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Abstract

In the present paper, to build model of two-line queuing system with losses GI/G/2/0, the ap-
proach introduced by V.S. Korolyuk and A.F. Turbin, is used. It is based on application of the theory
of semi-Markov processes with arbitrary phase space of states. This approach allows us to omit
some restrictions. The stationary characteristics of the system have been defined, assuming that
the incoming flow of requests and their service times have distributions of general form. The par-
ticular cases of the system were considered. The used approach can be useful for modeling sys-
tems of various purposes.

Keywords

Two-Line Queuing System with Losses, Semi-Markov Process, Stationary Distribution of
Embedded Markov Chain, Stationary Characteristics of System

1. Introduction

A large number of works, in particular [1]-[5], have been dedicated to the queuing systems (QS) with losses.
Building of QS models and determining their characteristics are simplified, if it is assumed that the incoming
flow of requests or their service times are exponentially distributed. The rejection of this assumption leads to a
considerable complication of the models. In this paper, the model of two-line QS with losses was built on the
assumption that the incoming flow of requests and their service times have distributions of general form. For
building QS model and determining its stationary characteristics, the theory of semi-Markov processes with ar-
bitrary phase state space [5]-[ 10] was used.

2. System Description and Building of the Semi-Markov Model

Two-line QS with losses GI/G/2/0 is being considered. It is assumed that the system receives requests, and the
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time between their arrival is a random variable (RV) £ with the distribution function (DF) G(x)=P{B<x}.
A received request, with equal probability, starts to be served by one of the available servers or gets lost, if no
servers are available. The service time of request by the i” server-RV «; with DF F (x)=P{a, <x},
i=1,2. It is assumed that RV «,, £ are independent, and have densities f;(x), g(x), finite mathematical
expectations and variances.

To describe the QS operation, the semi-Markov process [5]-[7] &(¢) with the following set of states is used:

= {10, 01,100z, 200z,111x, 211x,101xz, 210xz, 311x1x2} .

The meaning of state codes is the following:

10 (01) : first (second) server started serving the received request, and second (first) server is available;

100z (200z) : first (second) server became available; second (first) server is available; z >0 is the time un-
til the arrival of the next request;

111x (211x): first (second) server started serving the received request; x>0 is the time until the end of the
request service by second (first) server;

101xz (210xz) : first (second) server became available; x>0 is the time until the end of the request service
by second (first) server; z >0 is the time until the arrival of the next request;

311x,x, : the received request was lost; the times until the end of the request service by first (second) servers
are respectively equal x, >0, x, >0.

The time diagram of the system is shown in Figure 1.

Let us define the sojourn times in states of the system. For instance, the sojourn time 6,,, , in the state 211x
is determined by three factors: the time x left until the end of request service by the first server, the time «, of
request service by the second server, and the time [ between the request arrivals.

Therefore, 6,,,, =xAra, A, where A isthe minimum sign. Similarly, the sojourn times in other states are
determined as follows:

Oo=ay A, Oy =a, AP, Oy, =z, Oy, =2, O, =xry AP

(1)
Ooie =XNZ, Uy, =xAZ, esumz X AX, AP
We define the transition probabilities of the embedded Markov chain (EMC) {gn; n >0} for states
10,100z,111x,101xz, 31Lx,x, , in the context of other states, they are determined similarly.
pfo“xzj'fl(x—i-t g(t)dr, x>0; py” = Ig (z+1) f,(¢)ds, z>0,
0 0
1
10 01 . 210yz
IDIOOZ:EOOZ:E’ P —f,(X+y)g(x+Z), y>0, z>0,
0lyz
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Figure 1. The time diagram of the system functioning.
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3. Definition of the Stationary Distribution of the Embedded Markov Chain

We will find the stationary distribution of EMC {& ; n>0} . Let us denote p(01), p(10) the values of sta-
tionary distribution in states 01,10 and assume the existence of stationary densities p(i00z),

p(il lx), i=12, p(llez), p(ZIOxZ), p(31 lxlxz) .
Introduce the notations:

P =p(01)=p(10), ¢ (x,x,)=p(31lxx,), @, (x,z)=p(101xz),
@, (x.2)=p(210xz), @,(x)=p(111x), @5(x)=p(211x),
D (z) = p(lOOz), o, (z) = p(ZOOz) .

Using (2), set up a system of integral equations to determine the stationary distribution:

1% 1%
po :Ejlq)ﬁ (Z)d.Z+EI¢)7 (Z)dZ,
0 0

©

o (x,x,) =I¢Jl(xl +1,x, +Z)g(t)dt+0_f¢4 (x, +1) fi (x, +1) g (r)de

©

+I¢5 (%, +2) f5(x, +1) g (2)de,

©

?, (x,z) :I¢74 (x+t)f1(t)g(z+t)dt+T¢)5 (t)fz(x—i-t)g(z-‘rt)dt

©

+Igo1 (t,x+1)g(z+1)dt,
0

©

@y (x,z)= j(ps(x+t)f2(t)g(z+t)dt+T(p4(t)f] (x+1)g(z+1)dr

©

+J'gol (x+t,t)g(z+t)dt,
0

©

504(x):Po_[fz(x+f)g(f)dt+T¢2(x+t,t)dt,

©

?s (x):po_[fl(x+t)g(t)dl+T¢3(x-i-t,t)dt,

©

Ps (Z) =pojf1 (l)g(Z+l‘)dt+T¢)3 (Z,Z+l‘)dt,

©

0.(2)= po| 12 ()2 (z+0)dr+ [, (1,2 +1)dr, 3)

0

Po +”(/71(x1,x2)dxldx2 +”(p2(x,z)dxder”gp3 (x,2)dxdz
00 00 00

+I§04 (x)dx+I(/J5 (x)dx+o‘(f(p6 (z)dz+zgo7 (z)dz=1.

The last equation in the system (3) is the normalization requirement.
Next, for the sake of simplicity, a homogenous case is considered, and a inhomogeneous case leads to lengthy
transformations and results. Let F(z)=F,(¢)=F(¢). Then, due to the symmetry of states, we get that

0 (x) =05 (%), @ (x2)=y(x.2), @s(2) =0 ().
The system (3) is reduced to the following system of equations:
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Py = I% (Z)dz’
0

0 (i) = [0 (5 + 1,5, +0) @ (0)de+ [ @, (x, +1) £ (5 +1) (1) de+ [, (5, +0) £ (2, + 1) (1),
¢’z(X’Z):T%(x”)f(t)g(ZH)dHT%(f)f(x+t)g(z+t)dt+T¢1(t,x+t)g(z+t)dt,

E . ° @
@, (x) =Pojf(X+t)g(t)dt+j¢2(x+t,t)dt,

(/76(z):pOTf(t)g(z+t)dt+Tg02(t,z+t)dt,

po+ [ [0 (o, e, +2] [, (x,2)dxdz + 2] g, (x) v+ 2 g, (2)dz =1.
00 00 0 0

Let us introduce the following functions, which are used to record the stationary distribution of EMC:

h, (1) = Z]: g (¢)—is the density of the renewal function [11] H, (¢) of the renewal process generated by

RV B
y
v,(»z)=g(y+z)+ jg (y+z—s)h,(s)ds—is the density of the direct residual time distribution [11] for
0

the renewal process generated by RV £ ;

©

f(t)vg(t,y—t)dt, ﬂ(x,t):_[f(x+t+y)vg (t,y)dy,

0

7(y)=

S —y

h( y) = z ;7*(") ( y) —is the density of the renewal function, renewal process generated by RV with the distri-
n=l

bution density 7 ( y) ;

©

};(t):g(t)+(h*g)(t), 7(x,t):ﬂ(x,t)+jﬂ(x+y,t)h(y)dy,

0

P (et (), n22, PV (xe)=y(xt), )

0

7(xy)=2 7" (%), 7" (xy)=

n=1

S8

©

p(x)= [ £(x+1)i(e)de+ [ (xp)dv] £ (v +1)i ().

0

Using the method of successive approximations [12], we can show that the system (4) has the following solu-
tion:

?s (x) =05 (x) = pyo(),

0. (x.5,)= 0 U)¢(x2 1) £ (o + 1)y (1)de+ [ (3 +2) £ (3, +0)h, (t)dtj,
0.(x.2) = 0 (x.2) = p, [Tw(m)f(y)vg(y,z)dy+Tgo<y>f(x+y)vg (y,z)dy} ©)

(2100,

S =38

g(z+0) (1) dr+ [de[ o1+ 1) £ (3)v, (3r2+0)dy

fafo() (), (y,m)dyj,

0 0
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The constant p, is found by means of normalization requirement; its explicit form is not used when finding
the QS stationary characteristics.

The system of equations, which is almost identical to the system (3), and its solution method are covered in

[13].

4. Definition of Stationary Characteristics of System

Let us turn to the determination of the stationary characteristics of the QS. Using Formulas (1), we will define
the average sojourn times in states of the system:

m(lO) = m(Ol) =

F(l)é(z‘)dl, m(lOOz)zm(ZOOz):Z, m(llez):m(210xz):x/\z,

X X] AXo (7)
m(111x)=m(211x) = [F(¢)G(¢)d, m(311xx,)= j G(t

0

oS3

We divide the set of states E into three following subsets:
= {100z, 200z} —all servers are available;

E, ={10, 01,101xz, 210xz} —one server is in service;

E, ={111x, 211x, 311x,x, } —two servers are in service;

2
E=\JE,, ENE, #3, i#j.

We will introduce the transition probabilities of the semi-Markov processes &(7) :
d)(t,e,Ei):P{.f(t)e E, |§(0):e}, eck, izﬁ,
and

P =lim®(¢,e, E, ) —stationary probabilities, i = 0,2.

11—

We will show that the stationary probabilities of QS GI/G/2/0 are defined by the following formulas:

:%[T(_;(t)F(t)dt+TMﬂycT)(y)f(J/)dy'*‘TMﬂyﬁ(y)(o(y)dy

—J'f J. (v,z )(T)(z+y)dz—jgo(y)dy]217g(y,z)ﬁ(z+y)dz}

pl:éﬁﬁ(t)é(t)dt+Tf(y)dyT<5(X+y)7(y, )dx+ Tﬁ”(J’)dYTF(“J’)i(%X)dX]’ ®)
P, :éIcﬁ(r)F(t)dt,

where

o(x)= Tf(x+t)}~z(t)dt+T7r(x,y)dy?f(y+t)};(t)dt,

B (x) = [p()de = [ F(x+ y) i (v)dv+ [ (1) de [T (x,0) £ (1) d, ©)

O(x,y)= T;z(t,y)dt,

I:Ig (x)=>", G (x)—is the renewal function [11];

O,
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V, (v,x)—is DF of the direct residual time [11]; V, (v, x)=1-V,(y.x);

M B, =Mp H ( ) t —is the mathematical expectatlon of the direct residual time [11].
The proof As is known [5] [6], the following equalities are true:

f (¢) p(de)
lim®(t,e,E, )=

1o Im e)p de)

i=0,2, (10)

where m (e) —is the average sojourn time of SMP &(7) instate e€ E';
p(de) —is the stationary distribution of EMC {&,;n >0} .

Let us calculate the integrals entering into the right side of equalities (10). Using (6), (7), we get:

éfm(e)p(de)=p0[2z(p(x)dx;fﬁ dt+de ]ldx jG dtj(p x,+z) f(x +2)h,(z)dz

© x| X ©

+[dx, [dv, [ G(¢)de[ o (x, +2) £ (x, +2)h, (= dz+jdxjdx jG dzj(p (x,+2) f(x,+2)h, (z)dz

© © x| ©

+[dx, [dx, [G(t)de [p(x, +2) f (%, +2) (z)dz] = 2p0jcf>(t)ﬁ(t)dt.

0 x 0 0

In the transformations, the following formula was used:

IG( ~G(x).
Jn(e)o(de)~20, [FO)G()ar+ fa efotseen) )y, (210
e
IdedZI x4 ) £ (9)v, (2 dy+jxdxjdzj¢ Flrt ) (y,z)dy]

©

:2p0[£F(t) dt+jf I (x+y)W, (y,x)dx+ I dij(x+y) (y,x)dxj

0 0

I O[TzdzTg z+t dt+J.zdzfdt.f(0 t+y f(y)vg(y,z+t)dy

0

©

TzdzjdtTgo t+y (y,z+t)dyj
0

0 0

_ 2p0[Té(r)F(t)dt+jMpycfa(y)f(y)dy+TMﬂyF(y)(p(y)dy
0 0 (11

©

[0V 7, (,2)B (=4 v)do - [o(0)

0 0

S 38

I7 (y, )F(z+y)dzj

Il

\]

>
VA
S =8

QI

(t)F(t)dt+M/3<T)(O)+M/3Td_)(y)ﬁ(y)hg (y)dy—jd_)(y)ﬁ(y)dy

© ©

Y7, 20 e ot

®

o'—.8
l\]
+
<
~—
&
\___/
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_[m(e)p(de) = J. m(e)p(de)+ jm(e)p(de)+ J. m(e)p(de)

E E, E Ey

=ZpOMﬁ[1+CT)(O)+Tq_)(x)F(x)hg (x)dxj

- 2p0Mﬁ[1+I(TD(x);(x)dI:Ig (X)J.

By substituting the determined expressions in Formulas (10), we get Formulas (8).

Let us define the stationary probability of request loss. We will consider the subset of states:
E,, ={311xx, } —areceived request was lost.

We will find B = }LrgQ(t,e, E.)-

| m(e)p(de):po(zdx,jdx;fé(t)dzzw(xz+z)f(x] 4 o), (2)dz
+ [ [av, [ G)aef o +2) £ (x5 +2)h, (2)de

&

(SIS JR =X S—
(=]

QI
—_
~
S
o,
~
—

AS|
—_
R
+
N
SN
~
—_
=
+
N
SN—
=
o
—_
N
SN

B8 o=

+

+
St—=——8 o8 o—38

By
&
QI
—_
~
N—
o
~
—38
S
—_
=
+
N
N—
\
—_
=
i)
+
N
N—
oqh‘
—_
N
N—
N——

Therefore, the stationary probability of request loss equals:

R, =%Id_>(t)F(t)G(t)dt.

(12)

(13)

Important characteristics of the QS under consideration are average stationary sojourn times 7 (E,) of the

system in the selected subsets of states E|,i = 0,2 . To determine them we will use Formulas [5] [6]:

é|‘bm(e)/0(de) o

i ,i=0,2.
P(e.E)p(de)

T(Ei): ,[

Let us find the values of the expressions in the denominators of Formulas (14).

| P(e,Ez)p(de):2p0[de

E\E,

(1) £ (x+)de+ [def ax [ (x4 v) £ (), (7,2)dv

w<y>f<x+y>vg<y,z>dy]

The transformations used the following formula:

[ (1)dr+ [ ()] 0 (x4 2)7, () + [ (1) ] (x4 3) 7, () =1,

which results from the first equation of the system (4),

®

(14)

(15)

(16)
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[ P(e.E)p(de)=

E\E|

[\
>
N\

o—38
&
o—38
~
—_
3
~
0Q
—_
N
+
3
~
+
—
&
Se—38
o
3
—
)
—_
3
+
<
~—
~
—
<
~
—_
=
N
+
3
~—
=3

+
Rl
—
=
~—
QI
—
=
~—
<
—_
=
~—
+
—
S
—
=
~—
.
QI
—
<
~—
~
—
<
~—
=3

+
QI

(), [ d, [ (o, +0) £ (5 +1), (1)

X 0

(), [ d, [ 9 (5 +0) £ (x, +1) 1, (1) dr (17

X 0

G(x,) I(p x, 1) f(x +1)h, (t)dt

+

+

+
S8 Ot=—m8 o8 o8 o+—38
QI

av, [o(x,+1) f (x, +1)h, (z)dtj

+ o'—.— o
QI
—~
=
8]

=l
—_

o
=

|

\]
>
—_

—

dz f z+t dt+_|.dz.[dx_[go x+y)f(y) g(y,z)dy
(18)

1 Pter)otw)=2a |
E

+Idz dx

St—8 o8

p(y)f(x+y)v, (y,Z)dyJ=2po-

In the derivations of equalities (17), (18) Formula (16) was used in the same way.
Having placed the determined values of the denominators into Formulas (14), we obtain:

T(E) = [G(O)F(e)de+ [MBB(y) £ (v)dy+] MB,F(»)o(r)dv
0 0 0 (19)

©

—Tf(y)dyJ.Vg (y,z)d_)(z+y)dz+of(p(y)dy]gl7g(y,z)ﬁ(z+y)dz,

T(E)= R a0 ’
[®()F(c)de
T(E,)=" 3(0)

5. Particular Cases of QS GI/G/2/0

Let us look at particular cases of QS GI/G/2/0.
1) We find the stationary characteristics of QS M /M /2/0 . In this case,

f(t):/le"“, g(t)=pe™, h(t)=p, Vg(t,x):,ue"”‘,

77();):/1_/'1(6—1}'_6—#}’)’ ﬂ(x’t):ﬂ'_/ue—l(xﬁ-t), h(y): /LU (l_e—(i+y)y),

H=2 A+u A+u
};(l‘) (/1+,ue (M#)t) }/(x [) :M—'ue’)“(”’) 7Z'(x ): e—/l(,w.v)
At u ’ 24+ ’ V)= H ’
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(D(JC) = ﬂe_lx , (T)(x) — %e*ix , ﬁ(x’ y) _ %e—i(,w—y) ,

9, (x)=5(x)= poe™, @, (x.x,) = pop’e e,

?, (x’Z) =P (x’Z) pot’e e, g (Z) =P (Z) = pote .

Using Formulas (8), (13), (19), we obtain:

212 2/1/1 ﬂz ’u3

= —

= 5 A= ’ P, = ’ Poss_
20 +2Au+ p1’ b2+ 2Au+ it U2 2Au+ i !

(22+u) (227 +22u+ 47

1 1 1
(£t T(E)=i T(E)=5-

2) Let us examine QS M/G/2/0, g(t)=pue™ , F(t)=F,(t)=F(¢).

The direct substitution into the system (4) can show that the stationary distribution of EMC is determined by
the formulas:

@y (x) =95 (x) = po,ul?(x), 2 (xl=x2) = pO/JZF(x] )F(Xz)a
0, (x,2) =@, (x,2) = py’e ““F(x), ¢5(z)=0,(z)=pyue ™.
Functions (5) in this case are as follows:

ho ()=, v, (v.x)=ue™, 7(y)=(g*/)(v). B(x1)= If(x+y+f)g(y)dy,

0

D(f = g)*(") () —is the density of function 1: of renewals [11];

n=l

>
—
~<
S
Il

0

h(t)=g(t)+ D g*(f=* g)*(") () —is the density of function 0: of renewals [11];

n=1

If y+x+t )dy,
0

¢(x)=If(x+t)h

0

t+f X,y dyj.f(y+t)}~z(t)dt = ﬂ(x,O).
0
Consequently,
94 (x) = 95 (x) = P (x,0) = pypuF ().
Using Formulas (8), (13), (19), we obtain that the stationary characteristics of QS M/G/2/0 are written as:

2M*B P 2MaM S
Mia+2MaMpB+2M*B° ' M a+2MaMpB+2M*B’

})0:

. Mza—2zl7(x)dx]§l7(t)é(t)dt

P2: 2 2 b })loss: 2 2 ’
M a+2MaM B +2M"p M a+2MaM pB+2M~°p
MaM B 1
T(E)=MpB, T(E)=—2YP  1(E)=-Ma.
( 0) 'B ( 1) Ma‘l'Mﬂ ( 2) 2

Thus, in this case, as shown in [4], stationary probabilities P, i= 0,2 are invariant under the laws of distri-
bution of service time.

The semi-Markov model of QS GI /M /2/0 is considered in [14].

®
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In the paper [5], a similar approach to the building of QS model under consideration is used. To find the sta-
tionary distribution of EMC, a method based on the usage of taboo-probabilities is applied.

In monograph [13], the semi-Markov model of QS M /G / N /0 is considered and stationary characteristics
are defined.

Using built semi-Markov model, limiting theorems and Markov renewal equations [5]-[7], one can find other
stationary and non-stationary characteristics of QS GI/G/2/0.
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