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Abstract 
We propose a new approach to the investigation of deterministic self-similar networks by using 
contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized 
version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize 
the graph models using stars and cliques: both algorithm construct graph sequences such that the 
next iteration is always based on n replicas of the current iteration, where n is the size of the ini-
tial graph structure, being a star or a clique. We analyze these self-similar graph sequences using 
IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor 
set for the description of the fixed set of these IMSs, which we interpret as the limit object of the 
analyzed self-similar networks. 
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1. Preliminaries and Notations 
The aim of this paper is to help connect the results on IMSs ([3] [4]) and on self-similar networks ([1] [2]). We 
add a generalization the self-similar models introduced by Barabási, Ravasz and Vicsek and we describe these 
using IMSs constructed by contractions. We generate self-similar networks from 1nS −  stars and nK  cliques, 
where n is the number of the nodes initially. 

Let us consider the ( ),G V E  pair as a simple graph, where V denotes the finite set of the nodes and 
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E V V⊆ ×  such, that for all ( ),x y E∈  there exists the ( ),y x E∈  edge too, where x y≠  and ,x y V∈ . 
Moreover, the paper doesn’t let the existence of loops and multiegdes, so there exists at least one edge between 
all pair of different nodes. Let us note with V n=  the number of the nodes in a given graph. 

Let us introduce the ( )1 ,nS G V E− =  notation for a graph with n nodes and 1n −  edges such that one of the 
nodes will be connected to all of the others and there will not exist any other edges between the others. Let us 
refer to this 1nS −  as a star with n nodes. On the other hand, let us call the ( ),nK G V E=  graph a clique when 
all of the possible edges exist in a graph. 

The study of graph limits is well known by testing homomorphisms in graphs sequences (see [5]). The pur- 
pose is to study the limit self-similar networks using IMSs. We note the iterations of the self-similar networks 
generated by 1nS −  stars and nK  cliques the following:  

( ) ( ) ( )0 1
1 1 1, , , ,n

n n nG S G S G S− − −   

and  

( ) ( ) ( )0 1, , , , ,n
n n nG K G K G K   

respectively. 
Based on results known on IMSs (see [3] and [4]) let us introduce the following notations: 
If the functions if  are singlevalued continuous self operators on a complete metric space X, then 
( )1 2, , , mf f f f= 

 is called an iterated function system (IFS). Moreover, the operator ( ) ( ):f cp cpT P X P X→  
given by  

( ) ( ) ( )
1

, for each
m

f i cp
i

T Y f Y Y P X
=

= ∈


 

is called the fractal operator generated by f. A fixed point of fT  is called a self-similar set of f and if it has a 
non-integer Hausdorff dimension, then it is called fractal. 

Moreover, if 1, , mf f  are contractions, then fT  is a contraction and its unique fixed point ( )*
cpA P X∈  

is self-similar. Moreover, if these 1, , mf f  are similarity contractions (see [6]), then ( )*
cpA P X∈  is a fractal.  

Moreover, for any nonempty compact subset A X∈ , the sequence ( )( )n
f n

T A
∈

 converges to *A  as n → +∞ . 

If the multivalued operators ( )1 2, , , :nF F F X P X→
 are defined on the X metric space, then we call 

{ }1 2, , , nF F F F= 
 as an iterated multifunction system (IMS). If the ( ):i cpF X P X→  multivalued operators 

are upper semicontinuous, then the operator ( ) ( ):F cp cpT P X P X→  given by  

( ) ( ) ( )
1

, for each
m

F i cp
i

T X F Y Y P X
=

= ∈


 

is called the fractal operator generated with the IMS F.  
An element x X∈  is a fixed point for T if and only if ( )T x X∈ . Let us note the set of the fixed points with 
( ) ( ){ }|Fix T x X x T x= ∈ ∈ , which we also call as fixed set in the next. In the case of multivalued contractions 

the same fixed point results hold (see [7]). 
We call a nonempty compact subset *A X⊆  self-similar corresponding to the iterated multifunction system 

F if and only if it is a fixed set for the associated IMS, so ( )FT A A= .  
Let X be the compact set [ ]20,1 . 
We define IFSs on [ ]20,1  such that their combination using set operations will give us IMSs such that the 

mappings on [ ]20,1  correspond to the adjacency matrices of the self-similar networks presented in the 
following. 

We add a simple generalization for two self-similar network models introduced by Barabási, Ravasz and 
Vicsek ([1] [2]). Based on the algorithm introduced in [2], we create deterministic scale free networks from a 

1nS −  star formed by a root and ( )1n −  leaves. Moreover, based on [1] we create hierarchical networks con- 
structed on nK  clique with n nodes. 

Firstly, we present the modified version of the algorithm from [1]. We eliminate the th0  step and we 
generate deterministic scale free networks from a 1nS −  star. 

Algorithm 1. Let us note the graph given after the thk  step generated from 1nS −  with ( )1
k

nG S − . The 
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( )1
k

nG S −  graph are built by iterations, which reuse the networks generated in the previous steps.   
• Step 0: We init the algorithm from an 1nS −  star formed by a root and ( )1n −  leaves.  
• Step 1: We add ( )1n −  1nS −  stars, each unit identical to the network created in the previous step, and we 

connect each of the new leaves of these units to the initial root (see Figure 1 for ( )1
2G S ).  

• Step 2: We add ( )1n −  copies of ( )1
2G S  and connect all ( )31n −  bottom nodes of the new units to the 

initial root (see also Figure 1 for ( )2
2G S ).  

These rules can be easily generalized, so the thk  step does the following: 
• Step k: Generally, the creation of ( )1

k
nG S −  adds ( )1n −  copies identical to the network created in the 

previous iteration (step ( )1k − ), and we connect each ( )1 kn −  bottom nodes of these units to the initial 
root of the network.  

Secondly, we introduce a simple generalization of the Hierarchical Network Model. 
Algorithm 2. We init with a nK  clique with n nodes. Therefore, the steps of the modified algorithm are the 

following:   
• Step 0: We init the algorithm from an nK  clique, which will be noted as ( )0

nG K  too. We also fix a node 
from the clique, which will be noted as the initial root in the next.  

• Step 1: We add ( )1n −  nK  cliques and we connect ( )1n −  nodes from all of the new cliques to a initial 
root. We refer to the gotten graph as ( )1

nG K .  
• Step 2: We create ( )2

nG K  with adding ( )1n −  replicas of ( )1
nG K  and connecting the new peripheral 

nodes to the initial root (see Figure 2 for ( )2
5G K ).  

These iterations can be also easily generalized, so the thk  step does the following: 
• Step k: We add ( )1n −  replicas of ( )1k

nG K−  itself for creating ( )k
nG K . We also connect the new peri- 

pheral nodes to the initial root. This iteration can be continued indefinitely.  
After the thk  iteration the graphs generated by a nK  clique or an 1nS −  has 1kn +  nodes. 
We have n nodes at the initial step, which are indexed in the following way: the initial root is indexed with 0 

and the other nodes are marked with 1, 2,  and 1n − . The first iteration is followed by indexing the nodes of 
the 1n −  replicas: the nodes of the thi  replica will be indexed with ( ), 1, , 1 1in in i n+ + −

, where 1, ,i n=  . 
We note that in each replica the ( )thin j+  node will be the node corresponding to the thj  node in the previous 
iteration. This numbering can be easily generalized to the thk  step: we create ( )1n −  replicas of the previous 
network with kn  nodes. The indexing the nodes of the 1n −  replicas follows the rule that: the nodes of the 

thi  replica will be indexed with ( ) ( ) ( ) ( ), 1, , 1 1k k ki n i n i n+ + − , where 1, ,i n=  . We also note that  

in each replica the ( )( )thki n j+  node will be the node corresponding to the thj  node in the previous iteration. 

Let us look to  

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1
1 1 1, , , , and , , , ,n n

n n n n n nG S G S G S G K G K G K− − −     

as graph sequences. The aim is to characterize these two sequences using IMSs. 
 

 
Figure 1. ( )0

2G S , ( )1
2G S  and ( )2

2G S  from [1].                                                
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Figure 2. ( )0

5G K , ( )1
5G K  and ( )2

5G K  from 
[2] (note that the diagonal nodes in the cliques are 
also connected, but some links are not visible).                         

 
Both algorithms constructs the thk  iteration from n replicas of the graph gotten at the ( )th1k −  iteration, 

where n is the parameter of the initial star or the initial clique. The application of Algorithm 1 on 2S  gives us 
the self-similar deterministic scale-free network introduced in [1] and the application of Algorithm 2 on 5K  
construct the self-similar Hierarchial Network Model from [2], respectively.  

Thus, the presented algorithms generate self-similar networks based on stars and cliques.  

2. The Graphs’ Adjacency Matrices Generated with Iterated Multifunction Systems  
Our paper focuses on two IMSs constructed with set operations of IFSs. We construct these IMSs such that their 
image will correspond to adjacency matrices projected to [ ]20,1 . 

Let us consider [ ] { }2: 0,1 0,1 ,T →  ( ),G V E  be a simple graph, where n V= . Our construction says that an  

undirected ( ),i j E∈  edge exists if and only if 1 1, , , 1i i j jT
n n n n

 − −     =        
 and 1 1, , , 1j j i iT

n n n n
 − −     =        

. 

The aim is to construct IMSs such that their thk  iteration will correspond to same iteration of the self-similar 
networks’ presented above. This means that in the thk  iteration of an IMS an undirected ( ),i j E∈  edge  

exists if and only if 1 1, , , 1k k k k
i i j jT
n n n n

 − −     =        
 and 1 1, , , 1k k k k

j j i iT
n n n n

 − −     =        
, respectively. 

3. Construction of the IMSs Corresponding to the Self-Similar Networks  
In this section we define those iterated function systems, whose will be used for the characterization of the 
presented self-similar network. We use these mappings in function of the parameter { }* \ 1n∈ , which notes 
the number of nodes of the star and in the clique, respectively. The definitions are followed by the construction 
of the self-similar networks generated from stars and cliques using these IFSs. Last, we show that the con- 
struction corresponds to these networks. 

Let [ ] [ ]2 2: 0,1 0,1if∗ →  be functions, where  

( ) ( )1 1, 0, , , 2, ,i
if x y x y i n

n n∗
− = + = 

 
  

and let  

( ) ( ) [ ]( )2

2
for each 0,1

n

n i cp
i

Y f Y Y P∗ ∗
=

= ∈


  

be the IFS constructed by these functions. 
The corresponding n∗  iterated function system is defined as follows. 
Let [ ] [ ]2 2: 0,1 0,1if ∗ →  be functions, where  
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( ) ( )1 1, ,0 , , 2, ,i
if x y x y i n

n n∗
− = + = 

 
  

and let  

( ) ( ) [ ]( )2

2
for each 0,1

n

n i cp
i

Y f Y Y P∗ ∗
=

= ∈


  

be the IFS constructed by these functions. 
Let [ ] [ ]2 2: 0,1 0,1iif →  be functions, where  

( ) ( )1 1 1, , , , 1, ,ii
i if x y x y i n

n n n
− − = + = 

 
  

and let  

( ) ( ) [ ]( )2

2
for each 0,1

n

nn ii cp
i

Y f Y Y P
=

= ∈


  

be the IFS constructed by these functions. 
We construct the iterated function system corresponding to self-similar networks using the presented ,i if f∗ ∗  

and iif  functions. 
Theorem 1. The thk  iteration of the iterated multifunction system ( ) [ ] { }2STAR : 0,1 0,1n →  correspond- 

ing to ( ) { }*
1 , \ 1k

nG S n− ∈  can be constructed as the followings:  

( ) [ ]( ) [ ]( )

[ ]( )

1
2 21

0 0

1
21

0 0

1STAR 0,1 , 0,1

1, 0,1 ,

j

j

k n
k k j

nj j jn
j i

k n
k j

nj j j
j i

i i
n n n

i i
n n n

−
− +

∗
= =

−
− +
∗

= =

    = +       
     +       











               (1) 

where n∗  and n∗  are the iterated function systems defined above. 
Proof. We use mathematical induction for showing that ( )STAR k

n
 corresponds with the adjacency matrix of 

( )1
k

nG S − . Firstly, we analyze ( )0STAR n
, we look that this corresponds to ( )0

1nG S − . It is easy to check that:  

( ) [ ]( ) [ ]( )2 20 1 1

1 1

1 =1

STAR 0,1 0,1

1 1 1 10, , , 0, .

n nn

n n

i i

i i i i
n n n n n n

∗ ∗

− −

=

=

    +   +        = × ×                          





 

 

                   (2) 

This means that ( )0STAR n
 corresponds to the adjacency matrix of 1nS −  star, where the root is indexed with  

0 and the leaves are indexed with 1, 2, , 1n − , respectively. (For example, see Figure 3 for ( ) [ ]( )20
2STAR 0,1 .)  

 

 

Figure 3. ( ) [ ]( )20

2
STAR 0,1 , ( ) [ ]( )11

2
STAR 0,1  and ( ) [ ]( )22

2
STAR 0,1 .                                                 
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Moreover, we show that ( ) 1STAR k
n
+  corresponds to the union created by k replicas of ( )STAR k

n
 and the  

edges between the initial root and the new peripheral nodes. 

( ) [ ]( )
[ ]( )

[ ]( )

[ ]( )( ) [ ]( )

21

1 1
22

0 0

1 1
22

0 0

1 1
2 22 2

1 0

STAR 0,1

1, 0,1

1, 0,1

10,1 , 0,1

j

j

j

k
n

k n
k j
nj j j

j i

k n
k j

nj j j
j i

k n
k k j
n nj j j

j i

i i
n n n

i i
n n n

i i
n n n

+

+ −
− +

∗
= =

+ −
− +
∗

= =

+ −
+ − +

∗ ∗
= =

    = +       
     +       

    = +     















 

[ ]( )( ) [ ]( )

[ ]( )( ) [ ]( )

[ ]( )( )

1

1

1 1
2 22 2

*
1 0

1
2 22 1

*1 1 1
0

1
22

1 1
0

10,1 , 0,1

10,1 , 0,1

10,1 ,

j

j

j

k n
k k j

n nj j j
j i

n
k k j
n nj j j

i

n
k

n j j
i

i i
n n n

i i
n n n

i i
n n

′+

′+

+ −
+ − +
∗

= =

−
′+ − +

∗ ′ ′ ′+ + +
=

−
+
∗ ′ ′+ +

=




 
     +       

    = +       

  + 
 

 



 







 

 

 [ ]( )
[ ]( )( ) [ ]( )( )

[ ]( )

21
*1

2 22 2

1 1
21

1 1 1
0 0

1 1

*1 1 1
0 0

0,1

0,1 0,1

1, , 0,1

1, ,

j

j

k j
nj

k k
n n

n n
k j
nj j j

l i

n n
k

nj j j
l i

n

l l i i
n n n n n

l l i i
n n n n n

′

′

′− +
′+

+ +
∗ ∗

− −
′− +

∗′ ′ ′+ + +
= =

− −
−

′ ′ ′+ + +
= =

   
  

   

=

      + +           

   + +   
   













 



 [ ]( )
[ ]( )( ) [ ]( )( )

[ ]( )

[ ]( )

[ ]( )( )

21

2 22 2
* *

1 1
21

*
0 0

1
21

*
0

22
*

0,1

0,1 0,1

1 1, , 0,1

1, 0,1

0,1

j

j

j

k k
n n

n n
k j

nj j j
l i

n
k j
nj j j

i

k
n

l l i i
n n n n n n

i i
n n n

′

′

′+

+ +

− −
′− +

′ ′ ′
= =

−
′− +

′ ′ ′
=

+

   
  

   

=

     + +     
      

   +  
   

=









 



 





  [ ]( )( ) ( ) [ ]( )
1

2 22
*

0

10,1 , STAR 0,1 .
n

kk
n n

l

l l
n n n

−
+

=

   +  
  





               (3) 

Thus, after a reindexig ( 1j j′ = − ) and a reordering the set operations above we get that the ( )th1k +  
iteration contains n replicas of the IMS corresponding to the thk  iteration. 

On the other hand, we use a simple generalization of the Cantor set for showing that [ ]( )21 0,1k
n
+

∗  and 

[ ]( )21 0,1k
n
+
∗  generate the edges which connect the initial root with the peripheral nodes at the thk  step. 

It is well known that the iterations of the Cantor set can be easily described using the ternary numeral system:  

we note the unit segment with 0 and after the first iteration we note the remaining 10,
3

 
  

 and 2 ,1
3
 
  

  

segments with 0 and 2, respectively. The second iteration generates four segments, whose can be marked with 
( ) ( ) ( )3 30 , 2 , 20  and ( )322  in the ternary numeral system (see Figure 4 for the description). It is easy to check  
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Figure 4. The description of Cantor set using the ternary numeral system.                                      

 

with induction that the thk  iteration generates all of the segments with 1
3k  length, whose ternary form don’t  

contain neither the number 1. 
Based on the presented construction of the Cantor set, we describe the set generated by the thk  iteration of  

[ ]( )21 0,1k
n
+

∗  (and by [ ]( )21 0,1k
n
+
∗  as it’s pair) using the numeral system based on the integer n. 

We refer to the 1 10, , , 1, , 1i i i n
n n n

 +    × = −        
  sets from (2) with the 1, , 1n −  integers, whose note  

an unique value in the context of the numeral system based on the integer n. Based on the definition of n∗ , the  

second iteration of the IMS is constructed with the union of 2 2 2
1 10, ,i i
n n n

 +    ×        
, 

( ) ( )2 21, , 2 1, 2 1, ,3 1, , 1, , 1 1, , 1 1, , 1i n n n n kn k n n n= + − + − + + − − + −       sets. It can be also easily  

checked that 2
n∗  is the union of the 2 2 2

1 1, 0,i i
n n n

 +    ×        
 sets with the same i values. Thus, 2

n∗  and 2
n∗   

from ( )1STAR n
 generate the undirected edges between the initial root and the peripheral nodes. 

If we transform the values of i from the second iteration to the numeral system based on the integer n, then we 
get the following forms of the values:  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )11 , 1 1 , 21 , , 2 1 , , 1 , , 1 , 1 1 , , 1 1n n n nn n n n n
i n n k k n n n n= − − − − − −     . 

We suppose that 1k
n
+
∗  and 1k

n
+

∗  from ( )STAR k
n

 generate the undirected edges (thus, the little boxes in  

the adjacency matrix with side length 1
kn

) between the initial root and the new peripheral nodes. Basically,  

these peripheral nodes have indexes between 1 1kn − +  and kn . Moreover, we also suppose that for of the 
indexes in the numeral system based on the integer n don’t contain neither the number 0. 

Last, we show that [ ]( )22 0,1k
n
+
∗  and [ ]( )22 0,1k

n
+

∗  from ( ) [ ]( )21STAR 0,1k
n
+  correspond to that undi-  

rected edges whose connect the current peripheral nodes with the initial root. Based on the construction using  

the numeral system based on the integer n, an iteration of the [ ]( )20,1n∗  means that we construct little 

squares with side length 1
1
kn +  as the followings. 

If we have a little box with side length 1
kn

 corresponding for an edge between the initial root and the thi   

node in ( )1
k

nG S − , then n∗  generates ( )1n −  new edges from it in ( ) 1
1

k
nG S +
− . 

Based on the presumption and the definitions of 2k
n
+
∗  and 2k

n
+

∗  the new edges connect the initial root 
with the peripheral nodes with index i′ , where ii n j′ = +  such, that i is arbitrary and 1, 2, , 1j n= −

. This  

means, that [ ]( )22 0,1k
n
+
∗  and [ ]( )22 0,1k

n
+

∗  connect the initial root and the peripheral nodes whose i index is  

in { }1 1 21, 2, , 1k k kn n n+ + ++ + −  such, that it’s form in the numeral system based on the integer n doesn’t 
contain neither the number 0. 
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As a conclusion, ( )1
1

k
nG S+
−  contains n replicas of ( )1

k
nG S −  and we showed that 2k

n
+
∗  and 2k

n
+

∗  add 
links between the initial root and the replicas’ peripheral nodes just as we described in Algorithm 1.         □ 

Theorem 2. The thk  iteration of the iterated multifunction system ( ) [ ] { }2CLIQUE : 0,1 0,1n →  corre- 
sponding to ( ) { }*, \ 1k

nG K n∈  can be constructed as follows:  

( ) [ ]( ) [ ]( )

[ ]( )
[ ]( ) ( )( )

1
2 21

0 0

1
21

=0 =0

2 21

1CLIQUE 0,1 , 0,1

1, 0,1

0,1 \ 0,1 ,

jk n
k k j

nj j jn
j i

jk n
k j

nj j j
j i

k k
nn nn

i i
n n n

i i
n n n

−
− +

∗
= =

−
− +
∗

+

    = +       
     +       













 

                (4) 

where ,nn n∗   and n∗  are the iterated function systems defined above. 
Proof. We base the proof on Theorem 1: it is obviously, that the proof of on the IMS ( )CLIQUE n

 differs 
from proof of the IMS ( )STAR n

 at two notes. 

Firstly, we use the IFS nn  as followings: on [ ]20,1  the kth iteration of the selected IMS, ( ) [ ]( )2CLIQUE 0,1n   

will include the same iteration of the IFS nn , but it won’t include the the set generated by ( )( )21 0,1k
nn
+ . The  

usage of open sets at the set minuses causes that the included sets remain closed as we fixed the condition of 
existence of the edges. 

We also proof the usage of the IFS nn  with mathematical induction: if 0k = , then [ ]( )20,1k
nn  adds little  

squares to the adjacency matrix, whose will correspond for the generation of all of the edges and loops in nK .  

On the other hand, using the set minus of ( )( )21 0,1k
nn
+  exclude the loops. Thus, 0

nn  generates the adjacency  

matrix corresponding with a clique with n nodes. 
Based on these, we suppose that k

nn  generates the adjacency matrix corresponding with kn  replicas of a  

clique with n nodes. This means, that k
nn  generates kn  little squares with side length 1

1 1
k kn

n n −= , each  

representing a clique with n nodes. By definition, the IMS nn  generates n replicas of the little squares pre-  

sented above. Therefore, 1k
nn
+  generates 1kn +  little squares with side length 1

1 1
k kn

n n+ =  whose correspond  

to 1kn +  nK  cliques. 
Based on Theorem 1, ( )CLIQUE k

n
 contains the IMS ( )STAR k

n
 too, this gives the connection between the 

initial root and the peripheral nodes at the thk  step (for example, see Figure 5 for ( ) ( )0 1
5 5,G K G K  and 

( )2
5G K ). 

This means, that 

( ) [ ]( ) ( ) [ ]( ) [ ]( ) ( )( )2 2 2 21CLIQUE 0,1 STAR 0,1 0,1 \ 0,1k k k k
nn nnn n

+=                 (5) 

Moreover, we also note that if the parameter j of the first set union in (4) goes just to 1k −  (and not till to k) 
the IMS generates the same adjacency matrix. It can be easly checked that: 

[ ]( )

[ ]( ) [ ]( )

1
21

0

1
2 21

0

1, 0,1

1, 0,1 0,1 .

k

k

n

nk k k
i

n
k

n nnk k k
i

i i
n n n

i i
n n n

−

∗
=

−

∗
=

     +       
     + ⊂       









 

                     (6) 

Thus, the IMS ( )CLIQUE k
n
 defined on [ ]( )20,1  generated the adjacency matrix corresponding with the  

thk  step the Algorithm 2 does.                                                                □ 
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Figure 5. ( ) [ ]( ) ( ) [ ]( )2 20 1

5 5
CLIQUE 0,1 , CLIQUE 0,1  and ( ) [ ]( )22

5
CLIQUE 0,1 .                    

4. Fixed Sets of the IMSs Corresponding to the Self-Similar Networks  
Firstly, it can be easily checked that if∗ , if ∗  and iif  are Banach-type contractions in 2  and there exists a 
unique fixed point for all of these functions, where [ ]20,1x∈ . 

Secondly, as we showed in Theorem 1, the thk  iteration of if∗  and if ∗  can be easily described using a bit 
modified version of the Cantor set. 

It is well known that the iterations of the classical Cantor set can be described with the ternary numeral  

system and we characterized the iterations of [ ]( )20,1n∗  and [ ]( )20,1n∗  in the numeral system based on  

the integer n. 
We showed that the th1k +  step of the Algorithm 1 connects the initial root and the peripheral nodes whose i 

index is in { }11, 2, , 1k k kn n n ++ + −  such that it’s form in the numeral system based on the integer n doesn’t 
contain neither the number 0. 

While the construction of the classical Cantor set adds little segments, which forms in the ternary numeral 
system don’t contain neither the number 2 our construction adds little squares whose form in the numeral system 
based on the integer n doesn’t contain neither the number 0. Based on these analogy we refer to n∗  and n∗  
defined on [ ]( )20,1  as Cantor type iterated multifunction systems. 

So, let us note unique the fixed set of [ ]( )20,1n∗  with nCantor∗  and the limit of [ ]( )20,1n∗  with  

nCantor ∗ , respectively. Moreover, nCantor ∗  is the the mirror of nCantor∗  projected to the first bisector of the 
xOy  plane. 

On the other hand, the fixed set of nn  is the whole segment between the ( )0,0  and (1,1)  points in 2 . 
Thus, we note this segment as xOyFB∠ , referring to the first bisector. 

Based on the presented modification of the Cantor set based on the numeral system based on the integer n we 
can characterize the fixed set of the IMSs ( )STAR n

 and ( )CLIQUE n
 using the nCantor∗  and nCantor ∗  

sets presented above. 
Theorem 3.  

( ) [ ]( )
1 1

21

0 0

1 1

0 0

1STAR 0,1 ,

1,

j

j

k n
k

nj j jn
j i

k n

nj j j
j i

i i Cantor
n n n

i i Cantor
n n n

+ −
+

∗
= =

+ −

∗
= =

    = +       
     +       







                    (7) 
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Proof. We know that n∗  and n∗  are constructed by Banach-type functions, so there exists a unique fixed 
set of them. We showed in the proof of Theorem 1 that the IMS constructed by these IFS can be easily described 
with a modification of the Cantor set. Thus, there exists a fixed set of ( )STAR n

. Moreover, the ( )( )STAR nFix  
can be constructed by infinite union of modified Cantor sets.                                        □ 

We constructed the IMS ( )CLIQUE n
 using the same n∗  and n∗  IFSs supplemented by the nn  

system. 
Theorem 4.  

( ) [ ]( )( ) ( ) [ ]( )( )2 2CLIQUE 0,1 STAR 0,1 .n nFix Fix=  

Proof. On [ ]20,1 , the thk  iteration of the IMS ( )CLIQUE n
 differs from ( )STAR n

 in adding k
nn  

without the th1k +  iteration of nn . Based on Equation (5) it is easy to check that the fixed set of ( )CLIQUE n
 

is equal with  

( ) [ ]( )( )
( ) [ ]( )( ) [ ]( ) [ ]( )2 2 2

CLIQUE 0,1

STAR 0,1 0,1 \ 0,1 .

n

xOy xOyn

Fix

Fix FB FB∠ ∠= 

 

Thus, the fixed set of ( ) [ ]( )2CLIQUE 0,1n  corresponds with ( ) [ ]( )( )2STAR 0,1nFix .                □ 

We characterized the fixed set of IMSs in function of parameter n. We used the Cantor set for describing 
these fixed sets, which we interpret as limit objects of graph sequences corresponding to self-similar networks. 
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