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Abstract 
In this paper, one introduces the polynomials ( )nR x  and numbers nR  and derives some 

interesting identities related to the numbers and polynomials: nR  and ( )nR x . We also give re- 

lation between the Stirling numbers, the Bell numbers, the nR  and ( )nR x . 
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1. Introduction 
Recently, many mathematicians have studied the area of the Stirling numbers, the Euler numbers and 
polynomials (see [1]-[11]). We studied some properties of the polynomials ( )nR x  and numbers nR  in com- 
plex field (see [12]). In this paper, based on the Euler numbers and polynomials, we define the numbers nR  
and polynomials ( )nR x  by using the p-adic integrals on p  in p-adic field. Then, we get some interesting 
properties and relations of the Stirling numbers, the nR , and the Bell numbers. It is interesting that the Euler 
polynomials ( )nR x  and ( )nR x  to be define in this paper have a different structure (see [Figure 2]). Zeros of 

( )nE x  are a symmetric structure but zeros of ( )nR x  are not. 
Throughout this paper, we use the following notations. By p , we denote the ring of p-adic rational integers, 
p  denotes the field of p-adic rational numbers, p  denotes the completion of algebraic closure of p ,   
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denotes the set of natural numbers,   denotes the ring of rational integers, Q denotes the field of rational  

numbers,   denotes the set of complex numbers, and { }0N+ =   and 
( )

!
! !

n n
k n k k
 

=  − 
 denote the 

binomial coefficient. Let pν  be the normalized exponential valuation of p  with ( ) 1p p
pp p pν− −= = . 

For  

( ) { }| : is uniformly differentiable function ,p p pg UD g g∈ = →    

the fermionic p-adic integral on p  is defined by T. Kim as below:  

( ) ( ) ( ) ( ) ( )
1

1 1
0

1

1d lim 1
N

p

p
x

NN x
I g g x x g x

p
µ

−

− − →∞ =
−

= = −
  

∑∫


 (cf. [5]).           (1.1) 

If we take ( ) ( )1 1g x g x= +  in (1.1), then we easily see that  

( ) ( ) ( )1 1 1 2 0 .I g I g g− −+ =                                (1.2) 

From (1.2), we obtain  

( ) ( ) ( ) ( ) ( )
11 1

1
0

1 2 1 ,
nn n l

n q
l

I g I g g l
−

− − −
− −

=

+ − = −∑                        (1.3) 

where ( ) ( )ng x g x n= +  (cf. [5]-[10]). 
The classical Euler polynomials are defined by the following generating function  

( ) ( )
0

2, e
!e 1

n
xt

nt
n

tF t x E x
n

∞

=

= =
+ ∑                             (1.4) 

with the usual convention of replacing ( )nE x  by ( )nE x . In generally, the original Euler numbers are when  
1
2

x =  and normalizing by 2n  gives the Euler number as following:  

12 .
2

n
n nE E  =  

 
 

But in this paper, Euler numbers are when 0x = . In other words, ( )0n nE E=  and in this paper, Euler 
numbers mean the Euler numbers having a generating function as below(cf. [5]-[10]):  

( )
0

2 .
!e 1

n

nt
n

tF t E
n

∞

=

= =
+ ∑                                (1.5) 

The Stirling number of the second kind ( )2 ,S n r  is the number of partitions of n things into r non-empty sets; 
it is positive if 1 r n≤ ≤  and zero for other values of r (see [1]). It satisfies the recurrence relation  

( ) ( ) ( )2 2 21, , 1 , .S n r S n r rS n r+ = − +  

The generating function of the Stirling numbers is defined as below: 

( ) ( )2e 1 ! , .
!

nkx

n k

tk S n k
n

∞

=

− = ∑                               (1.6) 

As well known definition, the Bell polynomials are defined by Bell (1934) as below 

( ) ( )e 1

0
e .

!

tn x
n

n

tB x
n

∞ −

=

=∑                                  (1.7) 

Also, let ( )2 ,S n k  be denote the Stirling numbers of the second kind. Then 

( ) ( )2
0

, .
n

k
n

k
B x S n k x

=

= ∑                                 (1.8) 

In the special case, ( )1n nB B=  are called the n-th Bell numbers. 
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The motivation of this paper is the Euler numbers and Bell numbers’s generating function. From this idea, we 
induce some interesting properties related to the Stirling numbers, the Bell numbers, the Euler numbers and the 

nR . 
Our aim in this paper is to define analogue Euler numbers and polynomials. We investigate some properties 

which are related to nR , ( )nR x . Especially, we derive the relations of the Stirling numbers and the nR , the 
( )nR x . 

2. An Introduction to Numbers nR  and Polynomials ( )nR x  
Our primary goal of this section is to define numbers nR  and polynomials ( )nR x . We also find the witt’s 
formula for numbers nR  and polynomials ( )nR x  by (1.2). 

By (1.2) and using p-adic integral on p , we get as below: 

Let ( ) ( )e 1
e

t x
g x

−
= . 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )

e 1 1 e 1
1 1 1 1 1

e 1 e 1
1

e d e d

e 1 e d 2.

t t

p p

t t

p

x x

x

I g I g x x

x

µ µ

µ

− + −

− − − −

− −

−

+ = +

 = + = 
 

∫ ∫

∫

 



                 (2.1) 

Hence, by (2.1) we get the following:  

( )
( ) ( )e 1

1e 1

2 e d .
e 1

t

t
p

x

Z
xµ

−

−−
=

+
∫                              (2.2) 

Also, Let ( ) ( )e 1
e

t y xt
g y

− +
= . By the same method (2.1), we get the following: 

( )
( ) ( )e 1

1e 1

2 e e d .
e 1

t

t
p

y xtxt
Z

yµ
− +

−−
=

+
∫                           (2.3) 

From (2.2) and (2.3), we define numbers and polynomials nR , ( )nR x  as below: 

( ) ( )e 1
1

0
e d ,

!

t

p

n x
n

n

tR x
n

µ
∞ −

−
=

=∑ ∫


                            (2.4) 

( ) ( ) ( )e 1
1

0
e d ,

!

t

p

n y xt
n

n

tR x y
n

µ
∞ − +

−
=

=∑ ∫


                          (2.5) 

respectively. 
From above definition, one easily has the Witt’s formula as below: 

( ) ( )2 1
0

, d ,
p

n
l

n
l

R x S n l xµ−
=

= ∑∫


                            (2.6) 

( ) ( ) ( )2 1
0 0

, d ,
p

n n k
k l

n
k l

n
R x x y S n k l y

l
µ

−

−
= =

 
= − 

 
∑ ∑∫



                     (2.7) 

with the usual convention of replacing ( )nR x  by ( )nR x  respectively. In the special case, 0x = , ( )0n nR R=  
are called the n-th R-numbers. 

From (2.6) and ( )1d
p

l
lZ

x x Eµ− =∫   

( ) ( ) ( ) ( ) ( )2 1 2 1 2
0 0 0

, d , d , .
p p

n n n
l l

n lZ
l l l

R x S n l x S n l x x S n l Eµ µ− −
= = =

= = =∑ ∑ ∑∫ ∫


 

Hence, we get the following; 

( )2
0

,
n

n l
l

R S n l E
=

= ∑                                  (2.8) 
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where lE  is the Euler numbers. 
Also, from (2.5) and by simple calculus, one has 

( )
0

.
n

k
n n k

k

n
R x R x

k −
=

 
=  

 
∑                                  (2.9) 

From (2.8) and (2.9), we get some polynomials as below: 

( )

( )

( )

( )

( )

( )
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4
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2
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5 5 215 5 ,
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15 63 293 5 15 .
2 2 2

R x x

R x x x

x xR x x

R x x x x x

x xR x x x x

x xR x x x x x

= −

= − −

= − − −

= − − − +

= − − − + +

= − − − + + +

 

3. Basic Properties for nR  and ( )nR x  Related to the Stirling Numbers, the Bell  
Numbers and the Euler Numbers  

From (2.5) and by the simple calculation  
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                (3.1) 

where ( ) ( )20 ,n l
n lB x x S n l

=
= ∑  are the Bell polynomials. 

By comparing the coefficients of 
!

nt
n

 on the both sides of the above equation, we get the following the  

theorem immediately. 
Theorem 1. For n∈  with 1n > , one has 
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where ( )nB x  are the Bell polynomials. 
From (2.5), one has 
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By comparing the coefficients of 
!

lt
l

 on the both sides of the above equation, we get the following theorem  

immediately. 
Theorem 2. For n∈  with 1n > , let ( )2 ,S m n  be the stirling numbers. Then, one has 

( ) ( )( )2
0

2, if 0,
, 1

0, if 1,

l

n n
n

l
S l n E E

l=

=
+ =  ≥

∑  

where ( )nE x  and nE  are the Euler polynomials and the Euler numbers respectively. And 

( ) ( ) ( )1

2, if 0,
1 d

0, if 1,p
l lZ

l
B x B x x

l
µ−

=
+ + =  ≥

∫  

where ( )nB x  is the n-th Bell polynomial. 
Also, from (2.1) one has 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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e 1 e 1 e 1
1 1 1 1 1

e 1
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0 0 0 0 0

2 e e d e d

e , .
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Z Z
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I f I f x x
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µ µ
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            (3.3) 

By comparing the coefficients of nt  on the both sides of the above equation, we get the following theorem 
immediately. 

Theorem 3. For n∈  with 1n > , one has 

( )2
0 0

, .
n n k

n k
k l

n
R S n k l R

k

−

= =

 
= − − 

 
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Let ( ) ( )e 1
e

t x
f x

−
= . Then from (1.3), we derive the following: 

Left side of (1.3) is as below:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
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( ) ( ) ( )( )
( ) ( )( )

e 1 e 11 1
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1e 1 ( 1) d
!

1e 1 1
!

, ,
!

t t

p p

p p

x n xn n
n Z Z

k kt n k
Z Z

k

k nt
k k

k
ll

k k
l k

I f I f x x

x n x x
k

E n E
k
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∞
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∑

∑ ∑

          (3.4) 

and right side of (1.3) is as below: 
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1 1 1e 11 1 1
2
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1 1
2
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2 1 2 1 e 2 1 ,
!
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∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
          (3.5) 

Hence, from (3.4) and (3.5), we get the following theorem. 
Theorem 4. For n∈  with 1n > , one has 

( ) ( )( ) ( ) ( )
1 1

2 2
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, 1 , .
m n mn l s

k k
k l s

S m k E n E S m s l
−

− −

= = =

− = −∑ ∑ ∑  

where ( )kE x  and kE  are the Euler polynomials and numbers respectively. 
By using the definition of ( )nR x  and simple calculation, we get the following:  
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( ) ( ) ( )
0 0

.
n n kn k

n k n k
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−

−
= =

   
+ = = +   

   
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and the equality above is expressed as follows: 

( ) ( )( ) ( ) .
n n

nR x y R x y R x y+ = + = + +  

It is well known that ( ) ( )20 ,n l
n lB x x S n l

=
= ∑ . By the definition nR  and some calculation, we get the fol- 

lowing: 

( ) ( ) ( ) ( )e 1
1 2 1

0 0 0
e d , d .
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tn nnx l
n Z Zp pn n l

t tR x x S n l x
n n

µ µ
∞ ∞−
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Hence, one has the following theorem. 
Theorem 5. For n∈  with 1n > , one has 

( ) ( ) ( ) ( )2 1 1
0

, d d
p p

n
l

n nZ Z
l

R x S n l x B x xµ µ− −
=

= =∑∫ ∫  

where ( )nB x  are the Bell polynomials. 
By the same method above Theorem 5, we get the corollary as follows: 
Corollary 6. For n∈  with 1n > , one has 
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where ( )nB y  are the Bell polynomials. 

It is well known that 2 e
e 1

xt
t +

 is the generating function of the Euler polynomials. We substitude e 1t −  for  

t in the generating function of the Euler polynomials as below: 
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The left-hand-side of (3.8) is 
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The right-hand-side of (3.8) is  
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                    (3.10) 

By (3.9),(3.10) and comparing the coefficient of both sides, we get the following theorem. 
Theorem 7. For n∈  with 1n > , one has 
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where ( )lE x  and ( )nB x  are the Euler polynomials and the Bell polynomials respectively. 
It is not difficult to see that  
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From the expression (3.11), one has 
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Specially, if 1x = , 
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0 0
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n k k k
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S n l R B B
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= =

 
= + 

 
∑ ∑  

where ( )nB x  are the n-th Bell polynomials. 

4. Zeros of the Bell Polynomials ( )nB x  and the Polynomials ( )nR x   
In this section, we investigate the zeros of the Bell, Euler, and ( )nR x  polynomials by using a computer. 

From (1.7), we get some polynomials as below: 

( )

( )

( )

( )

( )

1

2
2

2
3

3

4 2
5 3

4

4
6 5 3 2

5

1 ,
2

1 ,
2

3 3 1 ,
2 2 4

5 5 215 5 ,
2 2 4

15 63 293 5 15 .
2 2 2

B x x

B x x x

x xB x x

x xB x x x x

x xB x x x x x

= −

= − −

= − − −

= − − − + +

= − − − + + +

 

We plot the zeros of ( )nB x  for x∈  (Figure 1). In Figure 1 (top-left), we choose 5n = . In Figure 1 
(top-right), we choose 10n = . In Figure 1 (bottom-left), we choose 15.n =  In Figure 1 (bottom-right), we 
choose 20n = . 

Next, we plot the zeros of ( ) ( ) ( ), ,n n nE x B x R x  for x∈  (Figure 2). In Figure 2 (left), we choose 
20n =  and plot of zeros of ( )nE x . In Figure 2 (middle), we choose 20n =  and plot of zeros of ( )nB x  In 

Figure 2 (right),we choose 20n =  and plot of zeros of ( )nR x . 
Our numerical results for numbers of real and complex zeros of ( )nB x  and ( )nR x  are displayed in Table 

1. 
We observe a remarkably regular structure of the complex roots of the Bell polynomials ( )nB x  and 

polynomials ( )nR x . We hope to verify a remarkably regular structure of the complex roots of the Bell 
polynomials ( )nB x  and polynomials ( )nR x  (Table 1). Prove that the numbers of complex zeros ( )nB xC  of 

( ) ( ), 0nB x Im x ≠  is  

( ) 0.
nR xC =  

Next, we calculate an approximate solution satisfying ( ) ,nB x x∈ . The results are given in Table 2. 
Stacks of zeros of ( )nB x  for 1 20n≤ ≤  from a 3-D structure are presented (Figure 3). Next, we present 

stacks of zeros of ( ) ( ) ( ), ,n n nE x B x R x  for 1 20n≤ ≤  from a 3-D structure. In Figure 3 (left), stacks of 
zeros of ( )nE x  for 1 20n≤ ≤  from a 3D structure are presented. In Figure 3 (middle), stacks of zeros of 

( )nB x  for 1 20n≤ ≤  from a 3D structure are presented. In Figure 3 (right), stacks of zeros of ( )nR x  for 
1 20n≤ ≤  from a 3D structure are presented . 

Since n is the degree of the polynomial ( )nR x , the number of real zeros ( )nR xR  lying on the real plane 
( ) 0Im x =  is then ( ) ( )n nR x R xR n C= − , where ( )nR xC  denotes complex zeros. See Table 1 for tabulated values 

of ( )nR xR  and ( )nR xC . Prove or disprove: ( ) 0nR x =  has n distinct solutions. Find the numbers of complex  
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Figure 1. Zeros of ( )nB x .                                                                                            

 

 
Figure 2. Zeros of ( )nE x , ( )nB x  and ( )nR x .                                                                                               

 

 
Figure 3. Zeros of ( )nE x , ( )nB x  and ( )nR x .                                                                                               
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Table 1. Numbers of real and complex zeros of ( )nB x  and ( )nR x .                                                                                               

Degree n 
( )nB x  ( )nR x  

Real zeros Complex zeros Real zeros Complex zeros 

1 1 0 1 0 

2 2 0 2 0 

3 3 0 3 0 

4 4 0 2 2 

5 5 0 3 2 

6 6 0 4 2 

7 7 0 3 4 

8 8 0 4 4 

9 9 0 5 4 

10 10 0 4 6 

11 11 0 5 6 

12 12 0 6 6 

13 13 0 5 8 

 
Table 2. Approximate solutions of Bn(x) = 0.                                                                             

Degree n x 

1 0 

2 −1, 0 

3 0, −2.6180, −0.3820 

4 −4.491, −1.343, −0.1658 

5 −6.51, −2.65, −0.762, −0.076 

6 −8.63, −4.18, −1.70, −0.453, −0.04 

 
zeros ( )nR xC  of ( ) ( ), 0.nR x Im x ≠  Using numerical investigation, we observed the behavior of complex roots 
of the Euler polynomials ( )nE x . By means of numerical experiments, we demonstrate a remarkably regular 
structure of the complex roots of the Euler polynomials ( )nE x  (see [12]). The theoretical prediction on the 
zeros of ( )nR x  is await for further study. These figures give mathematicians an unbounded capacity to create 
visual mathematical investigations of the behavior of the roots of the ( )nR x . For more studies and results in 
this subject, you may see [12]-[14]. 
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