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Abstract

In this paper, inference on parameter estimation of the generalized Rayleigh distribution are investigated for
progressively type-I interval censored samples. The estimators of distribution parameters via maximum like-
lihood, moment method and probability plot are derived, and their performance are compared based on
simulation results in terms of the mean squared error and bias. A case application of plasma cell myeloma
data is used for illustrating the proposed estimation methods.
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1. Introduction

Burr [1] introduced twelve families of distributions for
modeling lifetime data. Among those families, Burr type
X and Burr type XII have received the most attention.
The Burr type X distribution is also known as the
generalized Rayleigh distribution (GRD). The probabi-
lity density function (pdf), cumulative distri-bution func-
tion (cdf) and hazard function of the two-parameter GRD
are defined, respectively, as below:

2 \a-1 2
f(t;a,z)=(2a/12)t(1—e*““> ) e, (1)
F(ta,a)= (1—e'<‘/“2 )a , (12)
(2al i ms | et

h(t;a, 1) = 1—(1—e’(‘“)2 )zx ' 13)

t>0,>0,41>0,

where o is the shape parameter and A is the scale
parameter. If « =1, the GRD reduces to the Rayleigh
distribution. The GRD has been studied in many papers
such as [2-11]. Johnson et al. [12] provided an excellent
review for the GRD up to the year of 1995.
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When « <1/2, the GRD has a decreasing pdf (1.1)
and a bathtub-type hazard function. When « >1/2, the
pdf (1.1) is a right-skewed unimodal function and the
hazard function is an increasing function. The two-
parameter GRD has several properties commonly
happened in the two-parameter gamma, Weibull and
generalized exponential distributions. However, when
a >1/2, the hazard function (1.3) behaves more close to
the hazard function of Weibull with shape parameter
greater than 1. Similar to the generalized exponential
distribution and Weibull distribution, the GRD has a
closed form of cdf and is very popular for dealing with
censored data. Readers can refer to [5] and [7] for more
detailed information about the comparison among these
distributions.

According to complete samples, Surles and Padgett
[10] showed that the two-parameter GRD is quite
effectively in modeling strength data and general lifetime
data. Kundu and Ragab [5] studied many different
estimation methods for the GRD. However, it is very
often that objects are lost or withdrawn before failure or
the object’s lifetime is only known within an interval in
industrial life testing applications or medical survival
analysis. Hence, the sample information is imcomplete
and the obtained sample is called a censored sample. The
most common censoring schemes are type-l censoring,
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type-Il censoring and progressive censoring. The life
testing is ended at a pre-scheduled time for the type-I
censoring and for the type-1l, the life testing is ended
whenever the number of lifetimes is reached. Both the
type-1 and the type-11 censoring schemes allow with-
drawing the test items only at the end of life testing.
However, the progressive censoring schemes allow re-
moving test items at some other times before the end of
life testing. More information about progressive type-I
and type-Il censoring schemes and their applications can
be found in [13].

Aggarwala [14] introduced the statistical inference
procedure for progressively type-I interval censored data
from the exponential distribution. Under progressive
type-l interval censoring, observations are only known
within two consecutively pre-scheduled times and items
would be allowed to withdraw at pre-scheduled time
points. Ng and Wang [15] studied parameter estimations
for Weibull distribution under progressive type-I interval
censoring. Chen and Lio [16] inferred the parameters of
GED according to progressively type-1 interval censored
samples. To our best knowledge, there no any research
work about the statistical inference for the GRD based on
progressively type-l interval censored samples has been
published in literatures.

The rest of this article is organized as follows. In
Section 2, we introduce the progressive type-l interval
censoring scheme into the GRD followed by the
theoretical backgrounds and methods for its parameter
estimation. A simulation study is conducted in Section 3
to compare the performance of these estimation methods
in terms of the mean squared error (MSE) and bias. In
Section 4, the application to a real data set is discussed.
Some conclusions are given in Section 5.

2. Data, Likelihood and Parameter
Estimations

2.1. Progressively Type-I Interval Censored Data

Let n items are placed on a life test simultaneously at
the initial time t, =0 and under inspection at m
pre-specified times t, <t, <.--<t, , where t, is the
scheduled time to terminate the experiment. At the time
t;, the number, X;, of failures occurred in (t_,t] is
recorded and R; surviving items are randomly removed
from the life test, for i=1,2,---,m-1. At the time t_,
all surviving items are removed and the life test is
terminated. Since the number, Y,, of surviving items in
(t_y.t;] is a random variable and R <Y, at schedule
time t,, R, could be determinated by the pre-specified
percentage of the remaining surviving units at the time
t,. For example, given pre-specified percentage values,
P, Pyy and p,, =1, for withdrawing at

Copyright © 2011 SciRes.

t, <t,<--<t,, respectively, R =|py;| at each
inspection time t, where i=1,2,---,m. Therefore, a
progressively type-1 interval censored sample can be
denoted as {X;,R.,t;},i=1,2,---,m, where sample size
n=>"(X;+R). If R=0,i=12,--,m-1, then the
progressively type-l interval censored sample is a
conventional type-I interval censored sample.

2.2. Likelihood Function

Given a progressively type-1 interval censored sample,
{X,,R.t;},i=1,2,---,m, of size n, from a continuous
lifetime distribution with cdf, F(T;60), where ¢ is the
parameter vector, the likelihood function can be

constructed as follows (see for example, [1]):
L(0) e f[[F (t.60)-F(t..0)] " [1-F(t)]*. @1)

It can be seen easily that if R, =R, =---=R,, =0,
the likelihood function (2.1) reduces to the corresponding
likelihood function for the conventional type-I interval
censoring. The maximum likelihood estimate (MLE) for
the parameter can be carried out by maximizing the
likelihood function of (2.1). Generally, it is often the
case without a closed form for the MLE and therefore an
iterative numerical search could be used to obtain the
MLE from the above likelihood function.

2.3. Maximum Likelihood Estimation

Given a progressively type-l interval censored sample
from the GRD defined by Equation (1.1) and Equation
(1.2), the likelihood function, (2.1), can be specified as
follows:

L(at, ) o fﬂ(l_ o /2 )“ B (1_ i )a Ti

.{1_(1_ | T‘ |

Let x=A*. By setting the derivatives of the log
likelihood function with respect to « or u to zero,
the MLEs of a and u are the solutions to the
following likelihood equations

m Ritize*t?/u (1_ o )al
Z 2 a
- 1‘(1—3‘% /p)

X |[1—e®e) e Pl _(1_e? ) e, -tf/y}
:Zm: {(1e ) tzea (1 e2 )ate
N G

2.2)

2.3)
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and

i R [In(l—etiz/” )}(1— et/ )a

= 1—(1—e’t‘2/“ )a

_ i X; (l—e’”z/” )a In(l—e"iz/")

et ret]

_i (1— g m )a In (1— g am )

= (1— g/ )a - (1— e Falk )a |

No closed form of the solution can be found to the
above equations, and an iterative numerical search can be
used to obtain the MLEs. Let &, and /. be the
solution to the above equations. Then the MLE for A4 is
Aue = Hwe - When A is known and « is un-
known, then only « needs to be estimated and the
MLE is the solution of « to the Equation (2.4) with
4 replaced by the known A%. When « is known and
A is unknown, then only 4 needs to be estimated and
the MLE of 4 is the positive squared root of the
solution, x to Equation (2.3) with « replaced by the
known « . Since there is no closed form of the MLE, a
mid-point approximation and the Expectation-Maximiza-
tion (EM) algorithm are introduced as follows for finding
the MLEs of « and 4.

(2.4)

2.4. Mid-Point Approximation Method

Suppose that the X, failure units in each subinterval
(t_s.t;] occurred at the center of the interval
t, +t

and R, censored items withdrawn at the

censoring time t,. Then the log likelihood function from
the GRD could be approximately represented in terms of
pseudo-complete data as:

In(L)oc g[xilog(f (m6))+Rlog(L-F (1,.6))]
=[|n(a)_|n(u)}gxi éxim(mi)_(l/y)gximf
+(a—1)zm:[xiln(1—em‘2/")}

i=1

+i{Riln[l l e"'/“ ﬂ
2.5)

When « and A are unknown, the MLEs, & and
a, of a and u are the solution to the following
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system of equations,

02iz::xiln(l—e‘miz/*")+iz::xi

:&i . (1—e't‘2/”)&ln(l—z'ti2/ﬁ) | (2.6)
i 1—(1—e“i2/f’)

and
m . . noX.m e |/”
in/H(a—l)Z—i 7P
i=1 il 1_g M/#

L tRe (1_845/@ )&‘1 @.7)
1_(1_915//3)& '

Then the estimate for A is ﬁ.When A is known
and « is unknown, then only « needs to be
estimated and the MLE via mid-point approximation is
the solution of « to the Equation (2.6) with 4
replaced by A*. When « is known and A is un-
known, then only A needs to be estimated and the
MLE of A via mid-point approximation is the positive
squared root of the solution, x to Equation (2.7) with
a replaced by « . Again, there is no closed form for
the solution and an iterative numerical search is needed
to obtain the parameter estimates, @,y and f4, from
the above equation(s). Thereafter, the estimates are
referred as “MidPt” in this paper. Although there is no
closed form of solution, the mid-point likelihood equa-
tions are simpler than the original likelihood equations.

MB
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ﬁ
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2.5. EM-Algorithm

The EM algorithm is a broadly applicable approach to
the iterative computation of MLEs and useful in a variety
of incomplete-data problems where algorithms such as
the Newton-Raphson method may turn out to be more
complicated. On each iteration of the EM algorithm,
there are two steps called the expectation step or the
E-step and the maximization step or the M-step.
Therefore, the algorithm is called the EM algorithm and
the detail development of EM algorithm can be found in
[17]. The EM algorithm for finding the MLEs of
parameters in the two-parameter GRD is developed as
follows.

Let 7;;,j=1,2,---,X;, be the survival times within
subinterval (t_.,t] and 7 ,,j=1,2,---,R be the
survival times for those withdrawn items at t, for
i=1,2,3,---,m, then the log likelihood, In(LC , for the
complete lifetimes of N items from the two-parameter
GRD is given as follows:
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1) £ Soa( (0B 1 5,0)

=[m(a>i—ﬂn IS0 R)- W E| 2+ 2 |

(a-0E] Sinfa-e T o S1-e )

i=1| j=1
m | Xj R
+Z{Zln(7i,j)+ In(ri’jj)}
i=1| j=1 j=1
(2.8)
where " (X;+R)=
Taking the derivative with respective to x# and «,

respectively, on Equation (2.8), the following likelihood
equations are obtained:

g:—g{;m[l e 'J/”jJrZIn(l e "/”ﬂ (2.9)
and

nu= Z{Zr, ; +Zr, J}

=1| j=1

2
—Ti iU . *o —TiG /U
m | X T e 'J/ Rl riz.e "J/

—(a-1)) 2 — /#

i=1 -1(1 e A

=L (1- e’fi*,zi/”)
(2.10)

&{z},ﬁzﬂ

=1

m | X 2 *2

SR DYl Y
K

The lifetimes of the X, failures in the ith interval
(t_..t;] are independent and follow a doubly truncated
GRD from the left at t,_, and from the right at t, and
the lifetimes of the R, censored items in the i th
interval (t_,,t;] are independent and follow a truncated
GRD from the left at t;, i=1,2,---,m. The required
expected values of a doubly truncated from the left at a
and from the right at b with O0<a<b<o for EM
algorithm are given by

, :yzf (v, 2)dy
B[P <lab)]= F(jb;a,/i)—F(a;a,/l)'

E.. [In(l—e’Yz/”)|Y € [a,b)}

) J':In(l—e‘yz/”)f (y;a, A)dy
~ F(ba,2)-F(aa,2)
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2
J'bzyi f(y;a 4)dy
a eY //1 -1
E.. |Y c[ab)|= :
* 2/;: F(bja,2)-F(aa,1)
Therefore the EM algorithm is given in this case by

the following iterative process:
1. Given starting values of a, 4 and A= \/; say

A%, 49 and 29 =g .Set k=0.
2.Inthe k+1th iteratlon,

e the E-step requires to compute the following
conditional expectations using numerical integration

methods,
oYY eltat)].

Ba = E 40 00 In(l—e‘Yz/ ﬁ(k))|v et t, )},

B = B 0 [ YIY <[toe0) ],

=E 10 0 [ln(l—eYz/ i j|Y e[t ,oo)}
r el ,)}

m
E
|

,YZ/

Bo = E ) alk { 2/\:2 _ |Y€[t"oo)}

and the likelihood Equations (2.9) and (2.10) are
replaced by

n m
—:—Z[XiEZi +RE,; (2.11)
o i=1
and
nu =Y [XE; +REy;]-(a—1)Y [ X,Es + REg ]
i=1 i=1
(2.12)
e The M-step requires to solve the Equations (2.11) and
(2.12) and obtains the next values, &, A%
and A%V =2 of o, u and A,
respectively, as follows:
G = il (2.13)

i(xiEZi +REy)

i=1

(k+1)

(X, +REy)-[6%Y 1] 3 (X,E, + REy)

=

i=1 i=1
n

(2.14)
3. Checking convergence, if the convergence occurs
then the current &*, 2*Y and A% are the
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approximated MLEs of « , x and A1 via EM
algorithm; otherwise, set k =k +1 and go to Step 2.

The approximated MLEs of «, u and l:\/;
via EM algorithm are thereafter referred as “EM” in this
paper. It can be easily seen that the EM algorithm has no
complicated likelihood equations involved for solving
the solutions as the MLEs of « and A. Therefore, it
can be efficiently implemented through a computing
program.

When A is known and « is unknown, only «
needs to be estimated and Equation (2.11) and Equation
(2.13) with [z(") replaced by A° will be implemented
via EM algorithm to obtain the MLE of « . Similarly,
when « is knownand A is unknown, only A needs
to be estimated and Equation (2.12) and Equation (2.14)
with & replaced by « will be implemented via EM
algorithm to obtain the MLE of 1.

2.6. Method of Moments

Let T be random variable which has the pdf (1.1).
Kundu and Ragab [5] and Ragab and Kundu [7] had
shown that:

E(T?)=(p(a+1)-p(1))(2?),
E[T“]—[E[TZ]]Z = (-¢'(a+1)+¢'(1)(2°),

where ¢(t) is the digamma function and ¢'(t) is the
derivative of ¢(t). The K th moment of a doubly

truncated GRD in the interval (a,b) with
0<a<b<o isgivenby

E, . (T“[Te[ab))==2———
o (T <l 0)= 2o
Equating the sample moments to the corresponding

papulation moments, the following equations can be used
to find the estimates of moment method.

p(o(a+1)-p(1)=
%[Zzﬂ:xiEw (T?[T e[tst))+ RE, . (T?[T € [ti,oo))]

(2.15)

[tf (t)at
F

u (—(o'(a +1)+ go’(l))
A S (17 el t)oRE, (T <)
LS (T )R (T el

(2.16)

Since no closed form of the solutions to Equation
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(2.15) and Equation (2.16) can be obtained, an iterative
numerical process to obtain the parameter estimates is
described as follows:

1) Let the initial estimates of «, u# and A, say

a®, 1@ and A9 =@ with k=0.
2) Inthe (k+1)th iteration,

e computing E; = Ea(k)%(k) (TZ|T € [ti—l’ti))'

Ey = E gy 0 (T2 Te [ti,oo)),
Er =E 9 (T*IT e[t ot)) and
Es = E i 0 (T*[T €[t 0)) and solving the

following equation for « , say o

[p(a+1)-p()]

[o(a+1)-p()] +¢'(1)-¢'(a+1)
{iXiEﬁ +RE; T
) n[zr::xiE7i +RiE8i]

e The solution for u, say ,u(
the following equation

((/,(aw +1)_¢,(1))(ﬂ) = %{Zx E, +RE, } (2.18)

Iu(k+l)

(2.17)

) "is obtained through

and A" =

3) Checking convergence, if the convergence occurs
then the current o™ and 1" are the estimates of
a and A by the method of moments; otherwise set
k=k+1 and go to Step 2. The resultant estimates of
a and A is thereafter referred as “MME” in this
paper.

When A isknownand « isunknown, estimate o
only using Equation (2.17) with #* replaced by A2
will be implemented through the iterative process of the
Method of Moments to obtain the “MME” of « .
Similarly, when « is known and A is unknown,
estimate 4 only using Equation (2.18) with ™
replaced by « will be implemented through the
iterative process of the Method of Moment to obtain the
“MME” of 1.

2.7. Estimation Based on Probability Plot

Given a progressively type-1 interval censored data,
(X,,R.t),i=1,2,---,m of size n, the distribution
function at time t can be estimated by the

product-limit distribution described as
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F(t)=1-T1(1-5;).i=1.2m, (2.19)
j=1
where
. X, .
pj :ﬁ’ j=12,---,m.
n—> X >R
k=0 k=0
From (1.2), we have
t= z\/—ln[l—(lr(t))””] (2.20)

Let If(tj‘) be the estimate of F(tj), then the
estimates of o and A in the GRD based on
probability plot can be obtained by minimizing

Z;i{ti —/1\/—In (1—(!E (t; ))M )T with respectto «

and A . A nonlinear optimization procedure will be
applied here to find the minimizers as the estimates of
a and A.And the minimizers are thereafter referred as
“ProbPt” in this paper.

When o is known and A is unknown, it can be
shown that the estimate, 4 of A via probability plot
is

is unknown, then
In(F (t,a,/i)) = aln(l—e“z/ﬁz) , then the estimate of

when A4 isknownand «

a through probability plot can be obtained by mini-
mizing

i(ln(ﬁ(tj))—ogln(l—e*‘z/lz))2 2.22)
with respectto « and the estimate of « is
&= 2n(F (s ))(inf1-e ) (2.23)

iln (1— et/ )2

i=1

3. Simulation Study

The purpose for simulation study is to investigate the
behavior of the proposed estimation methods for the
GRD parameters by using progressive type-l interval
censored data. Four different simulation schemes are
proposed to generate the progressively type-l interval
censored data from the GR distribution and the com-
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parison among all estimation processes described in
Section 2 will be discussed. The simulation is conducted
in R language (R Development Core Team [18]), which
is a non-commercial, open source software package for
statistical computing and graphics that was originally
developed by lhaka and Gentleman [19]. The R codes
can be obtained from the authors upon request.

3.1. Simulation Algorithm

According to the algorithm proposed in [1], a pro-
gressively type-1 interval censored data,
{X,,R.t;},i=1,---,m, from the GRD of (1.1) and (1.2)

can be generated as follows: let X, =0 and R, =0
and for i=1,2,---,m,

xi|Xi—l"”7x0’Ri—17”"RO

i-1 . _ :
~rBinom| n-Y (X, +R;), F(6.0)-F(t..9)

_ =1 1_§[F(tj,9)—F(tj_l,9)]

=rBinom n—ii(xj +R,), F(t.0)- F(til’g):|

& 1-F(t,,.0)
N T G
=rBinom| n— (Xj +R;), . ,
j=1 l_(l_e‘tiz—l//‘)
) 3.1)

i=1

R = f|oo{pi x[n—ii(xj +Rj)—xiﬂ (3.2)

where floor() returns the largest integer not greater

than the argument. Notice that if p,=---=p,, =0,
then R =---=R,; =0 andhence
Xio s X Xy = R, IS @ simulated sample from the

conventional type-l interval censoring. This algorithm,
which is an extension for the procedures in [20]
developed for the multinomial distribution, involves to
generate m binomial random variables with the
pseudo-code in this case as follows:

1)Set i=0 andlet xsum=rsum=0.

2) i=i+l
e Generate X, as a binomial random variable with

parameters n—xsum-—rsum and

(1— el )a ~ (1 el )a
1- (1— g Falk )

e Calculate
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R = f|oor[pi x(n-34(x, +Rj)—xiﬂ or
R =min(n—xsum-—rsum-X;,R;)

depending upon the censoring scheme implemented
by percentage, p;,or R..
3) Set xsum = xsum+ X, and rsum = rsum+ R,

4) If i<m, go to Step 2; otherwise, stop.
3.2. Simulation Schemes

For simplicity, we consider the simulation setups parallel
to the real data, given in Section 4, for the m=9 pre-
specified inspection times in terms of year,

t, =5.5/12,t, =10.5/12,t, =15.5/12,t, = 20.5/12,

t, = 25.5/12,t, = 30.5/12,t, = 40.5/12,t, =50.5/12 and
t, =60.5/12 which is the time to terminate the ex-
periment. We perform intensive simulations to compare
the performance of the different estimators, described in
Section 2.

Each replication of the simulation generates a pro-
gressively type-1 interval censored sample of size
n=112 from the GRD with parameters
0 =(a,4)=(0.48,2.93) in Equation (1.1) and Equation
(1.2), both input parameters are selected close to the
MLEs of parameters in the GRD for the given data in
Section 4.

To compare the performances of the estimation pro-
cedures developed in this paper, we consider the
following four progressive interval censoring schemes
which are similar to the patterns of simulation schemes
used in [14], [15] and [16]:

Py = (0.25,0.25,0.25,0.25,0.5,0.5,0.5,0.5,1),
P = (0.5,0.5,0.5,0.5,0.25,0.25,0.25,0.25,1),
p(3) = (01 Ol Ol Ov 07 01 ol 011)1

P =(0.25,0,0,0,0,0,0,0,),

where censoring in Py is lighter for the first four
intervals and heavier for the next four intervals. The
censoring pattern is reversed in P and P is the
conventional interval censoring where no removals prior
to the experiment termination and the censoring in p,
only occur at the left-most and the right-most. The initial
values of ¢ and A for iterative progresses of MLE,
mid-point approximation, EM algorithm, momemt
method and probability plot are given the same value,
which is randomly generated, for each simulation run.

3.3. Simulation Results

For given simulation parameter inputs, the simulation is
conducted 1000 simulation runs. The median, mean, the
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absolute value of bias, standard deviation and mean
squared error are calculated based on the 1000 MLEs
from these 1000 simulation runs. Table 1 sumarizes the
simulation results for estimating both unknown GRD
parameters. In general, Table 1 indicates that the
processes of the regular MLE and EM algorithm give
relatively more accurate estimates than the other pro-
cesses in view of the “Median” and “Mean” in the table
although there is a slightly bias as indicated in “Bias” (i.e.
the bias). This conclusion can also be supported by
Figures 1 and 2 where the medians of the boxplots for
the processes of the regular MLE and EM algorithm are
close to the input population parameters,
0=(a,A)=(048,2.93) , for the simulation study.
However, the boxplots shows that almost all the plots are
right skewed except the cases of the plots for the regular
MLEs and the MLEs via midpoint approximation for «
under the progressive interval censoring schemes of p,
and Pla) - The box plots also show potential outliers
happened for many cases except the case from EM
algorithm under progressive censoring scheme p . It
could be due to the convergence problem from the
iterative process that outliers happen. Over all, from the
box plots, we can conclude that process via EM
algorithm provides the best convergence results.

As the performances among the four censoring
schemes, the third scheme P provides the most
precise results as seen from “Bias”, “SD” (i.e. the
standard deviation) and “MSE” (i.e. the mean squared
errors) shown in Table 1, then followed by the schemes
Pay» Py OF P - The results of the performance
comparisons among these censoring schemes are similar
to the results observed in [15] and [16]. These phe-
nomena are expected since the third censoring scheme
could have the largest number of failure items observed
before the termination of life-testing and then followed
by Py P and Pe) - Intuitively, these are also
consistent with the statistical theory that the larger the
“sample size” is the more accuracy the parameter
estimate is.

Among these three estimators developed in the paper,
the maximum likelihood estimator (via regular process
and EM algorithm in the paper) gives the most precise
parameter estimates as shown by SD and MSE in Table
1. Therefore, we recommend the maximum likelihood
estimation. Among the three processes, “MLE” “MidPt”
and “EM”, for the maximum likelihood estimate,
“MidPt” has largest “Bias” and comparative “SD” and
slightly larger “MSE”. Since the process of EM
algorithm provides better convergence results, the MLE
via EM algorithm is suggested to be used for the GRD
modelling under the progressive type-l interval cen-
soring.
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Table 1. Summary of simulations assuming both « and 4 unknown.

a A
Scheme EM MidPt MLE MME ProbPt EM MidPt MLE MME ProbPt
1 Median 0.481 0.548 0.481 0.514 0.451 2.926 2.622 2.921 2.780 3.109
2 Median 0.485 0.569 0.486 0.553 0.477 2.877 2.460 2.867 2.480 3.055
3 Median 0.487 0.530 0.487 0.491 0.495 2.904 2.821 2.905 2.884 2.871
4 Median 0.486 0.528 0.481 0.492 0.494 2.908 2.803 2.906 2.894 2.878
1 Mean 0.488 0.555 0.488 0.514 0.462 2.990 2,671 2.990 2.987 3.289
2 Mean 0.494 0.580 0.495 0.549 0.496 2.985 2421 2.976 2.850 3.275
3 Mean 0.490 0.529 0.486 0.500 0.500 2.912 2.802 2.889 2.918 2.890
4 Mean 0.491 0.521 0.476 0.504 0.502 2.917 2.746 2.848 2.920 2.894
1 Bias 0.008 0.075 0.008 0.034 0.018 0.060 0.258 0.060 0.057 0.359
2 Bias 0.014 0.100 0.015 0.069 0.016 0.055 0.509 0.046 0.080 0.345
3 Bias 0.010 0.049 0.006 0.020 0.020 0.018 0.128 0.041 0.012 0.040
4 Bias 0.011 0.041 0.004 0.024 0.022 0.013 0.184 0.082 0.010 0.036
1 SD 0.084 0.062 0.085 0.133 0.131 0.545 0.371 0.549 0.794 0.930
2 SD 0.095 0.080 0.097 0.153 0.173 0.742 0.720 0.765 1.256 1.898
3 SD 0.064 0.070 0.077 0.106 0.083 0.249 0.352 0.377 0.313 0.268
4 SD 0.067 0.096 0.098 0.110 0.091 0.291 0.528 0.560 0.372 0.314
1 MSE 0.007 0.009 0.007 0.019 0.018 0.304 0.205 0.300 0.633 0.993
2 MSE 0.009 0.016 0.010 0.028 0.030 0.553 0.777 0.588 1.584 3.722
3 MSE 0.004 0.007 0.006 0.012 0.007 0.062 0.140 0.144 0.098 0.074
4 MSE 0.005 0.011 0.010 0.013 0.009 0.085 0.312 0.320 0.138 0.100

4. Real Data Analysis
4.1. The Data

A data set which consists of 112 patients with plasma
cell myeloma treated at the National Cancer Institute
(See [21]) is used for modelling the two-parameter GRD.
This data had been discussed in [15], [16] and [22]. To
be self-contained, the data are re-produced here in the
Table 2 for easy reference.

The most right side column in Table 2 shows the
number of patients who were dropped out from the study
at the right end of each time interval. These dropped
patients are known to be survived at the right end of each
time interval but no follow-up. Hence, the most right side
column in Table 2 provides the values of
R,i=1,---,m=9. The number of failures,

X,,i=1,---,m, can be easily calculated to be
X =(18,16,18,10,11,8,13,4,1) from the number at risk
and the number of withdrawals.

4.2. Model Comparisons

Weibull distribution from [15] and generalized expon-
ential distribution from [16] have been used to model the

Copyright © 2011 SciRes.

plasma cell myeloma data set with prescheduled times in
terms of month. Chen and Lio [16] also compare the
modelling processes between Weibull distribution and
generalized exponential distribution by using presche-
duled times in terms of month. Chen and Lio [16] indi-
cated that the generalized exponential distribution pro-
vided better model fit than the Weibull distribution does.
In this paper, we would like to compare the modelling
processes among Weibull distribution, generalized ex-
ponential distribution and generalized Rayleigh distri-
bution. To compare the modelling processes among these
three distributions, the prescheduled times are converted
into in terms of year. Here, it is for easy reference that
the pdfs of Weibull distribution and generalized expon-
ential distribution are given, respectively, below:

f, (t.4,7)= At exp(=At"), x> 0,4 >0,y >0, (4.1)

and
1

foep (tr, 1) = ardexp(—At)(1-exp(-At))",
t>0,a>0,4>0.

The model fitting to the classical Weibull distribution
(1) yields the estimated parameters

(i,ﬁ) =(0.447,1.23) and log likelihood, logL (WD),

4.2)
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Table 2. Plasma cell myeloma survival times.

Interval in Months Number at risk

Number of withdrawals

has —2logL (WD) = 230.3401 and the model fitting to
the generalized exponential distribution (2) has the
estimated parameters (&,ﬂ)=(1.433,0.686) and log

0.0

[0,5.5) 112 1 U
[55.105) 93 L likelihood, logL(GED), has
[10'5'15' 5) 76 2 —2logL (GED) = 230.4704 . The model fitting results for
15'5' 20'5) 55 0 both Weibull distribution and generalized exponential
[20'5’ 25'5 i 0 distribution reported here are different from the results
[205,255) reported in [16]. For the GRD model fitting, the
[255,305) 3 ! estimated parameters are (a,4)=(0.4746,2.9318) and
[305,405) % 2 log likelihood, logL (GRD), has
[405,50.5) 10 8 ~2log L (GRD) = 231.0055 . It could be seen that all
[50.5,60.5) 3 2 three maximum likelihood values for these probability
[60.5,) 0 0 modelling processes are virtually identical. Since all these
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Figure 2. Boxplot for 4 from 1000 simulations for the five estimation methods and four simulation schemes for 1=2.93.

three distributions have no sub-model relationship, the
chi-square test can not be applied directly to select
among these three models for modeling the given data
set. Although Kundu and Ragab [5] and Ragab and
Kundu [7] had detail comparison among these
distribution for a random sample, statistical inference to
discriminate among these distributions has not been
developed for the progressively type-I interval censored
data, yet. Therefore, a more detail comparison among
these three distributions under progressive type-I interval
censoring is not available according to our best know-
ledge.

To apply the Kolmogorov-Smironov goodness-of-fit
test for fitting a given complete data set with a dis-

Copyright © 2011 SciRes.

tribution, F (x|6), the maximum distance,

D, (F)=sup,.,.,|F.(x)-F (x‘é)‘ , between the
empirical distribution, F, (x), of the given data set and
the population distribution, F (x‘é) with 6 asthe

MLE of &, must be obtained. When a progressively
censored data is given, the empirical distribution is
replaced by the product-limit distribution defined
through Equation (19) in the formula D, (F). Fitting
the given data set with the Weibull distribution F,,
D, (F, ) =0.15737, with the GE distribution Fy,,

D, (Fgep ) =0.1618 and with the GRD  Fgp,

D, (Fgro ) = 0.1708 . Again, the reports of the
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Kolmogorov-Smironov goodness-of-fit test for the Wei-
bull distribution and generalized exponential distribution
are different from the reports of [16]. The sampling
distribution of D, (F) should have been applied to find
the critical value for the goodness-of-fit tests mentioned.
Although the sampling distribution for D, (F) under
any progressive censoring has not been developed, we
can see that no any significant difference among these
three numerical reports.

5. Discussions and Conclusions

In this paper, three methods to estimate the parameters of
the two-parameter generalized Rayleigh distribution
under progressive type-I interval censoring have been de-
veloped. They are maximum likelihood estimation, esti-
mation of method moments and the estimation based on
the probability plot.

The simulation study in the case of moderate large size
data set indicates that regular MLE and maximum
likelihood estimate via EM algorithm gives relatively
more accurate parameter estimation and the maximum
likelihood estimate via EM algorithm produces the most
precise estimation as summarized in the Table 1 and
Figures 1 and 2. We therefore recommend the EM
algorithm process to be used to estimate the parameters
in the GRD under progressive type-1 interval censoring.

The developed methods are also applied to a real data
which contains 112 patients with plasma cell myeloma
treated at the National Cancer Institute to demonstrate
the applicability. In the process of GRD modelling, it is
found that the value of likelihood function (2.2) closes to
zero when the prescheduled times in terms of month and
the estimations of parameters are senstive to the initial
parameter inputs for iterative processes. Many rescales
for the prescheduled times have been tried. We found
that the prescheduled times must be converted into in
terms of year to produce better convergence results in the
propulation parameter estimations. The parameter esti-
mates for the GRD via EM algorithm and regular MLE
are quite similar. This real data set modelling confirms
the results observed from the simulation study.

Since the GRD was introduced for lifetime data, this
study was the first time to introduce the progressive
type-l interval censoring to the GRD based on our best
knowledge. We believe that this study contributes to the
literatures and the research community in this lifetime
data analysis for the generalized Rayleigh distribution as
well as for progressive type-I interval censoring.

The comparison among Weibull distribution, genera-
lized exponential distribution and generalized Rayleigh
distribution in the modelling process for the progre-
ssively type-I interval censored data shows that no much

Copyright © 2011 SciRes.

difference among these three modelling processes. Hence,
the discriminate process among these three distibutions
under progressive type-1 censoring could be an important
future research.
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