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ABSTRACT 

A two parameter mathematical model was de-
veloped to find the concentration for immobi-
lized enzyme systems in porous spherical par-
ticles. This model contains a non-linear term 
related to reversible Michaelies-Menten kinetics. 
Analytical expression pertaining to the sub-
strate concentration was reported for all possi-
ble values of Thiele module φ  and α . In this 
work, we report the theoretically evaluated 
steady-state effectiveness factor for immobi-
lized enzyme systems in porous spherical par-
ticles. These analytical results were found to be 
in good agreement with numerical results. 
Moreover, herein we employ new “Homotopy 
analysis method” (HAM) to solve non-linear re-
action/diffusion equation. 
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1. INTRODUCTION 

The enzymes can be easily separated from the reaction 
bulk and reused by using immobilized enzymes on a 
porous support. Here the reaction occurs only inside the 
particle. Hence the external diffusion processes and dif- 
fusion within the particles affect the reaction rate. The 
internal diffusion effects can be quantitatively expresses 
by the effectiveness factor η (ratio of the average rate 
inside the particle to the rate in the absence of diffu- 
sional limitations). The mathematical models for esti- 
mating the effectiveness factor for heterogeneous enzy- 
matic systems are developed on the basis of the follow- 
ing assumptions [1]. The catalytic particle is spherical 
and its radius is R, the enzyme is uniformly distributed 
throughout the whole catalytic particle, the enzyme reac- 
tion is mono substrate, the system is at steady-state and 

is isothermal, the mass transfer resistance between solu- 
tion and particle external surface is negligible, the sub- 
strate and product diffusion inside the catalytic particle 
can be modeled by the first Fick’s law and the effective 
diffusivity does not change through out the particle. 

In this assumption, a two-parameter model was pro- 
posed by Engasser and Horvath and this provides gener- 
alized plots of the effectiveness factor as a function of 
dimensionless modulus for the evaluation of simple 
Michaelis-Menten and product competitive inhibition 
kinetics. This model is used in the design of heteroge- 
neous enzymatic reactors: fixed bed reactors [2] con- 
tinuous tank reactors [3] and fluidized bed reactors [4]. 
The same model is used for the simulation of a packed 
bed immobilized enzyme reactor performing lactose 
hydrolysis.  

Only numerical solutions were available for all the 
above said models since substrate concentration rate is a 
non-linear function of the substrate and product concen- 
trations. More often finite differences [5] and orthogonal 
allocation [6] methods were used to solve the boundary 
value problem. Here as in enzymatic kinetics, the result 
is non linear equations system whenever the mass bal- 
ance equations are non-linear. The solution may not be 
unique and can have convergence problem if finite dif- 
ferences were used [5]. The orthogonal allocation method 
is not reliable when high diffusional limitations occur 
because this method uses polynomial expressions to ap- 
proach the concentration profiles [6]. To solve the 
boundary value problem Range Kutta method can also 
be used and here the initial substrate concentration is 
needed which is unknown. This can be calculated by 
successive calculations (shooting method) [7].  

Analytical solutions have been obtained in the limit- 
ing cases of zero and first reaction order [8-10]. For the 
remaining, numerical calculus has been ordinarily used, 
being the different variables of the system expressed in 
dimensionless form [11-17]. The calculus complexity 
increases when the reaction mechanism is more complex 
[18,19] (Michaelis-Menten Kinetics). When reversible 
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or product competitive inhibition mechanisms have been 
considered, only external diffusional limitations [20] 
have been evaluated, otherwise unsatisfactory results 
were obtained [21-23]. 

Recently Gomez et al., [1] presented the effectiveness 
factor of two-parameter model using Runge-Kutta 
method. However, to the best of author’s knowledge, no 
general analytical results of substrate, product concen-
trations and effectiveness factor for immobilized enzyme 
on porous supports have been published. The purpose of 
this article is to derive steady state analytical expression 
of substrate, product concentration and the effectiveness 
factor using Homotopy analysis method (HAM). 

2. FORMULATION OF THE BOUNDARY 
VALUE PROBLEM AND ANALYSIS 

Figure 1 represents the schematic representation of 
the geometry adopted by spherical catalyst particle [1]. 
In general, it was assumed that in steady-state system the 
substrate and product diffusion inside the catalytic parti-
cle can be modeled by the first Fick’s law and the effec-
tive diffusivity does not change through out the particle. 

Under the above assumptions, the coupled differential 
equations for substrate and product in spherical 
co-ordinates are [1]: 
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Now the boundary conditions are [1]
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Here SC  and PC  denote the dimensional substrate 
and product concentration, r is the radial co-ordinate, R 
denotes the radius of the particle, SD  and PD  are the 
diffusion-coefficients of the substrate and product re-
spectively, SRC  and PRC  denote the local substrate 
and product concentration., eqK  is the reaction equilib-
rium constant, mK  is the Michaelies-Menten constant 
and mV  defines the maximum reaction rate. The form 
of SV  determines the mathematical method to solve the 
above equations and its complexity. Adding Eqs.1 and 2 
and using the boundary conditions given by Eqs.3 and 4 
the following relationship can be established: 
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Figure 1. Schematic representation of the geometry 
adopted by spherical catalyst particle. 

 
Substituting the value of PC  in SV , we can obtain 
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We make the non-linear differential equations outlined 
in Eqs.1 and 2 dimensionless by introducing the follow-
ing dimensionless parameters:  
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where U represents the dimensionless substrate concen-
tration,   denotes the dimensionless radius of the par-
ticle,   and   denote the dimensionless modulus. 
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Now the Eqs.1 and 2 reduces to the following dimen-
sionless form [1] : 
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The boundary conditions are given by 
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The effectiveness factor is [1] 
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The set of expressions presented in Eqs.9, 10 and 11 
define the boundary value problem. 

3. HOMOTOPY ANALYSIS METHOD 

Liao [24] proposed a powerful analytical method for 
nonlinear problems, namely the Homotopy analysis 
method (see Appendix A). Different from all reported 
perturbation and non-perturbative techniques, the 
Homotopy analysis method [25-30] itself provides us 
with a convenient way to control and adjust the conver-
gence region and rate of approximation series, when 
necessary. Briefly speaking, the Homotopy analysis 
method has the following advantages: It is valid even if a 
given nonlinear problem does not contain any 
small/large parameters at all; It can be employed to effi-
ciently approximate a nonlinear problem by choosing 
different sets of base functions. In this paper we employ 
HAM to give approximate analytical solutions of cou-
pled non-linear reaction/diffusion Eq.9. Using Homo-
topy analysis method (see Appendix -A) we can obtain 
the following new approximate substrate concentration 
by solving the Eq.9. 
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Using Eq.12, we can obtain the effectiveness factors 
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Eqs.12 and 13 represent the new approximate ana-
lytical expression of substrate and effectiveness factor 
for all values of parameters 

4. LIMITING CASES 

4.1. Case I: First Order Catalytic Kinetics 

In this case U  . Now the above Eq.9 reduces to 
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Using reduction of order method we can obtain the 
substrate concentration as 
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The effectiveness factor is 
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4.2. Case II: Zero Order Catalytic Kinetics 

In this case U  . Now the Eq.9 reduces to 
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Solving Eq.18, we can obtain the concentration of the 
substrate as follows: 
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The effectiveness factor is  
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where  2 6 1l      . 

5. RESULTS AND DISCUSSION 

Eqs.12 and 13 represent the analytical solution of the 
concentration of substrate and effectiveness factor re-
spectively. The Thiele modulus   can be varied by 
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changing either the particle radius or the amount of con-
centration of substrate. This parameter describes the 
relative importance of diffusion and reaction in the par-
ticle radius. When   is small, the kinetics are the 
dominant resistance; The overall uptake of substrate in 
the enzyme matrix is kinetically controlled. Under these 
conditions, the substrate concentration profile across the 
membrane is essentially uniform. In contrast, when the 
Thiele modulus   is large, diffusion limitations are the 
principal determining factor. 

5.1. Numerical Simulation 

The HAM provides an analytical solution in terms of 
an infinite power series. However, there is a practical 
need to evaluate this solution and to obtain numerical 
values from the infinite power series. The consequent 
series truncation and the practical procedure conducted 
to accomplish this task, together transforms the other-
wise analytical results into an exact solution, which is 
evaluated to a finite degree of accuracy. In order to in-
vestigate the accuracy of the HAM solution with a finite 
number of terms, the system of differential equation 
were solved. To show the efficiency of the present 
method for our problem in comparison with the numeri-
cal solution (SCILAB program) we report our results 
graphically. The SCILAB program is also given in Ap-
pendix (C). 

5.2. Comparison of Analytical and 
Numerical Results  

Figures 2(a)-(c) show the dimensionless steady-state 
substrate concentration for the different values of   
calculated using Eq.13. From these figures, we can see 
that the value of the concentration increases when Thiele 
modulus   decreases. The concentration of substrate 
 U   increases slowly and rises abruptly when 

0.4   and all values of  . When 1   and 5   
the concentration of substrate   1U    (steady- state 
value). When   is small, the overall uptake of sub-
strate in the enzyme matrix is kinetically controlled and 
the substrate concentration profile across the membrane 
is identical. 

Figure 3 represents the effectiveness factor   versus 
dimensionless Thiele modulus   for different values of 
dimensionless module  . From this figure, it is in-
ferred that, a constant value of dimensionless module 
 , the effectiveness factor decreases quite rapidly as 
dimensionless module   increases, approaching zero 
at high values, which corresponds to internal diffusion 
controlled processes. Moreover, it is also well known 
that, a constant value of dimensionless module  , the  

 
(a) 

 
(b) 

 
(c) 

Figure 2. Comparison of normalized substrate concentration U 
versus normalized distance ρ for various values of Thiele 
moduilli φ. (a) α = 2 (b) α = 5 (c) α = 10. The curves are plot-
ted using Eq. (13). (–) denotes the analytical results (+) de-
notes the numerical results. Here h = –0.87. 
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Figure 3. The normalized effectiveness factor η versus Thiele 
moduilli φ for various values of parameter α. The curves are 
plotted using Eq.13. Here h = –0.135. 

 
effectiveness factor increases with increasing values of 
 . 

6. CONCLUSIONS 

A non-linear time independent equation has been 
formulated and solved analytically using Homotopy 
analysis method. The primary result of this work is the 
first approximate calculations of substrate concentrations 
and effectiveness factor for non-linear Michaelis-Menten 
kinetic scheme. A simple closed form of analytical ex-
pressions of steady-state substrate and effectiveness fac-
tor are given. The analytical expressions for the substrate 
concentration profiles for all values of parameters   
and   are derived using Homotopy analysis method. 
This method is an extremely simple method and it is also 
a promising method to solve other non-linear equations. 
The extension of this procedure to other direct reaction 
of substrate at underlying microdisc electrode surface 
seems possible. 
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APPENDIX A 

Basic Idea of Liao’s [31] Homotopy Analysis 
method 

Consider the following differential Eq.31: 

  0N u t                 (A1) 

where, Ν is a nonlinear operator, t denotes an independ-
ent variable, u(t) is an unknown function. For simplicity, 
we ignore all boundary or initial conditions, which can 
be treated in the similar way. By means of generalizing 
the conventional homotopy method, Liao constructed the 
so-called zero-order deformation equation as: 

         01 ; ;p L t p u t phH t N t p           (A2) 

where  0,1p  is the embedding parameter, h ≠ 0 is a 
nonzero auxiliary parameter, H(t) ≠ 0 is an auxiliary 
function, L is an auxiliary linear operator,  0u t  is an 
initial guess of u(t) and  :t p  is an unknown func-
tion. It is important, that one has great freedom to choose 
auxiliary unknowns in HAM. Obviously, when 0p   
and 1p  , it holds: 

   0;0t u t  and    ;1t u t      (A3) 

respectively. Thus, as p increases from 0 to 1, the solu-
tion  ;t p varies from the initial guess  0u t  to the 
solution  u t . Expanding  ;t p  in Taylor series 
with respect to p, we have: 

     0
1

; m
m

m

t p u t u t p




       (A4) 

where 

   
0

;1

!

m

m pm

t p
u t

m p








       (A5)  

If the auxiliary linear operator, the initial guess, the 
auxiliary parameter h, and the auxiliary function are so 
properly chosen, the series Eq.A4 converges at p =1 
then we have: 

     0
1

m
m

u t u t u t




  .     (A6) 

Define the vector 

 0 1, , ,n nu u uu          (A7) 

Differentiating Eq.A2 for m times with respect to the 
embedding parameter p, and then setting p = 0 and fi-
nally dividing them by m!, we will have the so-called 
mth-order deformation equation as: 

     1 1m m m m mL u u hH t     u     (A8) 

where  

   
 1

1 01

;1

1 !

m

m m pm

N t p

m p



 

    
 

u   (A9) 

and 

0,   1,

1,   1. m

m

m



  

            (A10) 

Applying 1L  on both side of Eq.A8, we get 

       1
1 1m m m m mu t u t hL H t 
     u    (A11) 

In this way, it is easy to obtain mu  for 1,m   at 
thM  order, we have 

   
0

M

m
m

u t u t


           (A12) 

when M   , we get an accurate approximation of 
the original Eq.A1. For the convergence of the above 
method we refer the reader to Liao [31]. If Eq.A1 admits 
unique solution, then this method will produce the 
unique solution. If Eq.A1 does not possess unique solu-
tion, the HAM will give a solution among many other 
(possible) solutions. 

APPENDIX B 

2
2

1 d d

d d

U U

U
 

  
 

   
     (B1) 

Now the boundary conditions become  

d
0, 0 

d

U


              (B2) 

1, 1U               (B3) 

In order to solve Eq.B1 by means of the HAM, we 
first construct the Zeroth-order deformation equation by 
taking   1H t  , 

 

 

2

2

2

2

d 2 d
1

dd

d 2 d
  

dd

p

ph

  
 

   
 

 
   

 
  

        

      (B4) 

subject to the boundary conditions  

 0; 0p   , 

 1; 1p                  (B5) 

where  0,1p  is an embedding parameter and h ≠ 0 
is the so-called convergence control parameter. When 

0p   

   2

2

d ;0 d ;02
0  

dd

   
 

         (B6) 
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From Eq.B6 we get  

0 1                 (B7)
 

When 1p   the Eq.B4 is equivalent to Eq.B1, thus 
it holds 

   ;1  U                 (B8) 

Expanding  ; p   in Taylor series with respect to 
the embedding parameter p, we have, 

     0
1

; m
m

m

p U U p   




         (B9) 

where 

   0 ;0U               (B10) 

and  mU   1,2,  m    will be determined later. 
Note that the above series contains the convergence con-
trol parameter h. Assuming that h is chosen so properly 
that the above series is convergent at 1p  . We have 
the solution series as 

     0
1

m
m

U U U  




          (B11) 

where  

   
0

;1

!

m
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U p
U t

m p








       (B12) 

substituting Eq.B9 into the zeroth-order deformation 
Eqs.B4 and B5 and equating the co-efficient of the like 
powers of p we have, 

 
2

1 1 1
02

2
0 0

02

d d2
: 1

dd

d d2
0 

dd

p h h

h

 
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 

 
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 

 
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 
 

   
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   (B13) 
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22
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d d2
: 1
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d dd d

p h h

h h

 
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 

  
 
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 
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 
  
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(B14) 

and so on. From Eqs.B13 and B14 we get  

 2
1 1

6

h  


            (B15)  

 

 

4 2
2 2

1
20 66

7
1

60

h h h
h h

h
h h
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



         
      

   (B16) 

Adding Eqs.B7, B15 and B16 we get Eq.13 in the 
text.  

APPENDIX C 

Determining the Region of h for Validity  

The analytical solution should converge. It should be 
noted that the auxiliary parameter h controls the conver-
gence and accuracy of the solution series. The analytical 
solution represented by Eq.13 contains the auxiliary 
parameter h, which gives the convergence region and 
rate of approximation for the homotopy analysis method. 
In order to define region such that the solution series is 
independent of h, a multiple of h-curves are plotted. The 
region where the distribution of U and U   versus h is a 
horizontal line is known as the convergence region for 
the corresponding function. The common region among 
the )(U  and its derivatives are known as the overall 
convergence region. To study the influence of h on the 
convergence of solution, the h-curves of U(0.5) and 

 0.5U   are plotted in Figures 4(a) and (b) respectively, 
for  =5 and 10 . These figures clearly indicate that 
the valid region of h is about –1 < h < –0.8. Similarly we 
can find the value of the convergence control parameter h 
for different values of constant parameters. 

APPENDIX D 

function pdex1 
m = 2; 
x = linspace(0,1); 
t = linspace(0,100); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
% Extract the first solution component as u. 
u = sol(:,:,1); 
% A surface plot is often a good way to study a solution. 
surf(x,t,u)     
title(Numerical solution computed with 20 mesh points.) 
x label(Distance x’) 
y label(Time t’) 
% A solution profile can also be illuminating. 
figure 
plot(x,u(end,:)) 
title(‘Solution at t = 2’) 
x label(Distance x') 
y label(u(x,2)') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c = 1; 
f = DuDx; 
k = 0.01; 
alpha = 0.5; 
s = –k*u/(alpha + u); 
% -------------------------------------------------------------- 
function u0 = pdex1ic(x) 
u0 = 1; 
% -------------------------------------------------------------- 
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function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
pl = 0; 
ql = 1; 
pr = ur–1; 
qr = 0; 

APPENDIX E 

Consider 

U
d
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d
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
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



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2

1
          (E1) 

 

 
(a) 

 
(b) 

Figure 4. The h curves to indicate the convergence region, for 
φ = 5 and α = 10. 

Boundary conditions are:  

.0    ;0

,1    U;1










d

dU            (E2) 

Using reduction of order, we have 

2
;   ;    0.P Q R


 

            (E3) 

Let 

U uv               (E4) 

Substitute Eq.E4 in Eq.E1 and choose u such that 

d
2 0

d

u
Pu


   

Substituting the value of P, we obtain  

1
u


                   (E5) 

Now the Eq.E1 reduces to  

1 1v Q v R                (E6) 

2

1 1

1 d
Q ,   0 

2 d 4

P R
Q R

u

 
 

         (E7) 

Substituting Eq.E7 in Eq.E6 we obtain 

0.v v



                  (E8) 

Solving we obtain  

Ae Be- .v
  
             (E9) 

Substituting Eq.E5 and Eq.E9 in Eq.E4 we have 

1
Ae Be-  U

  
 



 
  
 
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       (E10) 

Using the boundary conditions we obtain the value of 
the constants as 

1 1
;    B

2sinh 2sinh

A
 
 

  
   
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    (E11) 

Substituting in Eq.E10 we obtain the solution as  

sinh

sinh
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 

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Appendix F 

Nomenclature and Units 

Symbols 

SC  Concentration of the substrate (mol·cm–3) 

PC  Concentration of the product (mol·cm–3) 

r  Radial co-ordinate (cm) 

SRC  Local substrate concentration (mol·cm–3) 

PRC  Local product concentration (mol·cm–3) 

eqK  Reaction equilibrium constant (none) 

mK  Michaelis-Menten constant (mol·cm–3) 

SD  Diffusion coefficient of the substrate (cm2·sec–1) 

PD  Diffusion coefficient of the product (cm2·sec–1) 

R Radius of the particle (cm) 

SV  Local reaction rate per unit of catalytic particle volume 
(mol·cm–3·s–1) 

mV  Maximum reaction rate per unit of catalytic particle 
volume (mol·cm–3·s–1) 

U  Normalized substrate concentration (none) 

,   Normalized Thiele modulus (none) 

  Effectiveness factor (none) 

 


