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Abstract 
A numerical investigation of boundary layer mass transfer flow through an inclined plate with the 
effect of chemical reaction and thermal diffusion is presented in this study. The governing partial 
differential equations (PDE) are transformed to a system of dimensionless non-similar coupled 
PDEs. The transformed, non-similar conservations equations (momentum balance equation, 
energy balance equation and concentration balance equation) are then solved using a numerical 
approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the 
unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time 
dependent fluid velocity, temperature and concentration of the boundary surface. During the 
course of discussion, it is found that the various parameters related to the problem influence the 
calculated resultant expressions. The computed numerical solution results for the velocity, tem-
perature, and concentration distribution with the effect of various important dimensionless pa-
rameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret 
number, Dufour number, chemical reaction parameter and inclination parameter) entering into 
the problems are critically analyzed and discussed graphically. It can be seen that two physical 
phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid 
flows through an inclined plate. 

 
Keywords 
Chemical Reaction, Mass Transfer, Inclined Plate, Soret Effects, Dufour Effects 

 

http://www.scirp.org/journal/ojfd
http://dx.doi.org/10.4236/ojfd.2016.61006
http://dx.doi.org/10.4236/ojfd.2016.61006
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


F. Akter et al. 
 

 
63 

1. Introduction 
The effect of thermal diffusion and chemical reaction on heat and mass transfer fluid flow has a great impor-
tance to the engineering community and to investigators dealing with the problems in many industrial processes 
and technological fields which experience not only temperature difference but also concentration difference. The 
concentration difference may sometimes produce quantitative and qualitative changes to the rate of heat transfer. 
Some industrial applications are found in food drying, food processing or wood and paper production. Besides, 
the characteristics of the flow of blood through arteries and veins are of considerable medical interest. In view of 
the above interests, a series of investigations have been made by different scholars. Pera and Gebhart [1] were 
the first authors to investigate and combine buoyancy effects of thermal and mass diffusion on natural convic-
tion flow. Soundalgekar and Ganesan [2] presented a finite difference analysis of unsteady natural convective 
flow past a semi-infinite plate with mass transfer. Hydro-magnetic heat and mass transfer in flow of a viscous 
incompressible fluid past an infinite vertical porous plate was analyzed by Singh et al. [3]. Using a finite differ-
ence technique, an unsteady free convective heat and mass transfer flow from an infinite vertical plate with con-
stant suction have been numerically investigated by Ambethkar [4]. Recently Sivaiah et al. [5] studied heat and 
mass transfer effects on MHD free convective flow past a vertical porous plate. 

The problem of mass transfer flow through an inclined plate has generated much interest from astrophysical, 
renewable energy system and also hypersonic aerodynamics researchers for a number of decades. Umemura and 
Law [6] developed a generalized formulation for the natural convection boundary layer flow over a flat plate 
with arbitrary inclination. They found that the flow characteristics depend not only on the extent of inclination 
but also on the distance from the leading edge. Chamkha and Khaled [7] investigated the problem of coupled 
heat and mass transfer by hydromagnetic free convection from an inclined plate in the presence of internal heat 
generation or absorption, and similarity solutions were presented. Reddy and Reddy [8] performed an analysis to 
study the natural convection flow over a permeable inclined surface with variable temperature, momentum and 
concentration. Singh [9] studied heat and mass transfer in MHD boundary layer flow past an inclined plate with 
viscous dissipation in porous medium. Micropolar fluid behavior on MHD free convection and mass transfer 
with constant heat and mass fluxes is studied numerically by Ali et al. [10]. Recently Islam et al. [11] have stu-
died mass transfer flow through an inclined plate with porous medium. 

In many transport processes existing in nature and in industrial applications in which heat and mass transfer is 
a consequence of buoyancy effects caused by diffusing of heat and chemical species. The study of such process 
is useful for improving a number of chemical technologies, such as polymer production, enhanced oil recovery, 
underground energy transport, manufacturing of ceramic and food processing. In many hydrometallurgical and 
chemical technology industries, heat and mass transfer is of considerable importance due to chemical reaction 
effects. Basically chemical reaction takes place between an external mass and the fluid in many chemical engi-
neering processes. It can be designated as either a mixed or stable process, which be contingent on whether it 
occurs at a boundary or as a single-phase volume reaction. Chaudhary and Jha [12] studied the effect of chemi-
cal reaction on MHD micropolar fluid flow past a vertical plate in slip flow regime. Effects of mass transfer with 
a chemical reaction on unsteady flow past an accelerated isothermal vertical plate are investigated by Muthu-
chumaraswamy et al. [13]. Rajesh et al. [14] have discussed the effects of chemical reaction and radiation ef-
fects on MHD flow past an infinite vertical plate with variable temperature. The importance of thermal-diffusion 
and diffusion-thermo effects for various fluid flows has been studied by Eckert and Drake [15]. Olajuwon [16] 
examined convection heat and mass transfer in a hydromagnetic flow of a second grade fluid past a semi-infinite 
streching sheet in the presence of thermal diffusion and thermal radiation. Kumar et al. [17] have investigated 
thermal diffusion and radiation effects on unsteady MHD flow through porous medium with variable tempera-
ture and mass diffusion in the presence of heat source or sink. 

There have been few studies on heat transfer boundary layer flow in the literature however mass transfer flow 
through an inclined plate with the effect of chemical reaction and thermal diffusion effects still need more at-
traction to the researchers [18] [19]. 

The objective of this research is to investigate the fluid behavior with the effect of chemical reaction and 
thermal diffusion on mass transfer flow in an inclined plate. In this research the governing equations of the 
problem contain a system of partial differential equations which are transformed by usual transformation into a 
non-dimensional system of partial coupled non-linear differential equations. The obtained non-similar partial 
differential equations are solved numerically by EFDM. The results of this research are discussed for the differ-
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ent values of the well-known dimensionless parameters and are shown graphically. 

2. Formulation and Solution 
2.1. Mathematical Model of Flow 
By introducing Cartesian co-ordinate system, the X-axis is chosen along the plate in the direction of the flow 
and the Y-axis is normal to it. The physical configuration has been shown in Figure 1. Initially it has been con-
sidered that the plate as well as the fluid is at the same temperature ( )T T∞  and concentration level ( )C C∞

everywhere in the fluid is same. Also it is considered that the fluid and the plate is at rest after that the plate is to 
be moving with a constant velocity 0U  in its own plane and instantaneously at time 0t >  the species concen-
tration and the temperature of the plate are raised to ( )wC C∞>  and ( )wT T∞> , which are there after main-
tained constant, where ,w wC T  are species concentration and temperature at the wall of the plate and ,C T∞ ∞  
are the concentration of the species far away from the plate. Within the framework of the above stated assump-
tions with reference to the generalized equations described before the equation relevant to the transient two di-
mensional problems are governed by the following system of coupled non-linear differential equations using the 
Boussinesq and boundary layer approximations. 

Continuity Equation 

0u v
x y
∂ ∂

+ =
∂ ∂

.                                      (1) 

Momentum Equation 

( ) ( )
2

2cos cosT C
u u u uu v g T T g C C
t x y y

β α β α υ∞ ∞

 ∂ ∂ ∂ ∂
+ + = − + − +  ∂ ∂ ∂ ∂ 

.              (2) 

Energy Equation 
2 2

2 2m
p

T T T K T cu v D
t x y C y yρ

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
.                          (3) 

Concentration Equation 

( )
2 2

2 2m T C
C C C C Tu v D D K C C
t x y y y ∞

∂ ∂ ∂ ∂ ∂
+ + = + − −

∂ ∂ ∂ ∂ ∂
.                     (4) 

 

 
Figure 1. The Physical model and coordinate system. 
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With the corresponding initial and boundary conditions are 
At 

0t =  0, 0, , everywhereu v T T C C∞ ∞= = → → .                      (5) 

0t >  0

0, 0, , at 0
, 0, , at 0

0, 0, , at
w w

u v T T C C x
u U v T T C C y
u v T T C C y

∞ ∞

∞ ∞

= = → → =
= = → → =
= = → → →∞

.                        (6) 

where ,x y  are Cartesian co-ordinate, ,u v  are the components of flow velocity along ,x y  directions respec-
tively. Here g is the local acceleration due to gravity; υ  is the kinetic viscosity; ρ  is the density of the fluid, 

mD  is the coefficient of mass diffusivity, TD  is the coefficient of Thermal diffusivity and CK  be the chem-
ical reaction parameter. 

2.2. Mathematical Formulation 
Since the solution of the governing equations under the initial and boundary conditions will be based on a finite 
difference method it is required to make the said equations dimensionless. 

For this purpose it has been now introduced the following dimensionless variables; 

0 0

0 0
2
0

, , , ,

, and
w w

xU yU u vX Y U V
U U

tU T T C CT C
T T C C

υ υ

τ
υ

∞ ∞

∞ ∞

= = = =

− −
= = =

− −

 

where τ  represents the dimensionless time, X & Y be the dimensionless Cartesian coordinates, where U and V 
be the dimensionless velocity components, T and C is the dimensionless temperature and concentration respec-
tively. 

Using the above relation, we obtain the following non-dimensional coupled partial differential equation, 

0U V
X Y
∂ ∂

+ =
∂ ∂

.                                                    (7) 

2

2 cos cosr m
U U U UU V G T G C

X Y Y
α α

τ
∂ ∂ ∂ ∂

+ + = + +
∂ ∂ ∂ ∂

.                     (8) 

2 2

2 2

1
f

r

T T T T CU V D
X Y P Y Yτ

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
.                               (9) 

2 2

2 2

1
o r

C

C C C C TU V S K C
X Y S Y Yτ

∂ ∂ ∂ ∂ ∂
+ + = + −

∂ ∂ ∂ ∂ ∂
.                         (10) 

where, 
( )

3
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T T
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U
υ β ∞−

=  (Grashof Number), 

( )
3
0

w
m C

C C
G g

U
υ β ∞−

=  (Modified Grashof Number), 

p
r

C
P

K
υρ

=  (Prandtl Number), 

C
m

S
D
υ

=  (Schmidt Number), 

( )
( )
T w

o
w

D T T
S

C Cυ
∞

∞

−
=

−
 (Soret Number), 



F. Akter et al. 
 

 
66 

( )
( )

m w
f

w

D C C
D

T Tυ
∞

∞

−
=

−
 (Dufour Number), 

2
0

C
r

K
K

U
υ

=  (Chemical Reaction Parameter). 

Also the associate initial and boundary condition become 
At 

0τ =  0, 0, 0, 0 everywhereU V T C= = = = .                      (11) 

0τ >  
0, 0, 0, 0at 0
1, 0, 1, 1 at 0
0, 0, 0, 0 at

U V T C X
U V T C Y
U V T C Y

= = = = =
= = = = =
= = = = →∞

.                       (12) 

2.3. Numerical Solution 
The explicit finite difference method (EFDM) has been used to solve the governed second order nonlinear 
coupled dimensionless partial differential equations with the corresponding initial and boundary conditions. To 
obtain a system of finite difference equations, the flow region is divided into a grid or meshes of lines parallel to 
X and Y axes where X-axis is taken along the plate and Y-axis is normal to the plate. Here it is considered that 

maxX  (=400) i.e. X varies from 0 to 400 and regarding maxY  (=25) as corresponding to Y →∞  i.e. Y varies 
from 0 to 25. It is also considered that 60m =  and 60n =  grid spacing in X and Y directions respectively. We 
have the constant mesh size along X direction, ( )6.67 0 400X X∆ = ≤ ≤  and the constant mesh size along Y 
direction, ( )0.42 0 25Y Y∆ = ≤ ≤  with the smaller time-step 0.05τ∆ =  

Let , andU C T ′′ ′  denote the values of , andU C T  at the end of a time-step respectively. Using the finite 
difference approximations we obtain the following set of finite difference equations, 

, 1, , , 1 0i j i j i j i jU U V V
X Y

− −− −
+ =

∆ ∆
.                                                           (13) 

( )
, , , 1, , 1 , , 1 , , 1

, , , , 2

2
cos cosi j i j i j i j i j i j i j i j i j

i j i j r i j m i j

U U U U U U U U U
U V G T G C

X Y Y
α α

τ
− + + −′ − − − − +

+ + = + +
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.    (14) 
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, , , 1, , 1 , , 1 , , 1 , 1 , , 1

, , 2 2

2 21i j i j i j i j i j i j i j i j i j i j i j i j
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T T T T T T T T T C C C
U V D

X Y P Y Yτ
− + + − + −′ − − − − + − +
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.        (15) 

( ) ( )
, , , 1, , 1 , , 1 , , 1 , 1 , , 1

, , 2 2

2 21i j i j i j i j i j i j i j i j i j i j i j i j
i j i j o
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C C C C C C C C C T T T
U V S

X Y S Y Yτ
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.      (16) 

And the initial and boundary conditions with finite difference scheme are; 
0 0 0 0
, , , ,

0, 0, 0, 0,
0

,0 ,0 ,0 ,0

0, 0, 0, 0,
0, 0, 0, 0,
1, 0, 1, 1,

i j i j i j i j
n n n n

j j j j
n n n
i i i i

U V T C
U V T C
U V T C

= = = =
= = = =
= = = =

                         (17) 

, , , ,0, 0, 0, 0,n n n n
i L i L i L i LU V T C= = = =  

where, L →∞ . 
Here the subscripts andi j  designate the grid points andx y  coordinates respectively and the superscript n 

represents a value of time, nτ τ= ∆  where, 0,1, 2,3,n =  . From the initial condition, the values of U is 
known at 0τ = . Then at the end of the anytime-step τ∆ , the new temperature T ′  and concentration C′ , the 
new velocity U ′  at all interior nodal points may be obtained by successive application of temperature, concen-
tration and momentum equation respectively. This process is repeated in time and provided the time-step is suf-
ficiently small, hence , , andU V T C  should eventually convergent values which approximate the steady-state 
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solution of the problem. 

3. Results and Discussion 
To discuss the effects of the associated non-dimensional parameters on the flow variables, the numerical solu-
tions of the problem are obtained by the EFDM numerical methodology with the help of a computer program-
ming language Compaq Visual Fortran. In order to analyze the physical solution of the model, we have com-
puted the steady numerical values of the non-dimensional Velocity U , Temperature T , and Concentration C  
within the boundary layer for different values of Inclination ( )α , Grash of number ( )rG , Prandtl number 
( )rP , Schmidt number ( )cS , Soret number ( )oS , and Chemical reaction parameter ( )rK . To obtain the steady- 
state solutions of the computation, the calculations have been carried out up to non-dimensional time τ = 10 to 
60. Hence the velocity, temperature and concentration profile are drawn for dimensionless time τ = 10, 30 and 
60. In the Figures 2-10 x-axis taken as dimensionless co-ordinate variable (Y) which is varies 1 to 25 and y-axis 
taken as fluid velocity, temperature and concentration respectively. 

The effect of the inclination on the velocity field is presented in Figure 2. It is observed that the dimension-
less velocity distribution of fluid decreases with the rise of inclination α  (=45˚, 50˚ and 60˚) for different time 
steps. Therefore angle of inclination has a great impact on the velocity of fluids. Figure 3 represents the evolu-
tion of dimensionless velocity with Y for different values of dimensionless times ( )10,30 and 60τ =  and Gra-
shof number as ratio of the buoyancy to viscous force acting on a fluid was considered as 0.1, 0.2 and 0.5. An 
increase in Grashof number clearly enhances profiles of velocity, therefore induces a robust speeding up in the 
flow. A distinct velocity shoot arises for all profiles near the boundary surface (Y = 0) and this is emphasized 
with increasing Grashof number. With increasing Grashof number the thermal buoyancy force is augmented 
which aids in momentum change in the boundary layer. Also the boundary layer thickness of velocity is there-
fore increased as well. With superior intervene of time, the velocity was found to be considerably enhanced. 

The same effect on the velocity curve is found in Figure 4 that is the velocity decreases with increase of 
Prandtl number rP  (=0.71, 1.0 and 7.0). This is because Prandtl number implies the relative influence of mo-
mentum diffusion to thermal diffusion in the periphery layer regime. When Pr = 1, the momentum diffusion rate 
surpasses thermal diffusion rate. As a result the velocity in the fluid regime will be decreased with a rise in Pr. 
The dimensionless velocity distribution of fluid was found to be strongly reduced for the decreasing effect of  
 

 
Figure 2. Velocity profiles for Gm = 1.0, Gr = 0.5, So = 1.0, Pr = 0.71, Sc = 
0.96, Df = 0.1, Kr = 1.0. 
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Figure 3. Velocity profiles for Gm = 1.0, α = 45˚, So = 1.0, Pr = 0.71, Sc = 0.96, Df = 
0.1, Kr = 1.0. 

 

 
Figure 4. Velocity profiles for Gm = 1.0, α = 45˚, Gr = 0.5, So = 1.0, Sc = 0.96, Df = 
0.1, Kr = 1.0. 

Co-ordinate Variable (Y)

V
el

oc
ity

0 10 20
0

1

2

3

4

5

6
Time Line Pattern

10
30
60

Gr = 0.1, 0.2, 0.5

Co-ordinate Variable (Y)

V
el

oc
ity

0 10 20
0

1

2

3

4

5

6
Time Line Pattern

10
30
60

Pr = 0.71, 1.0, 7.0



F. Akter et al. 
 

 
69 

 
Figure 5. Velocity profiles for Gm = 1.0, α = 45˚, Gr = 0.5, So = 1.0, Pr = 0.71, Sc = 
0.96, Df = 0.1. 

 

 
Figure 6. Temperature profiles for Gm = 1.0, α = 45˚, Gr = 0.5, So = 1.0, Sc = 0.96, Df 
= 0.1, Kr = 1.0. 
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Figure 7. Temperature profiles for Gm = 1.0, α = 45˚, Gr = 0.5, So = 1.0, Pr = 0.71, Sc 
= 0.96, Df = 0.1. 

 

 
Figure 8. Concentration profiles for α = 45˚, Gr = 0.5, Sc = 0.96, So = 1.0, Pr = 0.71, 
Kr = 1.0, Df = 0.1. 
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Figure 9. Concentration profiles for Gm = 1.0, α = 45˚, Gr = 0.5, Sc = 0.96, Pr = 0.71, 
Kr = 1.0, Df = 0.1. 

 

 
Figure 10. Concentration profiles for Gm = 1.0, α = 45˚, Gr = 0.5, So = 1.0, Pr = 0.71, 
Sc = 0.96, Df = 0.1. 
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chemical reaction parameter rK  (=0.6, 1.0 and 1.2) found on Figure 5. Figure 6 shows that the steady state 
temperature of fluid decreases with the increase of Prandtl number rP  (=0.71, 1.0 and 7.0). This is because the 
thermal boundary layer thickness decreases due to increase in this parameter. With increasing period, tempera-
tures are yet again detected to be strongly enhanced through the boundary surface. 

In Figure 7 it was observed that the fluid temperature remain unchanged with the increasing value of chemi-
cal reaction parameter rK  (=0.6, 1.0 and 1.2). 

A decreasing effect of dimensionless mass distribution curves are observed for increasing Schmidt number 
CS  in Figure 8 that is fluid concentration decreases with increase of Schmidt number CS  (=0.96, 1.22 and 

1.60). Therefore the ratio of diffusivity of momentum i.e., viscosity and diffusivity of mass has a remarkably ef-
fects on fluid concentration. And the Schmidt number can be used to describe fluid flows in which there are in-
stantaneous processes of momentum and mass diffusion convection. The unchanged effect of Soret number oS
on concentration profiles are observed in Figure 9 where the mass distribution of fluid is remain same with in-
creasing value of Soret number oS . The ratio of thermos-diffusion and diffusion coefficient was assumed to be 
0.5, 0.8 and 1.0. In Figure 10 it can be seen that the fluid concentration remains unchanged with the increasing 
value of chemical reaction parameter rK  (=0.6, 1.0 and 1.2). From the above figures we also observed that 
fluid behavior is varies with dimensionless time τ . With the rise of dimensionless time τ  the fluid velocity, 
temperature and concentration are gradually rises. 

4. Conclusions 
Mixed (combined) convection boundary layer flows are of great attention because of their innumerable industri-
al, engineering and scientific applications in heat and mass transfer. In this paper, a boundary layer analysis for 
mixed convection heat and mass transfer fluid flow through an inclined plate in the presence of chemical reac-
tion and thermal diffusion is considered. The governing of boundary layer flow such as momentum, energy and 
mass balance is then numerically analyzed by explicit finite difference method (EFDM). The results are pre-
sented graphically with the effect of various dimensionless parameters. The significant findings obtained from 
the graphical observation are listed below: 
 The velocity distribution decreases with the increase of inclined angle ( )α . 
 The velocity distribution increases with the increase of Grashof number ( )rG . 
 The velocity distribution decreases with the increase of Prandtl number ( )rP , also the temperature distribu-

tion decreases with the increase of Prandtl number ( )rP . 
 The Concentration distribution decreases with the increase of Schmidt number ( )cS . 
 The Concentration distributions remain unchanged with the increase of Soret number ( )oS . 
 The velocity distribution and concentration distribution both are decreased with the increase of chemical 

reaction parameter ( )rK  while the temperature distribution remains unchanged with the variety of Chemi-
cal reaction parameter ( )rK . 
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Nomenclature 
Cp: Specific heat at constant pressure 
C: Concentration 
Dm: Mass diffusivity 
DT: Thermal diffusivity 
g: Local acceleration due to gravity 
k: Thermal conductivity 
T: Fluid temperature 
T ′ : Dimensionless fluid temperature 
U: Dimensionless primary velocity 
V: Dimensionless secondary velocity 
u, v: Velocity components along x and y axes respectively 
Y: Dimensionless coordinate variable 
 
Dimensionless parameters 
Df: Dufour number 
Gr: Grashof number 
Gm: Modified Grashof number 
Kr: Chemical reaction parameter 
Pr: Prandtl number 
SC: Schmidt number 
So: Soret number 
 
Greek Symbols 
βT: Thermal expansion coefficient 
βC: Mass expansion coefficient 
ρ: Density of the fluid 
µ: Dynamic viscosity of the fluid 
υ: Kinematic viscosity of the fluid 
α: Angle of inclination 
∆: Differential operator 
δ: Boundary layer thickness 
 
Subscripts 
w: Condition of the wall 
∞: Condition of the free steam 
 
Abbreviations 
EFDM: Explicit finite difference method 
MHD: Magneto hydrodynamics 
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