  (5) 

where iC  is the concentration of species, iD  is the diffusion coefficient and ( )iR C  is the reaction rate. The 
reaction rate is a non-linear function of concentration of substrate. The reaction rate is non-linear with respect to 
substrate because of product inhibition, saturation of the enzyme with substrate, reverse reaction and enzyme 
loading. The nomenclature is also presented in Table 1. 
 
Table 1. Nomenclature.                                                                                                               

Symbol Usual units Definition 

[S] mol/cm3 Concentration of substrate 

[ ]hP H  mol/cm3 Hydrolysis products of organophosphodiester 

[ ]ZH  mol/cm3 Concentration of hydrolysis products of alcohol 

[ ]AH  mol/cm3 Added external buffer 

hP− , Z − , A− , H +  mol/cm3 Deprotonation products 

iC  mol/cm3 Concentration of the species 

iD  cm2/s Diffusion coefficients 

R , 
hP Hr , ZHr , AHr , AHr  µmol/min Rate of reactions 

1k , 1k−  cm/s Rate constant for the formation of the Michaelis complex 

2k  cm/s Rate constant for the chemical transformation 

3k  cm/s Rate constant for product dissociation 

[ ]t
E  mol/cm3 Enzyme concentration 

[ ]S  None Dimensionless concentration of S 

[ ]h T
P  None Dimensionless concentration of hP H

 

[ ]TZ  
None Dimensionless concentration of ZH  

[ ]TA  
None Dimensionless concentration of AH  

H +

 
None Dimensionless concentration of hydrogen ions 

x  cm Distance 

L  cm Thickness of the enzyme membrane 

x  None Dimensionless distance 

a None Thiele modulus 

mK  mol/cm3 Michaelis-Menten constant. 

hP mK K , Z mK K , A mK K  None Dimensionless equilibrium constants 

2Dt Lτ =  None Dimensionless time 

[ ]( )2 1
b

a Sα = +  None Dimensionless parameter 

( )( )22π 2 1 4 4nf n α= + +  None Dimensionless parameter 
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3. Dimensionless Form 
The dimensionless reaction-diffusion equations for non-steady state condition can be written as follows (Appen-
dix A): 

[ ] [ ] [ ]
[ ]

2
2

2 1
S S S

a
x Sτ

∂ ∂
= −

∂ ∂ +
                                 (6)

 

[ ] [ ] [ ]
[ ]

2
2

2 1
h hT T

P P S
a

x Sτ
∂ ∂

= +
∂ ∂ +

                               (7)
 

[ ] [ ] [ ]
[ ]

2
2

2 1
T TZ Z S

a
x Sτ

∂ ∂
= +

∂ ∂ +
                                (8) 

[ ] [ ]2

2
T TA A

xτ
∂ ∂
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                                    (9) 

[ ]
[ ]

2
2

2 2
1

T T
H H S

a
x Sτ

+ +   ∂ ∂   = +
∂ ∂ +

                             (10) 

where [ ]h T
P , [ ]TZ  and [ ]TA  denotes the sum of dissociated and undissociated concentrations of the species 

hP H , ZH , and AH  respectively and 
T

H +    is the concentration of hydrogen ions. Here the Thiele mod-
ulus a, which represents the ratio of the characteristic time of the enzymatic reaction to that of the substrate dif-
fusion is 

2
2 max .

m

L V
a

Dk
=                                       (11)  

The initial and boundary conditions for the above equations becomes 

( ) [ ] [ ] [ ] [ ], 0 0; for , , , ,i i h T TT T
C x C S P Z A H + = =                         (12) 

( ) [ ] [ ] [ ] [ ]d 0 0; for , , , ,
d

i
i h T TT T

C C S P Z A H
x

+ = =                         (13) 

[ ] [ ] [ ] ( ) [ ] ( )(1) ; for , , ; 1 1 0.b
i i i hT TTT

C C C S A H P Z+ = = = =                  (14) 

A graphical representation of the boundary conditions of this system conditions can be seen in Figure 2. 

4. Analytical Expression of Concentration of Substrate and Products Using New  
Homotopy Perturbation Method (New HPM) and Laplace Transform Technique  

With the rapid development of nonlinear science, there appears an ever-increasing interest of scientists and en-
gineers in the approximate analytical asymptotic techniques for nonlinear problems [11]. It is very difficult to 
solve nonlinear problems either numerically or theoretically. Perturbation methods provide the most versatile 
tools available in nonlinear analysis of engineering problems, and they are constantly being developed and ap-
plied to ever more complex problems. Homotopy perturbation method was first proposed by the He [12]. Re-
cently, a new approach to HPM is presented to solve the nonlinear problem and this gives a simple approximate 
solution in the zeroth iteration [13]. By using this new homotopy perturbation method and Laplace transform 
technique (Appendix B), the concentrations of substrate and products can be obtained as follows: 

[ ]( ) [ ] ( ) ( ) ( )( )
0

1 π 2 1 e cos 2 1 π 2cosh,
cosh

nn f
b

n n

n n xxS x S
f

τατ
α

−∞

=

  − + +  = − 
   

∑         (15) 



J. Saranya et al. 
 

 
367 

 

Figure 2. Boundary conditions employed in the pH-based potentiometric biosensor for the substrate [ ]S , products 

[ ] [ ], ,h T T T
P Z H +    and added external buffer concentration of species (AH) [ ]TA .                                                        

 

[ ] ( ) [ ] ( ) ( )( ) ( )( )
( ) [ ]( )

2 22 1 π 4

1

1 e cos 2 1 π 24, 1 ,
π 2 1

nn
b

T
n

n x
Z x S S x

n

τ

τ τ
− −

∞

=

  
− −  = + −  −   

∑            (16) 

( ) [ ] ( ) ( )( ) ( )( )
( ) [ ]( )

2 22 1 π 4

1

1 e cos 2 1 π 24, 2 1 2 ,
π 2 1

nn
bb

T T n

n x
H x S H S x

n

τ

τ τ
− −

∞
+ +

=

  
− −       = + + −       −     

∑     (17) 

[ ] ( ) [ ] ( ) ( )( ) ( )( )
( ) [ ]( )

2 22 1 π 4

1

1 e cos 2 1 π 24, 1 ,
π 2 1

nn
b

h T
n

n x
P x S S x

n

τ

τ τ
− −

∞

=

  
− −  = + −  −   

∑            (18)

  

[ ] ( ) [ ] ( ) ( )( ) ( )( )
( )

2 22 1 π 4

1

1 e cos 2 1 π 24, 1
π 2 1

nn
b

T T
n

n x
A x A

n

τ

τ
− −

∞

=

  
− −  = +  −   

∑                (19) 

where  
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[ ]

22 2π 2 1 4
, .

4 1
n b

n af
S

α
α

+ +
= =

+
                              (20) 

5. Results and Discussion 
Equations (15) to (19) represents the general new closed-form of analytical expression for the concentrations of 
substrate [ ]S , hydrolysis products [ ]TZ  and ThP ][ , added external buffer concentration of species (AH) 
[ ]TA  and hydrogen ions 

T
H +    for non-steady state condition for all values of parameters (Thiele modulus, 
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initial concentration of substrate and products). It is of interest to compare the influence of each parameter on 
the concentration of species for various values of the parameters. 

The kinetic response of a pH-based potentiometric biosensor depends on the concentration of substrate. How- 
ever, substrate concentration depends on two factors, α  and [ ]

b
S . The dimensionless parameter α  depends 

upon a and [ ]
b

S . “a” is the Thiele modulus, which represents the ratio of the characteristic time of the enzy-
matic reaction to that of substrate diffusion. When the Thiele modulus “a” is small, the kinetics dominates and 
the uptakes of the substrate are kinetically controlled. The response is under diffusion control, when the Theile 
modulus is large ( 1a > ), which is observed at high catalytic activity and great membrane thickness or at low 
Michaelis constant or diffusion coefficient values. 

1) Influence of time on the concentration of species. Figures 3(a)-(f) represent concentration of the substrate  
 

 

Figure 3. (a)-(f) Plot of dimensionless non-steady state concentration profiles of the substrate [ ]S  

versus dimensionless distance x  for fixed values of a and [ ]
b

S  and various values of time τ . Solid 
lines represent the Equation (15) and the dotted lines represent the numerical simulation.                                                        
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versus dimensionless distance for fixed values of a and [ ]
b

S  and various values of time τ . From Figures 
3(a)-(d), it is inferred that concentration of substrate increases when time τ  increases. The concentration of 
substrate is in uniform or in steady state when, time 10τ ≥  and Thiele modulus and buffer concentration are 
small. From Figure 3(e) and Figure 3(f), it is observed that concentration of substrate is in uniform or in steady 
state when, time 0.1τ ≥  and Thiele modulus is large. 

2) Influence of Thiele modulus on the concentration of species. The influence of Thiele modulus on the con-
centration of the substrate for some values of other parameters is shown in Figures 4(a)-(f). The concentration 
of the substrate strongly depends on Thiele modulus a. From this figure, it is observed that the concentration of 
substrate decreases when Thiele modulus increases. The concentration of substrate is in uniform or in steady 
state when Thiele modulus 0.1a ≤ .  

 

 

Figure 4. (a)-(f) Plot of dimensionless non-steady state concentration profiles of the substrate [ ]S  

versus dimensionless distance x  for fixed values of time τ  and [ ]
b

S  and various values of the 
parameters a. Solid lines reprsent the Equation (15) and the dotted lines represent the numerical si-
mulation.                                                                                                               
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3) Influence of added buffer concentration on the concentration of species. The influence of added buffer 
concentration on the concentration of the substrate for some values of other parameters is shown in Figures 
5(a)-(e). From this figure, it is inferred that the concentration of the substrate increases when added buffer con-
centration increases. Solid lines represent the Equation (15) and the dotted lines represent the numerical simula-
tion. Satisfactory agreement is noted. The MATLAB program also given in Appendix B. 

 

 

Figure 5. (a)-(e) Plot of dimensionless non-steady state concentration profiles of the substrate [ ]S  versus di-

mensionless distance x  for fixed values of a and time τ  and various values of the parameters [ ]
b

S . Solid 
lines represent the Equation (15) and the dotted lines represent the numerical simulation.                                                        
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Figures 6(a)-(h) show the dimensionless non-steady state concentration profiles of products 
T

H +   , [ ]h T
P  

and [ ]TZ  versus dimensionless distance x  for fixed values of [ ]
b

S  and τ  and various values of the para-
meter a using Equations (16), (17) and (18). From this Figure 6(a) and Figure 6(b), it is observed that the con-
centration of the product 

T
H +    increases when Thiele modulus increases. Similarly, Figures 6(c)-(h) show 

that the concentration of the products [ ]h T
P  and [ ]TZ  increases when Thiele modulus increases.  

Figure 7(a) & Figure 7(b) show the dimensionless non-steady state concentration of substrate [ ]S  and 
products 

T
H +   , [ ]h T

P  and [ ]TZ  versus dimensionless distance for various values of time τ , using Equa-
tions (15)-(18).  

Table 2 and Table 3 represents the comparison of analytical expression of concentration of the substrate [ ]S  
(Equation (15)) with the numerical result for various values of parameter. In Table 2, average percentage of  
 

 

Figure 6. (a)-(h) Plot of dimensionless non-steady state concentration profiles of products [ ]TZ , 
T

H +    and [ ]h T
P  ver-

sus dimensionless distance x  for fixed values of [ ]
b

S  and τ  and various values of the parameter a using Equations 
(16), (17) and (18).                                                                                                               
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Figure 7. (a)-(b) Plot of dimensionless non-steady state concentration profiles of substrate [ ]S  and products 
T

H +   , 

[ ]h T
P  and [ ]TZ  versus dimensionless distance x  for various values of time τ , using Equations (15)-(18).                                                        

 
Table 2. Comparison of analytical expression of concentration of the substrate [ ]S  (Equation (15)) with the numerical re-
sult for various values of parameter a.                                                                                                               

[ ] 0.1, 10, 0.1
b

S aτ= = =  [ ] 0.1, 10, 0.5
b

S aτ= = =  [ ] 0.1, 10, 1
b

S aτ= = =  

x  Analytical Numerical % of deviation Analytical Numerical % of deviation Analytical Numerical % of deviation 

0 0.09955 0.09955 0 0.08955 0.08962 0.07817 0.06650 0.06711 0.91729 

0.2 0.09955 0.09955 0 0.08996 0.09003 0.07781 0.06775 0.06834 0.87085 

0.4 0.09962 0.09962 0 0.09119 0.09126 0.07676 0.07155 0.07205 0.69881 

0.6 0.09971 0.09971 0 0.09327 0.09331 0.04289 0.07802 0.07840 0.48705 

0.8 0.09984 0.09984 0 0.09619 0.09622 0.03119 0.08740 0.08760 0.22883 

1 0.10000 0.10000 0 0.10000 0.10000 0 0.10000 0.10000 0 

 Average % of deviation 0 Average % of deviation 0.05114 Average % of deviation 0.53381 

 
Table 3. Comparison of analytical expression of concentration of the substrate [ ]S  (Equation (15)) with the numerical re-
sult for various values of parameter τ .                                                                                

[ ]0.1, 0.1, 0.1
b

S aτ = = =  [ ]0.5, 0.1, 0.1
b

S aτ = = =  [ ]1, 0.1, 0.1
b

S aτ = = =  [ ]10, 0.1, 0.1
b

S aτ = = =  

x  Analytical Numerical % of  
deviation Analytical Numerical % of  

deviation Analytical Numerical % of  
deviation Analytical Numerical % of 

deviation 

0 0.00507 0.00500 1.38067 0.06276 0.06271 0.07967 0.08886 0.08885 0.01125 0.09955 0.09955 0 

0.2 0.00809 0.00802 0.86527 0.06458 0.06453 0.07742 0.08940 0.08940 0 0.09957 0.09957 0 

0.4 0.01814 0.01806 0.44101 0.06986 0.06981 0.07157 0.09097 0.09097 0 0.09962 0.09962 0 

0.6 0.03713 0.03704 0.24239 0.07809 0.07804 0.06403 0.09343 0.09342 0.0107 0.09971 0.09971 0 

0.8 0.06546 0.06536 0.15277 0.08847 0.08843 0.04521 0.09653 0.09653 0 0.09984 0.09984 0 

1 0.10000 0.09991 0.09 0.10000 0.09997 0.03 0.10000 0.09999 0.01 0.10000 0.10000 0 

 Average % of  
deviation 0.52869 Average % of  

deviation 0.06132 Average % of  
deviation 0.00533 Average % of  

deviation 0 
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error deviation increases, when the reaction diffusion parameter a increases. Similarly in Table 3, average per-
centage of error deviation decreases, when the time τ  increases. In Table 2, the maximum average relative er-
ror between the analytical results and numerical results is 0.53%. 

6. Conclusion 
A non-linear time dependent system of differential equation in pH-based potentiometric biosensor has been 
solved using the new HPM. New approximate analytical expressions for the concentrations of the substrate and 
hydrolysis products are derived. The time dependent substrate concentration profiles are also presented using 
SCILAB program. Concentration of substrate and product depends upon Thiele modulus and initial concentra-
tion of substrate which is discussed in this communication. 
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Appendix A. The Dimensionless Reaction-Diffusion Equations 
In the enzyme membrane, the reaction-diffusion equations for the concentration of species for non-steady state 
condition can be represented as follows [4] [10]. 

[ ] [ ]2

2

S S
D R

t x
∂ ∂

= −
∂ ∂

                                    (A.1)   

[ ] [ ]2

2 h

h h
P H

P H P H
D R r

t x
∂ ∂

= + −
∂ ∂

                                 (A.2)
 

2

2 h

h h
P H

P P
D r

t x

− −   ∂ ∂   = +
∂ ∂

                                   (A.3)      
 

[ ] [ ]2

2 ZH
ZH ZH

D R r
t x

∂ ∂
= + −

∂ ∂
                                 (A.4) 

2

2 ZH

Z Z
D r

t x

− −   ∂ ∂   = +
∂ ∂

                                    (A.5) 

[ ] [ ]2

2 AH
AH AH

D r
t x

∂ ∂
= −

∂ ∂
                                    (A.6)

 
2

2 AH

A A
D r

t x

− −   ∂ ∂   = +
∂ ∂

                                    (A.7) 

2

2 hP H ZH AH

H H
D r r r

t x

+ +   ∂ ∂   = + + +
∂ ∂

                              (A.8) 

where 
hP Hr , ZHr , AHr , AHr  are the instantaneous reaction terms. We also assume that the substrate S reacts 

with the catalysts via Michaelis-Menten kinetics. The reaction rate is  

[ ]
[ ]

max

m

v S
R

S k
=

+
                                          (A.9) 

where 

[ ]
( )

( )
( )

2 3 2 1 3
max

2 3 2 3 1

,t
m

k k E k k kv k
k k k k k

−+
= =

+ +
                              (A.10) 

By introducing the following set of dimensionless variables 
2

2 max
2; ; ;i

i
m m

C L Vx DtC x a
k L Dk L

τ= = = =                               (A.11)                                                                 

and defining the following “composite species” [10] 

[ ] [ ]h h hT
P P H P− = +                                      (A.12) 

[ ] [ ]TZ ZH Z − = +                                       (A.13)                           

[ ] [ ]TA AH A− = +                                       (A.14) 

[ ] [ ] [ ]hT
H H P H ZH AH+ +   = + + +                                 (A.15)                             

we obtain the dimensionless form of Equations (6)-(10) for the concentration of species which are given in the 
text. 
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Appendix B. Analytical Solutions of Equations (6)-(10) Using Complex Inversion  
Formula 
In this appendix, we indicate how the Equations (15) is derived. Using new homotopy perturbation approach 
[13], Equation (6) can be written as  

( ) [ ] [ ]
[ ][ ]

[ ] [ ] [ ]
[ ]

[ ]2 2
2 2

2 21 0
1 1 1

S S S S S S
p a p a

x xS x Sτ τ

   ∂ ∂ ∂ ∂
− − − + − − =   

∂ ∂∂ ∂= + +      
             (B.1) 

( ) [ ] [ ]
[ ]

[ ] [ ] [ ]
[ ]

[ ]2 2
2 2

2 21 0
11

b

S S S S S S
p a p a

x x SS τ τ

   ∂ ∂ ∂ ∂ − − − + − − = 
∂ ∂∂ ∂  + +   

                 (B.2) 

The approximate solution of Equation (B.2) is  

[ ] [ ] [ ] [ ]2
0 1 2

S S p S p S= + + +                                 (B.3) 

Substituting Equation (B.3) into Equation (B.2) and arranging the coefficients of powers p 

[ ] [ ]
[ ]

[ ]2
0 20 0 0

2: 0
1

b

S S S
p a

x S τ
∂ ∂

− − =
∂∂ +

                              (B.4) 
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[ ] [ ]
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2
0

: 0
11 1

b b

S SS S S
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x SS Sτ
∂ ∂
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                    (B.5) 

The initial and boundary conditions for Equations (12)-(14) becomes 

[ ] [ ]0
At 0, 0 and 0 1, 2,3,iS S iτ = = = ∀ =                             (B.6)         

[ ]0d
At 0, 0 and 1, 2,3,

d
S

x i
x

= = ∀ =                                 (B.7) 

[ ] [ ] [ ]0
At 1, and 0 1, 2,3,

b

ix S S S i= = = ∀ =                            (B.8)    

Equation (B.4) can be written as 

[ ] [ ] [ ]
2

0 0
2 0

S S
S

x
α

τ
∂ ∂

= −
∂ ∂

                                     (B.9) 

where α  is defined as in Equation (20). Now, by applying Laplace transform and complex inversion formula 
(Appendix C) to Equation (B.9) and to the conditions in Equations (B.6)-(B.8), we obtained the solution of Equ-
ation (B.9) as 

[ ]
[ ] ( )

( )0

cosh

cosh

b
S s x

S
s s

α

α

+
=

+
                                  (B.10) 

Using residue theorem (Appendix C) we can obtain the Equation (15) in the text. 

Appendix C. Inverse of Equation (B. 10) by Using Complex Inversion Formula 
In this appendix, we indicate how Equation (B.10) may be inverted using the complex inversion formula. If 
( )y s  represents the Laplace transform of a function ( )y τ , then, according to the complex inversion formula, 

we can state that  

( )
[ ] ( )

[ ] ( )1 1 exp d ,
2π2π exp d

c i c

c i

y s y s s
is y s s

τ τ
τ

+ ∞

− ∞

= = ∫
∫



                       (C.1) 
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where the integration in Equation (C.1) is to be performed along a line s c=  in the complex plane where 
s x iy= + . The real number c is chosen such that s c=  lies to the right of all the singularities but is otherwise 
assumed to be arbitrary. In practice, the integral is evaluated by considering the contour integral presented on the 
right-hand side of Equation (C.1), which is then evaluated using the so-called Bromwich contour. The contour 
integral is then evaluated using the residue theorem which states, for any analytic function ( )F z , that  

( ) ( )
0

d 2π
z zc

n
F z z i Res F z

=
=   ∑∫                             (C.2) 

where the residues are computed at the poles of the function ( )F z . Hence, from Equation (C.2), we note that  

( ) [ ] ( )
0

exp
s s

n
y Res s y sτ τ

=
 =  ∑                              (C.3) 

From the theory of complex variables, we can show that the residue of a function ( )F z  at a simple pole at 
z a=  is given by   

( ) ( ) ( )}{lim
z a

Res F z z a F z
=
= −                               (C.4) 

Hence, in order to invert Equation (B.10), we need to evaluate 

[ ] ( )
( )
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b
S s x

Res
s s

α

α

 + 
 +  

                                (C.5) 

The poles are obtained from ( )cosh 0s s α+ = . Hence, there is a simple pole at 0s =  and there are infi-
nitely many poles given by the solution of the equation ( )cosh 0s α+ =  and so  

( )22π 2 1 4
where 0,1, 2,

4n
n

s n
α− + −

= =                          (C.6) 

Hence, we note that 
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b

s s s
S x S Res s s Res s sτ α α

= =

    = + + +    
            (C.7) 

The first residue in Equation (B.17) is given by 

( ) ( ) ( )
( )0

exp cosh coshcosh lim
coshcoshs

s s x xRes s s
s s

τ α αα
αα=

 +
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The second residue in Equation (B.17) is given by 
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              (C.9) 

where nf  is defined as in Equation (20). Here, we used ( ) ( )cosh cosiθ θ=  and ( ) ( )sinh sini iθ θ= . From 
Equations (C.7)-(C.9), we conclude that 

[ ] ( ) [ ] ( ) ( ) ( )( )
0

0

1 π 2 1 e cos 2 1 π 2cosh,
cosh

nn f
b

n n

n n xxS x S
f

τατ
α

−∞

=

  − + +  = − 
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∑          (C.10) 

where nf  is defined as in Equation(20). Similarly, we can solve Equations (7) to (10) by using complex inver-
sion formula. 
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Appendix D. Scilab/Matlab Program to Find the Numerical Solutions of Equations  
(15) to (18) 
function pdex4 
m = 0; 
x = linspace(0,1); 
t = linspace(0,10); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('u1(x,2)') 
%—————————————————————— 
%figure 
%plot(x,u2(end,:)) 
%title('u2(x,t)') 
%xlabel('Distance x') 
%ylabel('u2(x,2)') 
%—————————————————————— 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1]; 
f = [1; 1].*DuDx; 
a=5; 
F1 = -(a^2*u(1))/(1+u(1)); 
F2 = -(a^2*u(1))/(1+u(1)); 
s = [F1;F2]; 
% ————————————————————– 
function u0 = pdex4ic(x) 
u0 = [0; 0]; 
% ————————————————————– 
function [pl,ql,pr,qr] = pdex4bc (xl,ul,xr,ur,t) 
pl = [0;0]; 
ql = [1;1]; 
pr = [ur(1)-1;ur(2)-0];  
qr = [0; 0];
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