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Abstract 
 
In this paper, the He’s parameter-expanding method (HPEM) and the 4q-Boubaker Polynomials Expansion 
Scheme (BPES) are used in order to obtain analytical solutions to the non-linear modified Van der Pol’s os-
cillating circuit equation. The resolution protocols are applied to the ordinary Van der Pol equation, which 
annexed to conjoint delayed feedback and delay-related damping terms. The results are plotted, and com-
pared with exact solutions proposed elsewhere, in order to evaluate accuracy. 
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1. Introduction 
 
Originally, the Van der Pol’s equation was associated, in 
the 1920s, with an electrical triode-valve circuit (Figure 
1). In the last decades’ literature, it was the subject of 
several investigations due to the panoply of dynamical 
oddness as relaxation oscillations, elementary bifurca-
tions, quasiperiodicity, and chaos. Its application has 
already reached nerve pulse propagation and electric 
potential evolution across neural membranes. 

 

 

Figure 1. Van der Pol oscillator synoptic scheme. 

The actual study tries to give a theoretical supply to 
the recent attempts to yield analytical solutions to this 
equation, like the studies of D. D. Ganji et al. [1,2] and A. 
Rajabi et al. [3] in the heat transfer domain, the investi-
gations of L. Cveticanin [4] and J. H. He [5-7] on non- 
linear mechanics, fluid dynamics and oscillating systems 
modelling (Figure 2). 

 

 

Figure 2. A prototype of Van der Pol oscillating systems 
modelling (The two integrators are Trapezoidal-type  

  1 12k k k ky h u u y    ). 
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Among the different formulations, the well-known 
standard boundary value-free Van der Pol oscillator 
problem (BVFP) is given by F. M. Atay [8] by the fol-
lowing system (1): 
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where   is a positive parameter representing the delay, 
  > 0 and  is the feedback gain. k

A simpler formulation is that of W. Jiang et al. [9]: 
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In this study, an attempt to give analytical solution to 
the nonlinear second-order Van der Pol equation annexed 
to conjoint delayed feedback and delay-related damping 
terms as presented by A. Kimiaeifar et al. [10]: 
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2. Analytical Solutions Derivation 
 
2.1. The Enhanced He’s Parameter-Expanding 

Method (HPEM) Solution 
 
The resolution protocol based on the enhanced He’s pa-
rameter-expanding method (HPEM) is founded on the 
infinite serial expansions: 
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Substituting these expansions in the main equation 
Equation (3) and processing with the standard perturba-
tion method, it has been demonstrated [10] that a solu-
tion of the kind: 

   0 cosx t H t               (4b) 

where H ,   and   are constant, gives: 
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.2. The Boubaker Polynomials Expansion 

y-
nomials expansion scheme (BPES) [11-23]. The first 
step of this scheme starts by applying the 

(4c) 

with, as a final solution (Equation (4d)): 

2
Scheme (BPES)-Related Solution 

 
The resolution protocol is based on the Boubaker pol

expressions: 
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The main advantage of these formulations (Equations (4) 
and (5)) is the fact of verifying the boundary conditions in 

d1 N B t r

t stage of 
fact, due to the properties of the Boubaker polynomials
[12-18], and since 

Equation (3), at the earlies resolution protocol. In 
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By introducing expressions (4) and (6) in the system 
(3), and by majoring and integrating along the interval 
 0,1 ,  x t  is confined, through the coefficients 

01..k k N
 , to be a weak solution of the system: 
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The set of solutions 
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01, ,
k̂

k N


 
is the one which mini 

mizes, for given values of   and  the Minimum 
Square function 

(8) 

             (9) 

The condition expressed by Equation (9) ensures a 
non-zero solution to the system (8). The convergence of 
the algorithm is tested relatively to increasing values of 

e correspondent solutions are represented in Figure 
3 for the data gathered in Table 1, 
solutions  given by F. M. Atay [8] and A. Kimiaeifar et 
al
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along with the exact 

. [10]. It is noted that F. M. Atay [8] demonstrated that 
the presence of delay can change the amplitude of limit 
cycle oscillations, or suppress them altogether through 
derivative-like effects, while A. Kimiaeifar et al. [10] 

elded a highly accurate solution to the same classical 
Van der Pol equation with delayed feedback and a modi-
fied equation where a delayed term provides the damping. 
The features of the proposed solutions [8-10] (namely 
behavior at starting phase, first derivatives at limit time, 
etc.) are concordant with the actually proposed results. 
 

 
Figure 3. Analytical solutions plots. 

 
Table 1. Solution parameters values. 

Parameter Value 
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Figure 4. Mean absolute error versus N0. 
 
3. Results and Discussions 
 
The results show a good agreement between the pro-
posed analytical solutions (Figure 3) and those of the 
recent studies published elsewhere. The mean absolute 
error (for ) was less than 3.33% (Figure 4). 
The conve he BPES-related protocol has been 
recorded f s of superior to 30. 
 
4. Conclusions 
 
In this paper, we have used the enhanced He’s parame
ter-expanding Method (HPEM) along with th Boubaker 

olynom r to ob-
c periodical solutions. 
 acceptable agreement 

 into an 
istic nonlinear system. This simple 
duction is carried out through the 

 0 30N 
rgence of t
or the value 0N  

-
e 

ials Expansion Scheme (BPES) in ordeP
tain the Van der Pol’s characteristi

The obtained solutions were in
with those obtained from values of similarly performed 
methods. The typical periodical aspect of the oscillations, 
already yielded [2,10,24-27] by the enhanced He’s pa-
rameter-expanding method (HPEM) could be reproduced 
using a simple and convergent polynomial approxima-
tion. This method was based on an original protocol 

hich reduces the stochastic nonlinear systemw
equivalent determin
nd controllable rea

verification of the initial conditions, in the solution basic 
expression, prime to launching the resolution process. 

The results show that the methods are very promising 
ones and might find wide applications, particularly when 
exact solutions expressions are difficult to establish [28-34]. 
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