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Abstract 
Euclidian geometry pertained only to the artificial realities of the first, second and third dimen-
sions. Fractal geometry is a new branch of mathematics that proves useful in representing natural 
phenomena whose dimensions (fractal dimensions) are non-integer values. Fractal geometry was 
conceived in the 1970s, and mainly developed by Benoit Mandelbrot. In fractal geometry fractals 
are normally the results of an iterative or recursive construction using corresponding algorithm. 
Fractal analysis is a nontraditional mathematical and experimental method derived from Man-
delbrot’s Fractal Geometry of Nature, Euclidean geometry and calculus. The main aims of the 
present study are: 1) to address the dimensional imbalances in some texts on fractal geometry, 
proving that logarithm of a physical quantity (e.g. length of a segment) is senseless; 2) to define 
the modified capacity dimension, calculate its value for Koch fractal set and show that such defini-
tion satisfies basic demands of physics, before all the dimensional balance; and 3) to calculate 
theoretically the fractal dimension of a circle of unit radius. A quantitative determination of the 
similarity using the set of Koch fractals is carried out. An important result is the relationship be-
tween the modified capacity dimension and fractal dimension obtained using the log-log method. 
The text includes some important modifications and advances in fractal theory. It is important to 
notice that these modifications and quantifications do not affect already known facts in fractal 
geometry and fractal analysis. 
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1. Introduction 
Geometry is a branch of mathematics that concerns itself with questions of shape, size, relative position of fig-
ures and properties of space. The foundation of Euclidean geometry is a group of elementary notions and axioms. 
In Euclidean geometry, which has been posed in modern terms by David Hilbert [1], the elementary notions are 
the point, straight line and plane. His 20 axioms logically connect the elementary notions. In fractal geometry 
the elementary notions and axioms are not introduced. Instead, some basic notions are posed, the most important 
being the fractal set. These basic notions can be defined by means of mathematics. Using the Hausdorff (or ca-
pacity) dimensionformula, for every fractal set a fractal dimension can be calculated. We show that this value 
for the fractal dimension can be obtained using log-log method on a specific manner. The same method can be 
used for calculating the fractal dimension of nonfractal sets and natural objects as a problem of fractal analysis. 
Euclidian geometry relates to the artificial realities of the first, second and third dimensions. Fractal geometry is 
a branch of mathematics concerned with irregular patterns made of parts that are in some way similar to the 
whole. Unlike conventional geometry which is concerned with regular shapes and whole-number dimensions, 
fractal geometry deals with shapes that have non-integer or fractal dimensions. This geometry has proven to be a 
useful tool in analyzing various phenomena [2] since its meaning received a great deal of attention in many nat-
ural sciences and engineering. Now it has become widespread and multidisciplinary, and its applications have 
evolved into many disciplines. Compared to Euclidean geometry, which has a long history for more than 2000 
years, fractal geometry is very new. Mandelbrot’s famous book “The Fractal Geometry of Nature” was pub-
lished relatively recently, in 1982. Although conventional approaches based on Euclidean geometry can be well 
applied to describe regular geometries, it fails to describe the complex geometries. Fractal analysis consists of 
several methods (most of them being computer-based) useful to assign a fractal dimension and other fractal 
characteristics to a dataset in all areas of science. Although fractal geometry has been widely applied and used 
for quantitative morphometric studies of objects, mainly using fractal analysis and calculating the fractal dimen-
sions of sets of objects [3], there are still some unresolved issues that need to be addressed. Since some concepts 
of fractal geometry and fractal analysis are determined descriptively and/or qualitatively, this paper offers for 
some of them the more exact mathematical determination or explanation. Fractal geometry developed as a new 
geometry of nature [4]-[8] has been conceived with the aim to describe and evaluate the complexity and irregu-
larity of shapes and processes in nature [3]. Up to now fractal geometry and fractal analysis are used in diverse 
research areas [9]-[12]. The goal of fractal geometry is to provide a platform for the demonstration of the im-
portance of the fractal disciplines and to continuously explore the world of fractals not only in mathematics but 
also in sciences and technologies. One of the aims of the present paper is to show how fractal geometry gives 
rise to the fractal analysis confining our consideration to fractal sets and mathematics. 

2. Methods and Results 
2.1. The Geometrical Fractal Set 
In Fractal geometry the geometrical fractal set should be considered as an infinite ordered series of geometrical 
objects defined on a metric space. To determine a fractal set we need specify three things [2] [13] [14]: 1) the 
shape of a starting object; (the initiator), 2) the iterate algorithm enabling its iterative application on the initiator 
and then, repeatedly, on all obtained geometrical objects (the generators), and 3) the conditions which these ge-
nerators should satisfy, before all the properties of geometrical similarity (see Subsection 2.3). In that case, such 
geometrical object (generator) is called a prefractal [2] [4] [6]. The final result of such infinite procedure is the 
limit fractal or simply fractal [5] [8]. The initiator, prefractals and fractal represent the geometrical fractal set [13] 
[15].  

2.2. Koch Fractal Set 
Basic definitions and laws of fractal planimetry can be demonstrated on some classical fractal models [3] [13] 
such as Cantor dust, Sierpinski gasket, Koch triadic curves, Mandelbrot set, etc. For that purpose we chose the 
triadic (snowflake) Koch curve set. The sequential construction of the this set can begin with the initiator which 
is an equilateral triangle of the edges length r0 (Figure 1(a)). The iterate algorithm to generate the set of Koch 
curves (prefractals) consists of recursive reduction of the straight line segments (or the scales) by 1/3 exchang-
ing repeatedly the middle third of each side of the initiator, or a preceding generator, with two sides of a smaller,  

https://en.wikipedia.org/wiki/Mathematics


G. A. Losa et al. 
 

 
348 

 
(a)                    (b)                 (c) 

Figure 1. Koch fractal set. (a) Initiator-equilateral triangle, r0 is 
its side length; (b) The first stage of construction (z = 1), detail 
beyond the drawing is the corresponding generating element;  
(c) The second stage of construction (z = 2), detail beyond the 
drawing is the corresponding generating element.                     

 
equilateral triangle whose side is one-third the length of the previous side. The result after the first iteration (the 
stage of construction z = 1) is shown in Figure 1(b), and that after the second iteration (the stage of construction 
z = 2), in Figure 1(c). For the Koch prefractals, the length of a segment at the zth stage of construction (rz) and 
the number of segments at the same stage (Nz) are respectively, 

0 ; 3 4 .
3

z
z zz

r
r N= = ⋅                                     (1) 

2.3. Geometrical Similarity 
Similarity is a typical property of fractal sets. To define this concept we introduce a generating element of a ge-
nerator. A generator is usually made up of straight-line segments (for example, see Figure 1). A logical conca-
tenation of some segments of a generator can be thought of as the generating element [13] of a generator if the 
whole object can be completely built with such elements by their translations and/or rotations. For example, the 
drawing in Figure 1(b) can be subdivided into 3 generating elements, that in Figure 1(c) into 12 generating 
elements, and so on. In our example shown in Figure 1 the generators of the Koch prefractals, at the first and 
second stages of construction, have the generating elements made of four equal segments each, as shown as de-
tails below the drawings in Figure 1(b) and Figure 1(c). Two successive generating elements of two generators 
of a set of objects can be geometrically similar or not. According to the definition of similarity in Euclidean pla-
nimetry, two generating elements of the generators at stages z and z + 1 (say, those in Figure 1(b) and Figure 
1(c)) are similar to each other [16] if (1) the ratio of the measure of a segment of the generating element at stage 
z + 1 and the measure of the corresponding segment of the element at the stage z is constant for all pairs of cor-
responding segments (e.g., for the four pairs of segments of the two mentioned details in Figure 1) and for all z, 
and (2) the angles between the pairs of corresponding segments of the two generating elements are congruent. 

2.4. The Capacity Dimension 
Fractal dimension is a quantitative measure of morphological complexity of an object. There are many different 
definitions of fractal dimension [2]. Mandelbrot [8] thinks that the “plethora” of distinct definitions of the fractal 
dimension should be reduced to two: the similarity dimension and Hausdorff dimension. The similarity dimen-
sion is basic dimension related to all similar (fractal) sets but this dimension is not the subject of our study. The 
most important definitions are the Hausdorff and capacity dimensions [2]. These two dimensions are quite simi-
lar [2], but the Hausdorff dimension is rather sophisticated, being a subject of mathematical measure theory. The 
capacity dimension can be given by [2] 

( )log
lim .

1log

z

z

z

N
D

r

→∞

 
 
 =   
  
   

                                     (2) 



G. A. Losa et al. 
 

 
349 

Since the logarithm is defined only for dimensionless values (numbers), not for physical quantities like 1/r 
(where r is a length), we define the modified capacity dimension as: 
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where r0 is a reference scale [17] [18] (for example, r0 can be the length r0 of the scale of an initiator of the Koch 
set, Figure 1). The quantity r0 (Equation (1)) could be included into the definition of the capacity dimension 
(Equation (3)) because the ratio r0/rz in Equation (3) is a dimensionless quantity (a number). 

If we submit Equation (1) into the last definition (Equation (3)) and put z to tend to infinity, one can see that 
the expression in Equation (3) gives ( ) ( )log 4 log 3 1.262= :  
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Fractal dimension D is the main quantifier to measure complexity of a set of geometrical and natural objects. 
The larger the D, the higher the complexity of the set is. For example, since the fractal dimension of the Sier-
pinski set is ( ) ( )log 3 log 2 1.585= , it means that the last set is more complex than the Koch set (Equation (4)). 

2.5. Log-Log Method 
Considering Equation (3) it would be interesting to analyze a relation between Nz and rz of the Koch fractal set 
in a log-log coordinate system. If along the horizontal coordinate axis we put the values rz = 1/3z for 

0,1, 2,3,z =   (the value of r0 is set to 1for visual clarity) and along the vertical coordinate axis the values of 
3 4z

zN = ⋅  also for 0,1, 2,3,z =   and fit the power function to these data using Microsoft Excel software, the 
decreasing straight line graph shown in Figure 2 is obtained. The fitting power function is: 
 

 
Figure 2. Log-log method applied to the Koch construction (the beginning of the construction is shown in 
Figure 1). The fitting graph of relationship between the number of segments and segment sizes (in cm) is a 
decreasing straight line with the high coefficient of determination R2.                                                                    
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1.2623z zN r−= ⋅                                       (5) 

with the coefficient of determination R2 = 1. The fitting parameter is −1.262 which is equal to the negative frac-
tal dimension of the Koch fractal set already obtained using the formula for modified capacity dimension (Equa-
tion (3)). This procedure can be thought of as the log-log method. This method is also used in many other fractal 
techniques, particularly in computer-based ones.  

2.6. A Nonfractal Set 
Following the fractal methodology, we inscribe an equilateral triangle (as the initiator) in a circle of unit radius 
(Figure 3(a)) and state the following iterate algorithm: from the middle of each triangle side the normal is 
erected to the sections with the circle. These three sections are connected to the nearest vertices of the triangle 
sides forming a hexagon inserted in the circle (Figure 3(b)). The result of the next iteration (Figure 3(c)) is a 
dodecagon. The next polygons can be constructed using the same algorithm. Inspecting the details below the 
drawings in Figure 3(b) and Figure 3(c), which are the generating elements for these polygons (generators), it 
is obvious that they are not mutually similar since the angles between the corresponding segments of the gene-
rating elements are different. The condition of side ratios constancy (geometrical similarity) also fails. Namely, 
it is known that for a circle of unit radius: 

2
2 2 2 1 0.25n nr r= − − ⋅                                  (6) 

where rn is the side length of a regular polygon inserted in the circle, n is the number of sides of the polygon and 
r2n is the side length of the polygon with 2n sides. From this expression it is obvious that the ratio r2n/rn is not 
constant for every n (e.g., r6/r3 = 0.577, r12/r6 = 0.518 etc.), so that the class of such regular polygons inscribed 
in a circle cannot be considered as a set of prefractals. If n tends to infinity, the polygons tend to the circle, 
which is not a limit fractal. Therefore this set of regular polygons inscribed in a circle cannot be a fractal set. 

On the other hand, if we apply the log-log method to the data of the polygonal set obtained, a straight-line 
graph is again obtained (Figure 4). The equation of this graph is 

. 1.0275.814z zN r −= ⋅                                     (7) 

which is analogous to Equation (6). From this equation the fitting parameter −1.027 corresponds to the negative 
value of the fractal dimension D of the nonfractal set considered. This is the fractal dimension of a circle of unit 
radius (which is the limit object). Using the mass method Smith et al. [3] have measured the fractal dimension of 
a circle and found D = 1.02. Using mathematics (with no measurements) we found for a circle of unit radius a 
more precise value D = 1.027 (Equation (7)).  

2.7. Properties of Fractal and Nonfractal Sets 
The main properties of geometrical fractal sets are geometrical self-similarity and scale invariance. The object’s  

 

 
(a)                (b)                (c) 

Figure 3. Nonfractal set of regular polygons. (a) Initiator- 
equilateral triangle inscribed in a circle of unit radius; (b) 
The first stage of construction (z = 1) is a hexagon; the detail 
beyond the drawing is its generating element; (c) The second 
stage of construction (z = 2) is a dodecagon with the corres-
ponding generating element.                                                                    
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Figure 4. Log-log method applied to the set of polygons (Figure 3). The fitting graph is a decreasing straight line (see Fig-
ure 2 for comparison).                                                                                                                                       
 
property known as self-similarity was first coined by Mandelbrot [5]. It can be geometrical or statistical. A frac-
tal pattern is said to be geometrically self-similar if every small piece of an object resembles the whole object. 
This definition of the concept “geometrical self-similarity” should be quantified since small pieces that consti-
tute geometrical or natural objects are rarely copies of the whole object [14]. We have offered a more exact in-
terpretation of this descriptive definition introducing a generating element of a generator as a “small piece”. 
Therefore every fractal set (which must satisfy geometrical similarity) should satisfy the property of geometrical 
self-similarity since by definition every small generating element is always similar to any other large generating 
element.  

Scale invariance is a feature of objects or laws that they do not change if scales of length or other variables are 
multiplied by a common factor. For example, this common factor for the Koch fractal set is 1/3. If r0 is 1 cm 
(Figure 1(a)), the length of the segment in Figure 1(b) is 1/3 cm, that in Figure 1(c) is 1/9 cm, etc. This means 
that if we multiply the length of each segment of the generating element in Figure 1(b) by 1/3, the same but re-
duced generating element of the prefractal shown in Figure 1(c) will be obtained. Nonfractal sets cannot satisfy 
geometrical similarity and properties of fractal sets. 

2.8. A Fractal Set versus a Nonfractal Set 
We showed that Koch set is a fractal set because it satisfies the geometrical similarity. It means that the ratio 
rz+1/rz is the same for every z. If z tends to infinity, we obtained the limit fractal which cannot be drawn or im-
agined. Nevertheless this fractal exists because we calculated the fractal dimensions of the limit fractal using 
both the formula for modified capacity dimension (Equation (3)) and log-log method. In both cases we found a 
real and finite value D = 1.262. We conducted the same procedure using the set of polygons inscribed in a circle. 
Although the polygonal set is not a fractal set we calculated the fractal dimension of this limit object using the 
log-log method. In fact, we calculated the fractal dimension of the circle which corresponds to the limit object in 
which the set of polygons is inscribed. Besides, the initiator in Fractal geometry is included into the fractal itera-
tions as a part of prefractals while the starting object (the circle) in fractal analysis does not change its integrity 
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during iterations. 
The circle is a closed line, but the log-log method can be applied to any open line (Figure 5). We found that 

in Fractal geometry the values of segment lengths were strongly determined by the property of geometrical si-
milarity, while in the fractal analysis values and shapes of open lines are not restricted (Figure 5 and Figure 6). 
Fractal analysis represents a formation of Fractal geometry consisting in using log-log and others methods [3], 
and ignoring the property of geometrical similarity. Therefore we can use any set of regular polygons and al-
ways calculate the fractal dimension of the object in which these polygons are inscribed. For example, fractal 
analysis enables to calculate the fractal dimension of the border of any natural object (not of the set of objects) 
inscribing a set of straight lines of known and constant lengths along the object’s border and count the number 
of segments. These data in a log-log coordinate system give the fractal dimension of the natural object (coas-
tlines, borders between nations, dendrites of neurons etc.). This method has been the basis of the Richardson’s 
method of fractal dimension measurement of natural objects [19]. It may be opportune to underline that an unli-
mited extension of log-log coordinate system is not valid when natural and biological objects are investigated. 
As previously reported, the fractal dimension could be reliable evaluated within a defined scale interval, called 
“fractal window” [17] [18]. 

 

 
Figure 5. The fractal dimension of an open circle-like curved line. (a) The circle-like line considered, the length of a straight 
line segment is 1.5 cm, the bar is 1 cm; (b) Relation between N and r represented in a log-log coordinate system, the graph is 
a straight line whose exponent represents a negative value of the fractal dimension of the curve, R3 is the coefficient of de-
termination.                                                                                                      

 

 
Figure 6. The fractal dimension of an open wavy line. (a) The curved line considered, the length of a straight line segment is 
2.2 cm, the bar is 1 cm; (b) Relation between N and r, the graph is a result of application of the log-log method and re- 
presents a decreasing straight line whose exponent is a negative value of the fractal dimension of the curve in (a).                     
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2.9. Richardson’s Method 
The polygonal method needs a group of about ten printed copies of a considered line and in each of them in-
scribes different regular polygon (Figure 5 and Figure 6). This method is rather tedious and time-consuming. A 
simpler but still time-consuming method is presented in Richardson’s paper [20]. Richardson, as a physicist and 
Quaker, wondered if there are more wars between nations that share longer common border. Answering this 
question required measurement of the national borders lengths. To measure the length of the border drawn on a 
map of Atlas, he used as a ruler a divider having sharp points at the ends of both arms. For a given distance be-
tween the sharp points of the divider the total length of the border was given by the number of divider’s steps 
along the border multiplied by the divider step size.  

Since the length of a polygon’s segment (Figure 5 and Figure 6) is the same as the corresponding divider’s 
step size, all the measurements can be done on one printed line. We used this method when preparing Figure 
2(b), Figure 4(b), Figure 5 and Figure 6.  

The term fractal was introduced by Mandelbrot based on his paper on self-similarity [21]. In that paper, 
Mandelbrot cited previous work by Richardson [20] and noted that the diagrams presented in Richardson’s pa-
per lead to the conclusion that approximate length of the border between two nations can be given by the rela-
tionship [8] 

( ) 1 DL r F r −∝ ⋅                                        (8) 

where the value of the exponent D seems to depend upon the shape of the border chosen. Topology fails to dis-
criminate between different borders [8]. Since Equation (9) can be rewritten as 

( ) DL r r Fr−= ⋅                                        (9) 

it is obvious that the factor Fr−D corresponds to the number of divider’s steps. For a given r the border of smaller 
length has smaller number of steps (smaller F) in relation to a longer border of the same shape (the same D) 
which has larger number of steps (larger F).  

To Richardson, the D was a fitting parameter of no particular significance. Having in mind “unearthed” Rich-
ardson’s work in which he claimed that his lines’ slopes had no theoretical interpretation [8], Mandelbrot 
claimed that the exponent D should be interpreted as a fractal dimension. We find that among many fractal 
analysis techniques, only Richardson’s method enables correct calculation of the length of an object’s border or 
irregular line.  

3. Discussion 
When the physical or biological problem is stated in mathematical terms, dimensional balance should be a rou-
tine part of the solution of any problem. Exponents and logarithms must always be dimensionless [22]. When 
dimensioned quantities appear in exponents or in logarithms, they must be combined with the same dimensioned 
quantities so that their quotient or product is dimensionless [17] [18]. It seems that some of the authors do not 
take care of these facts. The problem is particularly distinct in defining the fractal dimensions in fractal geome-
try [2] [13] [23] [24]. One of the main aims of the present study is to define and discuss physically correct of 
modified capacity dimension. Bassingthwaighte et al. [2] noted that the capacity dimension tells us how much 
balls needed to cover the object when the size of the balls (r) decreases. In the analytical definition of capacity 
dimension there exists log (1/r). West and Deering [13] have defined the similarity dimension as the ratio of two 
logarithms log N/log (1/r). In defining the box-counting dimension Falconer [23] showed lower and upper box- 
counting dimension by the expression containing log δ where δ is the diameter of a corresponding set. Edger [24] 
also used log (1/r) in the definition of the upper box-counting dimension, where r is a diameter of the set. Rich-
ardson’s method of measuring the fractal dimension is robust with very high correlation coefficients but it is, at 
the same time, tedious and time-consuming. Therefore, the need for more handsome methods for that measure-
ment emerges. The conventional and most popular box-counting (computer-based) method is one suitable to 
measure the fractal dimensions of geometrical and natural objects. This method is commonly used among other 
fractal techniques [3]-[5]. Unfortunately, it seems that this method demonstrates some mistakes. Using this me-
thod we showed that the fractal dimension of a straight line segment is 0.927 not 1. The fractal dimension of a 
circle of the radius 1 cm obtained using purely mathematical method, is 1.027, while that measured using the 
box-counting method is larger than 1.15. The fractal dimension increases with the resolution of a figure and de-

http://en.wikipedia.org/wiki/Self-similarity
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pends on its position on the screen. We showed that Richardson’s method does not depend on these factors. 
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