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Abstract 
 
The objective of this contribution is to present expositive review content on currently available experimental 
tools/services/concepts used for most emerging field Wireless Sensor Network that has capability to change 
many of the Information Communication aspects in the upcoming era. Currently due to high cost of large 
number of sensor nodes most researches in wireless sensor networks area is performed by using these expe-
rimental tools in various universities, institutes, and research centers before implementing real one. Also the 
statistics gathered from these experimental tools can be realistic and convenient. These experimental tools 
provide the better option for studying the behavior of WSNs before and after implementing the physical one. 
In this contribution 63 simulators/simulation frameworks, 14 emulators, 19 data visualization tools, 46 test-
beds, 26 debugging tools/services/concepts, 10 code-updation/reprogramming tools and 8 network monitors 
has been presented that are used worldwide for WSN researches. 
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1. Introduction 
 
Wireless Sensor Networks (WSNs) employ a large 
number of miniature disposable autonomous devices 
known as sensor nodes to form the network without the 
aid of any established infrastructure. In a WSN, the indi-
vidual nodes are capable of sensing their environments, 
processing the information locally and sending it to one 
or more collection points through a wireless link. Re-
search activities in the area of WSNs need expositive 
performance statistics about scenario, systems, protocols, 
gathered data and applications. There are various expe-
rimental tools for fulfilling these requirements, someone 
are in practical use while others are in literatures. 

There are some highly cited research contributions that 
present comparative study of some simulators, testbeds, 
and other tools but this is just a little bit of an emerging 
broad area and also there is no any single literature that 
presents an extensive survey or review study on experi-
mental tools available for WSN research purposes.  The 
objective of this contribution is to present an extensive 
survey on experimental tools especially used for WSN 
research purposes that are based on various criteria, sce-

nario conditions, parameters and other factors, also pre-
senting the other relevant contents related to experimen-
tal tools, as well as focusing on the highly summarized 
pros and cons of mostly presented experimental tools 
with respect to WSNs. 

2. Simulators for Wireless Sensor Networks 

A simulator is a software that imitates selected parts of 
the behavior of the real world and is normally used as a 
tool for research and development. Depending on the 
intended usage of the simulator, different parts of the 
real-world system are modeled and imitated. The parts 
that are modeled can also be of varying abstraction level. 
Earlier simulators especially designed for WSN imitates 
the wireless media and the constraints nodes in the net-
work but currently sensor network simulators have a 
detailed model of the wireless media including effects of 
obstacles between nodes, while other simulators have a 
more abstract model. 

2.1. Necessity of Simulation 

The emergence of wireless sensor networks brought 
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many new emerging issues to network designers. Tradi-
tionally, the three main techniques for analyzing the per-
formance of wired and wireless networks are analytical 
methods, computer simulation, and physical measure-
ment. Due to many constraints imposed on sensor net-
works, such as energy limitation, decentralized collabo-
ration and fault tolerance, algorithms for sensor networks 
tend to be quite complex and usually defy analytical me-
thods that have been proved to be fairly effective for 
traditional networks. Furthermore, few sensor networks 
have come into existence, for there are still many un-
solved research problems, so measurement is virtually 
impossible [1]. It appears that simulation is the only 
feasible approach to the quantitative analysis of sensor 
networks. 
 
2.2. Limitations of the Simulation 
 
The challenge of developing, deploying, and debugging 
applications on the realistic environment will be unmet 
with simulations. Many of the current simulators are un-
able to model many essential characteristics of the real 
world. Simulations are based on common simplified as-
sumptions and these do not produce accurate results. The 
simulation results are only as good as the model and they 
are still only estimated or projected outcomes. Especially 
for wireless sensor networks simulation models do not 
capture the radio and sensor irregularity. In a research 
contribution [2] some issues are arises that really in-
fluencing the simulation results when simulators are di-
rectly used: 

The first one is that there should be an impact on si-
mulation results by operating system architecture on 
which simulator is installed and result would have been 
taken.  

The second one is that all of cases simulators use a 
simulated clock, which advances in constant increments 
of time. Constant increment of time is decided by time 
stamp of the earliest event. So we must replace simula-
tion clock with real system clock. 

The third one is that all simulators has its own proto-
col stack in its core (kernel) called simulator protocol 
stack. There are several problems in order to use a simu-
lator protocol stack as a real network protocol stack, such 
as most of the simulators have various redundant proto-
cols at various levels of simulator protocol stack to sup-
port other types of networks for example TCP/IP based 
networks, Wireless Mesh Networks, Mobile Ad hoc 
Networks etc. The simulator also includes different radio, 
mobility, and propagation models. So according to our 
view these unnecessary redundant components must be 
removed in order to use a simulator protocol stack as a 
real protocol stack for WSNs. 

The fourth one is that all simulators have its own ar-
chitecture and design objectives. We have not evaluated 
but we can say that these factors could also influence the 
simulation results. 
 
2.3. Type of Simulation 
 
Simulators either run as in an asynchronous mode, event 
triggered mode, or in synchronous mode, where events 
happen in parallel in fixed time slots [3]: 
• Synchronous Simulation: The synchronous simulation 

is based on rounds. At the beginning of each round, 
the simulators increments the global time by one unit. 
Then, it moves the nodes according to their mobility 
models and updates the connections according to the 
connectivity model. After that, the framework iterates 
over the set of nodes and performs these steps for 
each node.  

• Asynchronous Simulation: The asynchronous simula-
tion is purely event based. The simulator holds a list 
of message events and timer events, which is sorted 
by the time when these events should happen (arrival 
of message, execution of timer-handler). The simula-
tor repeatedly picks the most recent event and ex-
ecutes it. 

In general, the asynchronous simulation mode runs 
much faster than the synchronous mode. The main rea-
son lies in the fact that the synchronous simulation mode 
loops over all nodes and performs for each node the set 
of fixed steps even if most of the nodes may not do any-
thing at all. Whereas in asynchronous mode, only mes-
sage and timer events are processed and no unnecessary 
cycles are wasted.  
 
2.4. Categorization of Simulators 
 
In a research contribution WSN Simulators are catego-
rized [4] as: 
• Generic Network Simulators: Generic network simu-

lators simulate systems with a focus on networking 
aspects. The user of the simulator typically writes the 
simulation application in a high level language dif-
ferent from the one used for the real sensor network. 
Since the focus of the simulation is on networking the 
simulator typically provides detailed simulation of the 
radio medium, but less detailed simulation of the 
nodes.  

• Code Level Simulators: Code level simulators use the 
same code in simulation as in real sensor network 
nodes. The code is compiled for the machine that is 
running the simulator, typically a PC workstation that 
is magnitudes faster than the sensor node. Typically 
code level simulators are operating system specific 
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since they need to replace driver code for the sensors 
and radio chips available on the node with driver 
code that instead have hooks into the simulator. 

• Firmware Level Simulators: These simulators are 
based on emulation of the sensor nodes and the soft-
ware that runs in the simulator is the actual firmware 
that can be deployed in the real sensor network. This 
approach gives the highest level of detail in the simu-
lation and enables accurate execution statistics. This 
type of simulation provides emulation of micropro-
cessor, radio chip and other peripherals and simulation 
of radio medium. Due to the high level of detail pro-
vided by firmware level simulators, they are usually 
slower than code level or generic network simulators. 

In another research contribution [5], simulators have 
been classified into the following three major categories 
based on complexity: 
• Algorithm Level Simulators: Some simulators focus 

on the logic, data structure and presentation of the al-
gorithms. For example, AlgoSensim analyzes specific 
algorithms in WSNs, e.g. localization, distributed 
routing, flooding, etc. Shawn is targeted to simulate 
the effect caused by a phenomenon, improve scalabil-
ity and support free choice of the implementation 
model. Sinalgo offers a message passing view of the 
network, which captures well the view of actual net-
work devices.  

• Packet Level Simulators: Some simulators implement 
the Data Link and Physical Layers in a typical OSI 
network stack. The most popular and widely used 
network simulator NS-2 is not originally targeted to 
WSNs but IP networks. SensorSim is an extension to 
NS-2 which provides battery models, radio propaga-
tion models and sensor channel models. J-Sim adopts 
loosely-coupled, component-based programming 
model, and it supports real-time process-driven simu-
lation. GloMoSim is designed using the parallel dis-
crete-event simulation capability provided by PAR-
SEC.  

• Instruction Level Simulators: Some simulators model 
the CPU execution at the level of instructions or even 
cycles. They are often regarded as emulators. They 
compute the power of a particular sensor’s hardware 
platform in WSNs. TOSSIM simulates the TinyOS 
network stack at the bit level.  Atemu is an emulator 
that can run nodes with distinct applications at the 
same time. 

Several simulators exist that are either adjusted or de-
veloped specifically for wireless sensor networks. Here 
is a list presenting 63 simulators/simulation frameworks 
with their highly influential features related to WSNs: 
• Network Simulator [6,7] (specially higher versions, 

like NS-3) has been used to evaluate WSNs but the 
accuracy of results with lower versions (NS-2) are 

questionable since the MAC protocols, packet for-
mats, and energy models are very different from 
those of typical sensor network platforms. NS-3 is a 
discrete-event network simulator for Internet systems. 
NS-3 is a new simulator (not backwards-compatible 
with NS-2). 

• Mannasim (NS-2 Extension for WSNs) [8] is a wire-
less sensor networks simulation environment based 
on the NS-2. Mannasim extends NS-2 introducing 
new modules for design, development and analysis of 
different WSN applications. Having Script Generator 
Tool (SGT) for TCL script creation. 

• TOSSIM [9,10] is a TinyOS mote simulator which is 
useful for testing both the algorithms and implemen-
tations; however it does not simulate the physical 
phenomena that are sensed. 

• TOSSF [11] is very similar to, and inspired by TOS-
SIM. TOSSF addresses the limitations of TOSSIM 
but one limitation of TOSSF is that it no longer simu- 
lates the devices as accurately as TOSSIM. 

• PowerTOSSIMz [12] is a power modeling extension 
to TOSSIM. PowerTOSSIM accurately models power 
consumed by TinyOS applications, i.e. efficient power 
simulation for TinyOS applications. 

• ATEMU [13] is a Sensor Network Emulator/Simu- 
lator/Debugger. The primary strength of ATEMU is 
that it is most accurate simulator for a particular 
hardware platform. Conversely, the main limitation of 
ATEMU is its dependence on the Mica-2 Mote hard-
ware architecture. 

• COOJA [14] is a Contiki OS simulator which allows 
for cross-level simulation. It is a novel type of wire-
less sensor network simulation that enables holistic 
simultaneous simulation at different levels. In 
COOJA one simulation can contain nodes from sev-
eral different abstraction levels. These are the net-
work level, the operating system level, and the ma-
chine code level. 

• GloMoSim (Global Mobile Information Systems Si-
mulation) [15] suffers the same problems as NS, i.e., 
the packet formats, energy models, and MAC proto-
cols are not representative of those used in WSNs. 
While GloMoSim has been used to evaluate WSNs 
but the accuracy of results is questionable. 

• QualNet [16] is the commercial version of GloMo-
Sim with upgraded features such as, providing a 
comprehensive environment for designing protocols, 
creating and animating experiments, and analyzing 
the results of those experiments. 

• SENSE [17] does not support sensors, physical phe-
nomena, or environmental effects. Overall, the MAC 
protocol support and radio propagation make SENSE 
less than ideal for accurate evaluation of WSNs re-
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search. 
• VisualSENSE [18] is a good framework but it does 

not provide any protocols above the wireless medium, 
nor sensor or physical phenomena other than sound. 

• AlgoSenSim [19] is a framework used to simulate 
distributed algorithms. It is not protocol stack 
oriented but algorithm oriented. It focuses on network 
specific algorithms like localization, distributed 
routing, flooding etc. AlgoSenSim is easily modularly: 
It uses XML configuration file. It is efficiency 
oriented, but optimizations are hidden to the user. 
AlgoSenSim’s main purpose is to facilitate the im-
plementation and quality analysis of new algorithms. 

• Georgia Tech Network Simulator (GTNetS) [20] is a 
full-featured network simulation environment that al-
lows researchers in computer networks to study the 
behavior of moderate to large scale networks, under a 
variety of conditions. The design philosophy of 
GTNetS is to create a simulation environment that is 
structured much like actual networks are structured. 

• OMNet++ [21] [22] is an extensible, modular, com-
ponent-based C++ simulation library and framework, 
with an Eclipse-based IDE and a graphical discrete 
event simulator. 

• Castalia [23] is OMNet++ Extension for WSNs and 
can be used by researchers and developers who want 
to test their distributed algorithms and/or protocols in 
realistic wireless channel and radio models, with a 
realistic node behavior especially relating to access of 
the radio. Castalia can also be used to evaluate dif-
ferent platform characteristics for specific applica-
tions, since it is highly parametric, and can simulate a 
wide range of platforms. 

• J-Sim (formerly JavaSim) [24] is a truly platform- 
neutral, component-based, compositional simulation 
environment. J-Sim provides support for sensors and 
physical phenomena. Energy modeling, with the ex-
ception of radio energy consumption, is also appro-
priate for sensor networks. However, the only MAC 
protocol provided for wireless networks is IEEE 
802.11. Therefore, accuracy of simulations still suf-
fers. 

• JiST/SWANS (Java in Simulation Time/Scalable 
Wireless Ad hoc Network Simulator) [25]: JiST is a 
high-performance discrete event simulation engine 
that runs over a standard Java virtual machine. It is a 
prototype of a new general-purpose approach to 
building discrete event simulators, called virtual ma-
chine-based simulation. SWANS is a scalable wire-
less network simulator built atop the JiST platform. 
Its capabilities are similar to NS-2 and GloMoSim but 
are able to simulate much larger networks. 

• JiST/SWANS++ [26] is an extended version of JiST/ 

SWANS provides more realistic and meaningful si-
mulation results. 

• Avrora [27] is a cycle-accurate instruction level sen-
sor network simulator which scales to networks of up 
to 10,000 nodes and performs as much as 20 times 
faster than previous simulators with equivalent accu-
racy, handling as many as 25 nodes in real-time. 
Avrora’s ability to measure detailed time-critical 
phenomena can shed new light on design issues for 
large-scale sensor networks. 

• Sidh [28] is a simulator specifically designed for 
WSNs. Sidh is efficient; it scales to simulate net-
works with thousands of nodes faster than real-time 
on a typical desktop computer. It is component based 
and easily reconfigurable to adapt to different: levels 
of simulation detail and accuracy; communication 
media; sensors and actuators; environmental condi-
tions; protocols; and applications. 

• Prowler [29] is a probabilistic wireless sensor net-
work simulator. Prowler is written in MATLAB and 
also running under MATLAB thus providing an easy 
way of application prototyping with nice visualization 
capabilities. 

• (J) Prowler [30] is a discrete event simulator similar 
to Prowler but written in Java. The simulator supports 
pluggable radio models and MAC protocols and mul-
tiple application modules. Currently two radio models 
are implemented: Gaussian and Rayleigh, and one 
MAC protocol: Mica-2 with no acknowledgment. 
Though it could be modified to simulate more general 
systems. It does not provide support for sensors or 
physical phenomena. 

• LecsSim [31] is a simulator for large wireless net-
works provides an easy way to simulate distributed 
algorithms in wireless networks. It includes propaga-
tion models, modules for common node functionality 
and documentation. 

• OPNET [32] is slightly different from NS and Glo-
moSim, it supports the use of modeling different 
sensor-specific hardware, such as physical-link tran- 
sceivers and antennas. It can also be used to define 
custom packet formats. OPNET suffers from the 
same object-oriented scalability problems as NS. 

• SENS [33] is a component-based simulator with four 
main components: application, network, physical, and 
environment. The former three components make up 
the sensor node. SENS is less customizable than any 
other simulator, providing no opportunity to change 
the MAC protocol, along with other low level net-
work protocols. 

• EmStar/Em* [34,35] is a software environment for 
developing and deploying complex WSN applications 
on networks of 32-bit embedded Microserver plat-
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forms, and integrating with networks of Motes. EmS-
tar consists of libraries that implement mes-
sage-passing IPC primitives, tools that support simu-
lation, emulation, and visualization of live systems, 
both real and simulated, and services that support 
networking, sensing, and time synchronization. 

• EmTOS [34,35] is an extension to EmStar. It can be 
used either for deployment or simulation of WSNs. It 
enables a complete NesC/TOS app to run unmodified 
under EmStar. 

• SenQ [36] is an accurate and scalable evaluation 
framework for sensor networks that integrates sensor 
network operating systems with a very high-fidelity 
simulation of wireless networks such that sensor 
network applications and protocols can be executed, 
without modifications, in a repeatable manner under a 
diverse set of scalable environments. SenQ extends 
beyond the existing suite of simulators and emulators 
in four key aspects: it supports emulation of WSN 
applications and protocols in an efficient and flexible 
manner; it provides an efficient set of models of di-
verse sensing phenomena; it provides accurate mod-
els of both battery power and clock drift effect which 
have been shown to have a significant impact on 
sensor network studies; and finally it provides an ef-
ficient kernel that allows it to run experiments that 
provide substantial scalability in both the spatial and 
temporal contexts. 

• SIDnet-SWANS [37] is a simulation-based environ-
ment that enables run-time interactions with the net-
work for the purpose of observing the behavior of al-
gorithms protocols in the presence of various condi-
tions such as phenomena fluctuations, or a sudden 
loss of service both at an individual node, as well as a 
collection of nodes. 

• SensorSim [38] is a simulation framework that inhe-
rits the core features of traditional event driven net-
work simulators, and builds up new features that in-
clude ability to model power usage in sensor nodes, 
hybrid simulation that allows the interaction of real 
and simulated nodes, new communication protocols 
and real time user interaction with graphical data dis-
play. 

• Shawn [39] is a discrete event simulator for sensor 
networks. Due to its high customizability, it is ex-
tremely fast but can be tuned to any accuracy that is 
required by the simulation or application. 

• SSFNet (Scalable Simulation Framework) [40] is a 
command-line-based simulator. Accordingly, the rea-
lization of specific application scenarios and the user 
interaction is difficult. SSFNet focuses on static ap-
plication scenarios. An important feature of SSFNet 
is the possibility to parallelize the simulation. This 

speedup enables the analysis of large scale network 
behaviour. Both toolkits are limited to a single com-
munication interface per node. 

• Atarraya [41] simulator is specifically focused on the 
evaluation of topology control protocols in WSNs. 

• NetTopo [42] is a research oriented sensor network 
simulator. NetTopo has the functions of general sen-
sor networks but specially reflects the research results 
of following: Streaming Data Gathering and Topolo-
gy Prediction in WSNs within Expected Lifetime, 
Reward Oriented Packet Filtering Algorithm for He-
terogeneous Sensor Networks, VIP Bridge: Integrat-
ing Several Sensor Networks into One Virtual Sensor 
Network, Transmitting Streaming Data in Wireless 
Sensor Networks with Holes and many more. 

• WiseNet [43] is a software simulator that can be very 
useful to carefully plan and select the right type of 
motes and sensors in a cost-effective manner. WiSe-
Net simulates random distribution of sensors. Through 
repeated experimentation it is possible to arrive at an 
optimal spatial configuration of the sensors that is 
most effective for a given application. WiSeNet also 
allows the wireless range of a sensor to be varied and 
study the effects on the application. 

• SimGate [44] is a full-system simulator for the Intel 
Stargate, intermediate-level, resource-constrained, 
sensor network device. 

• SimSync [45] is a time synchronization simulator for 
wireless sensor networks. SimSync models the dis-
tribution of packet delay and the frequency of crystal 
oscillator as Gaussian. 

• SNetSim [46] is event-driven simulation software for 
WSNs running on Windows based operating systems. 

• SensorMaker [47] is a simulator for wireless sensor 
networks. It supports scalable and fine-grained in-
strumentation of the entire sensor networks. 

• TRMSim-WSN (Trust and Reputation Models Simu-
lator for Wireless Sensor Networks) [48] is a Ja-
va-based simulator aimed to test trust and reputation 
models for WSNs. 

• PAWiS [49] is a simulation framework for WSN that 
provides functionality to simulate the network nodes 
with their internal structure as well as the network 
between the nodes. One main feature is the contem-
poraneous simulation of the power consumption of 
every single node. The framework is based on the 
discrete event simulator OMNeT++. The user defined 
model (expressed with C++ classes) is compiled to an 
executable simulator. 

• OLIMPO [50] is a discrete-event simulator for WSN, 
designed to be easily reconfigured by the user, pro-
viding a way to design, develop and test communica-
tion protocols. 
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• DiSenS (Distributed SENsor network Simulation) [51] 
is a complete scalable and extensible distributed si-
mulation system for sensor networks, which provides 
a cycle-accurate device emulator that is extendable by 
various fidelity-enhancing models (radio, power etc.) 
for tunable simulation accuracy. A key distinguishing 
feature of DiSenS is that it is implemented for distri-
buted-memory parallel cluster systems. 

• WISDOM [52] simulator is written in Java and uses 
the recursive porous agent simulation toolkit (Repast) 
O as the simulation engine to perform discrete 
event-driven simulations. WISDOM can be to simu-
late and verify middleware services for routing, sens-
ing activity scheduling, group formation and man-
agement, target detection and tracking, and collabora-
tive classification and fusion in a wireless sensor 
network. The versatility and performance of WIS-
DOM for middleware service protocol development 
and evaluation have proven to be valuable. 

• Sinalgo [3] is a simulation framework for testing and 
validating network algorithms for WSN. Unlike most 
other network simulators, which spend most time si-
mulating the different layers of the network stack, 
Sinalgo focuses on the verification of network algo-
rithms, and abstracts from the underlying layers: It 
offers a message passing view of the network, which 
captures well the view of actual network devices? 

• Sensoria [53] is a fully fledged simulator for WSNs 
that has considerable differences to all other existing 
simulators. Sensoria is very powerful in simulating a 
range of small to large scale WSNs based on a simple 
and complete Graphical User Interface (GUI). Senso-
ria's GUI allows users to design various simulation 
scenarios and display the simulation results graphi-
cally with many formats. Sensoria is a component- 
based simulator and it can be easily reconfigured to 
adapt to different levels of simulation details and ac-
curacy. 

• Capricorn [54] is a large-scale discrete-event wireless 
sensor network simulator developed at Wayne State 
University. 

• H-MAS (a Heterogeneous, Mobile, Ad-hoc Sen-
sor-Network Simulation Environment) [55] provide a 
convenient platform on which to evaluate a variety of 
MAS (Mobile Ad-hoc Sensor nets) configurations at 
the physical, medium access, network, and applica-
tion layers, and to extract meaningful design rules 
from the experimental data. Also provide an intuitive 
visualization that can give insight to the design engi-
neer and casual observer alike. 

• Stargate Simulator (starsim) [56] is a full-system si-
mulator for Stargate, the XScale-based gateway de-
vice for WSN. It also boots original Linux image 

from xbow. It also features an XScale pipeline simu-
lator to provide cycle estimation. 

• Mote simulator (motesim) [56] is a full-system, 
cycle-accurate simulator for Mica-2 and Mica-Z 
motes. It runs with original TinyOS binaries. 

• SNSim [57] is a prototype software tool, designed to 
support the balance the lifetime of a WSN and the 
quality of data (QoD) that is sampled and processed. 
Including elements of power consumption characte-
ristics and built to mimic real performances of Mica 
motes (both in data transfer rate and power consump-
tion - on/off modes), this graphical interface tool is 
created towards investigating various aspects of de-
velopment, as well as building applications/simu- la-
tions for such networks. Both SNSim and its event 
driven simulation engine are written in Java, which 
offers an enhanced portability and efficiency of de-
velopment time. 

• SNIPER-WSNSim [58] is a less known simulator that 
is specifically designed for WSNs and benefits from 
the richness of the .Net framework 3.5 and from the 
portability of the C# language. It is a graphical inter-
face based simulator that deals with particular sector 
of WSN development such as sensor nodes distribu-
tion, routing protocols and clustering. 

• SNAP [59] is defined as an integrated hardware si-
mulation and deployment platform. It is a micropro-
cessor that can be used in two ways: as the core of a 
deployed sensor or as a part of an array of processors 
that performs parallel simulation. Again, “real” code 
for sensors can be simulated. By combining arrays of 
SNAPs (called Network on a Chip), it is claimed to 
be able to simulate networks on the order of 100,000 
nodes. 

• SimPy [60] is a bare simulation written in Python. In 
SimPy, the basic simulation entities are processes. 
They are executed in parallel and may exchange Py-
thon objects among each other. Most processes in-
clude an infinite loop in which the main actions of the 
process are performed. Besides abstractions for 
processes and the related exchange of objects, SimPy 
provides instructions for the synchronization of si-
mulation processes and commands for the monitoring 
of simulation data. Unlike the other simulators, there 
is no public available network models exist for it. 

• Mule [61] is a hybrid simulator that combines the 
ease of debugging multiple simulated motes on a host 
PC with high fidelity of message transmission and 
sensor data acquisition of physical motes. 

• CaVi [62] provides a uniform interface to state-of- 
the-art simulation methods and formal verification 
methods for WSN. Due to the probabilistic behavior 
of WSNs systems, however, the simulation covers 
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only a small fraction of all possible behaviors. Formal 
model checking techniques, based on Markov Deci-
sion Processes, use less detailed and more abstract 
models and compute exact probabilities and expected 
values for the entire behavior, where simulation can 
only give averages. It allows for creating a single 
model for simulation, Monte-Carlo simulation, and 
model checking. 

• Ptolemy [63] is a discrete event simulator and a de-
sign tool for concurrent, real time, embedded systems. 
It could be used to simulate WSNs. In fact Visual-
Sense, which is a framework built on top of Ptolemy, 
is intended to assist researchers in the design, visua-
lization and simulation of wireless sensor networks. 
In Visual Sence sensor nodes could be defined using 
either the discrete event blocks or the continuous time 
and real time blocks available on Ptolemy. In addition, 
the sensor nodes could also be written in Java to meet 
specific needs. 

• Maple [64] is a simulator which allows researchers 
and WSNs developers to focus on particular aspects 
such as sensor nodes distribution and WSNs lifetime 
estimation. Moreover, the parallel processing capabil-
ity presents an important feature for further distri-
buted simulations. Furthermore, the intuitive and 
convivial user interface makes the simulator accessi-
ble for the average users while being flexible and 
scalable for improvements for advanced users. 

• WISENES (Wireless Sensor Network Simulator) [65] 
simulates high level WSN protocol and application 
designs and provides accurate information about their 
performance in a real environment. The WISENES 
framework implements models for transmission me-
dium (for modeling wireless communications), sens-
ing channel (for physical phenomena) and nodes (for 
physical node platforms). The designer selects the 
protocols from the library or implements new ones in 
SDL and integrates them to the WISENES frame-
work. The framework components and node proto-
cols communicate using SDL signals. A node model 
can be dynamically instantiated separately for each 
simulated node. Thus, virtually any number of nodes 
can be simulated simultaneously. 

• WSNet-Worldsens and WSim [66]: WSNet is an 
event driven, large scale wireless sensor network si-
mulator. WSNet uses models for applications, proto-
cols and radio medium communication with a para-
meterized accuracy. WSim can be connected to 
WSNet, in place of the application and protocol mod-
els used during the high level simulation to achieve a 
full distributed application simulation. WSNet and 
WSNet+WSim allow a continuous refinement from 

high level estimations down to low level real-time 
validation. 

• LSU Sensor Simulator [67] is a framework for simu-
lating WSNs. It is a customizable and extendible si-
mulator, which allows testing and analyzing software 
for WSNs. The users can subclass the framework 
classes and customize the behavior of various net-
work layers. This sub classing gives a way to the de-
velopers and an opportunity to analyze and investi-
gate phenomenological, networking, robustness and 
scaling issues, to explore arbitrary algorithms for dis-
tributed sensors, independent of hardware constraint. 

• WSNGE [68] is a flexible and extensible environ-
ment that provides a highly scalable simulator with 
unique characteristics such as: focuses on user friend-
liness, providing every function in both scriptable and 
visual way, allowing the researcher to define simula-
tions and view results in an easy to use graphical en-
vironment. Unlike other solutions, WSNGE does not 
distinguish between different scenario types, allowing 
multiple different protocols to run at the same time. It 
enables rich online interaction with running simula-
tions, allowing parameters, topologies or the whole 
scenario to be altered at any point in time. 

• TikTak [69] is a scalable simulator for WSNs includ-
ing hardware/software interaction. Specifically allows 
the design exploration and the complete micropro-
cessor-instruction-level debug of network formation, 
data congestion, nodes interaction, all in one simula-
tion environment. An innovative feature is the 
co-emulation of selected nodes at 
clock-cycle-accurate hardware processing level, al-
lowing code debug and exact execution latency eval-
uation (considering both protocol stack and applica-
tion), together with other nodes at abstract protocol 
level, meeting a designer’s needs of simulation speed, 
scalability and reliability. The simulator is centered 
on the Zigbee protocol and can be retargeted for dif-
ferent node micro-architectures. 

 
3. Emulators for Wireless Sensor Networks 
 
As a networked embedded system, a WSN application 
involves sensor node hardware, its drivers, operating 
systems, and networking protocols. As a result, the per-
formance of the WSN application depends on all of these 
factors in addition to its implementation. An emulator is a 
special type of simulator whose aims is to enable realistic 
performance evaluation for WSN applications. Emulation 
environment or emulators are good choice, in which WSN 
applications can be directly run for testing, debugging, 
and performance evaluation. Additionally, studies on the 
lower layers (e.g., hardware drivers, OS, and networking) 
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as well as cross-layer techniques can also be done in this 
environment by plugging the target modules into the 
emulator. For example, emulators can compute the power 
of a particular sensor’s hardware platform in WSNs 
[70,71]. 

Here is a list which presents 14 emulators with their 
highly vital features related to WSNs: 
• VMNET (Virtual Mote Network) [70,71] has a highly 

modularized architecture for assembling virtual 
hardware components. Target WSN is emulated as a 
virtual mote network. The CPU of a mote (sensor node) 
is emulated at the CPU clock cycle level, and the 
sensing units and other hardware peripherals are also 
emulated in sufficient detail. The radio signal trans-
mission is emulated by the communication between 
VMs with the effects of signal loss and noise. More-
over, VMNet takes parameter values from the real 
world and logs detailed running status of application 
code. As a result, the binary code of the target WSN 
application can be run directly on the VMN, and the 
application performance, both in response time and in 
power consumption, can be reported realistically in 
VMNet. 

• ATEMU [13] is a sensor network emulator/simu- 
lator/debugger for AVR processor based systems. 
Along with support for the AVR processor, it also in-
cludes support for other peripheral devices on the 
Mica-2 sensor node platform such as the radio. Atemu 
can be used to perform high fidelity large scale sensor 
network emulation studies in a controlled environment. 
The atemu emulator core can simulate arbitrary num- 
bers of nodes and can model their execution and in-
teractions between them, such as radio communica-
tions in extremely fine detail. It offers nearly complete 
emulation of the Mica-2 hardware platform and as a 
result provides results that are closer to real life oper-
ation of a distributed sensor network. The only dif-
ference between running an actual network of the 
Mica-2 sensor nodes and emulating it in Atemu is the 
operation of the “air”. 

• Emstar [34,35] is a programming model and software 
framework for creating Linux-based sensor network 
applications that are self configuring, reactive to dy-
namics, and can either be interactively debugged or 
operate without user interaction. The goal of EmStar is 
to facilitate a more direct interaction with underlying 
modules by doing away with strict layering, but in a 
way that does not sacrifice very much modularity or 
layers of conceptual abstraction. The EmStar execu-
tion environment makes code easier to debug. The 
same code and configuration can be run on real nodes 
(either using low-power radios such as motes, or 
802.11), as a pure simulation, or in a hybrid mode that 

combines processing done in simulation and commu-
nication, sensing, and actuation on real (physical) 
channels. The same source code can be used in any of 
these modes without changes. Developers can seam-
lessly iterate between simulation and reality. 

• TOSSIM [9,10]: Initially, work on TinyOS was very 
low level, exploring things such as media access, 
sensor filtering, and timer implementations. The initial 
design of TOSSIM was focused on this work: it si-
mulates every bit of the Mica platform radio i stack. 
As this work was matured, more and more effort has 
been spent on higher layers, such as complex applica-
tions. In order to support developers of these larger 
systems, TOSSIM currently implementing a packet- 
level simulation for the Mica-2 platform. The chal-
lenge is to capture all of the issues and problems that 
can arise in communication (timing, packet corruption, 
MAC) while remaining efficient. 

• AvroraZ/Avrora [27]: AvroraZ, is an extension of the 
Avrora emulator - the AVR Simulation and Analysis 
Framework―which allows the emulation of the Atmel 
AVR microcontroller based sensor node platforms 
with IEEE 802.15.4 compliant radio chips thus al-
lowing emulation of sensor nodes such as Crossbow's 
Mica-Z. AvroraZ is based on design, implementation 
and verification of several extensions to Avrora such 
as address recognition algorithm, indoor radio model, 
clear channel assessment (CCA) and link quality in-
dicator (LQI) of the IEEE 802.15.4 standard. 

• Freemote [72] emulator is a lightweight and distri-
buted Java based emulation tool for developing WSN 
softwares. The objective of this platform is to support 
the emerging Java based Motes based on optimized 
JVM (for example, Squawk, Sentilla Point) and plat-
forms (for example, Java Cards, SunSPOT). The Free- 
mote emulator focuses on behavior credibility by 
mixing emulated nodes and real nodes reachable 
through a specialized bridge rather than on time based 
performance evaluation accuracy. This emulator splits 
the Software architecture of a Mote in three indepen-
dent layers connected through well defined interfaces 
(Application, Routing and Data Link and Physical). 
Freemote is a fully configurable WSNs emulator. It 
can easily be used to develop new algorithms for 
WSNs but is also capable to support large scale expe-
riments (up to 10,000 nodes) including all kind of real 
nodes based on the IEEE 802.15.4 communication 
standard. It also allows the developer following the 
behavior of WSNs and debugging tricky implementa-
tion problems. 

• EmPro [73] is an environment/energy emulation and 
profiling system for WSNs. It accurately outputs 
electrical signals to emulate not only digital and ana-
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log inputs to the sensors but also the power sources as 
well as RF attenuation according to pre-programmed 
sequences. This emulation approach enables re-
searchers to run the networked sensors in real-time in a 
realistic manner with full controllability and reprodu-
cibility. EmPro in profiling mode can also capture the 
observable behavior of WSNs for detailed analysis. 
Experimental results on the Eco and Mica-2 WSN 
platforms show that EmPro can drive these hardware 
systems in real-time with high accuracy. 

• NetTopo [42]: With respect to the simulation module, 
users can easily define a large number of on-demand 
initial parameters of sensor nodes, e.g. residential 
energy, transmission bandwidth, and radio radius. 
Users also can define and extend the internal 
processing behavior of sensor nodes, such as energy 
consumption, bandwidth management. It allows users 
to simulate extremely large scale heterogeneous net-
works. Since the sensor node attributes and internal 
operations are user definable, this feature guarantees 
that the simulated virtual nodes have the same prop-
erties with those of real sensor nodes. The sensed data 
captured from the real sensor nodes can drive our si-
mulation in a pre-deployed virtual WSN. Additionally, 
topology layouts and algorithms of virtual WSN are 
customizable and work as user-defined plug-ins, both 
of which can easily match the corresponding topology 
and algorithms of real WSN testbed. 

• OCTAVEX [74] wireless sensor framework is de-
signed to assist end users, systems integrators, soft-
ware developers, and OEMs (Original Equipment 
Manufacturers) in the deployment and management of 
WSNs. The framework provides a backbone for WSN 
applications while taking an approach that is hardware 
and standards agnostic, allowing the user to implement 
an end to end solution quickly, easily and at a much 
lower cost than developing one in-house. It is able to 
simultaneously support any number of sensor points 
using different types of wireless protocols (including 
mesh networks like Zigbee, Wireless HART, point to 
point RF sensors, Bluetooth, WiFi, RFID tags). The 
framework captures incoming sensor data at the 
OCTAVEX Universal Gateway. Once the data comes 
into the framework, the OCTAVEX Core Services 
provide built in business logic such as archiving, re-
porting, alerting and trending. Through Web Services 
and software APIs, the OCTAVEX Framework can be 
easily integrated into other enterprise applications, 
building automation systems, or industrial process and 
control systems. 

• SENSE [17] does not support sensor’s physical phe-
nomena, or environmental effects. Overall, the MAC 
protocol support and radio propagation make SENSE 

less than ideal for accurate evaluation of WSNs re-
search. 

• UbiSec&Sens [75] will also prototype implementa-
tions on emulators and on actual sensor networks. 

• Emuli [76] is a method of effectively substituting 
sensor data by synthetic data on physical wireless 
nodes (motes). That is, a method of emulating sensor 
stimuli of sensors. Emuli implements a model of a 
sensor behavior. In contrast to the earlier ap-proaches, 
does not record and play back spot measurements. In-
stead, Emuli stores the model parameters. This results 
in a rather compact data memory footprint and a 
convenient and flexible sensor model. Emuli is d e-
signed to increase the capability of sensor testbeds and 
other de-ployments to experiment with environment 
sensing and monitoring. 

• MSPSim [77] is a Java-based instruction level emu-
lator of the MSP430 series microprocessor and emu-
lation of some sensor networking platforms. Supports 
loading of IHEX and ELF firmware files, and has 
some tools for monitoring stack, setting breakpoints, 
and profiling. 

• MEADOWS [78] is a software framework for mod-
eling, emulation, and analysis of data of wireless 
sensor networks. This software framework is moti-
vated by the unique need of intertwining modeling, 
emulation, and data analysis in studying sensor data-
bases. 

 
4. Data Visualization Tools for Wireless 

Sensor Networks  
 
With the increase in applications for sensor networks, 
data manipulation and representation have become a cru-
cial component of sensor networks. The data gathered 
from WSNs is usually saved in the form of numerical 
form in a central base station. There are many programs 
that facilitate the viewing of these large amounts of data. 
These special programs are called data visualization tool 
for WSNs. Visualization tools can support different data 
types, and visualize the information using a flexible mul-
ti-layer mechanism that renders the information on a 
visual canvas. 

Here is a list presenting 19 data visualization tools [79] 
that are especially designed and developed for WSNs 
applications: 
• SpyGlass’s [80] aim is to ease the life for sensor 

network debugging, evaluation and deeper under-
standing of the software by visualizing the sensor 
network, its topology, the state and the sensed data. 
SpyGlass has a very flexible drawing and plug-in ar-
chitecture. The visualization framework consists of 
three major functional entities: The sensor network, 
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the gateway nodes located in the sensor network and 
the visualization software. 

• MoteView [81] monitoring software is a Crossbow’s 
product to visualize WSNs which provides users to 
simplify deployment and monitoring. It also makes it 
easy to connect to a database, to analyze, and to graph 
sensor readings. The Mote-view features topology 
and network statistics visualization as well as logging 
of sensor readings and the viewing of the logged data.  
The statistics function includes the end-to-end data 
packet yield, a prediction for the future and the RF 
link quality, but is limited to these features. It allows 
querying the sensor network for collected data in a 
database-like manner, hiding the distribution of the 
data collection software on the sensor nodes. 

• TinyViz [9,10] is not just a visualization tool but a 
software framework to which application specific us-
er plugins can be added to suite specific simulation 
requirements. It visualizes sensor readings; LED 
states; radio links and allows direct interaction with 
running TOSSIM simulations. The architecture of 
TinyViz allows adding application specific visualiza-
tion functionality. This functionality includes specia-
lized drawing operations, subscription and reaction to 
events and providing feedback to the TOSSIM simu-
lator. It is very tightly coupled to the TinyOS soft-
ware, the TOSSIM simulator and the Mica sensor 
network hardware. 

• Surge Network Viewer [76] is Crossbow’s product to 
visualize wireless sensor networks. It is a Java appli-
cation that comes standard in the TinyOS Tools dis-
tribution. The Surge Network Viewer is useful for 
monitoring a sensor network and analyzing mesh 
network performance. 

• MonSense [82] applications are very modular and 
have various extension points. It reuses various soft-
ware libraries in order to reach the intended beha-
viour. The MonSense application displays the exist-
ing connections (routes) as an undirected graph, 
whose nodes are the sensor devices and edges are the 
current connections. MonSense can be used for dif-
ferent goals like planning, deployment, monitoring 
and control of WSNs. This application is intended to 
serve two different types of users: WSN Customers 
and WSN Researchers. The gathered data must be 
easily understood by the final users and, optionally, 
this data can be published in the internet allowing the 
access to the information without the need to any 
previous software installation, through the use of html, 
plain text or images. 

• NetTopo [42] is an extensible integrated framework 
for the Simulation of virtual WSN, the visualization 
of real testbed, and the interaction between simulated 

WSN and testbed to assist investigation of algorithms 
in WSNs. 

• Octopus [83] is also a WSN Visualization and Con-
trol tool. Its main Objective is to provide flexible 
access and control of deployed sensor networks. 

• TOSGUI [82] project is composed of modular com-
ponents that can be used to create a customized ap-
plication. Unfortunately, the component architecture 
is tightly connected with the TinyOS operating sys-
tem and the MOTE hardware platform. 

• MSR Sense [84] project is also able to collect data 
from a WSN and visualize it, but the visualization 
can’t be done in real time and the software is not 
platform independent. 

• Trawler [85]: The Trawler application from MoteIV 
is well suited for monitoring small sized WSNs but, 
as the size increases the current network state be-
comes less obvious. 

• SNAMP (self-developed Sensor Network Analysis 
and Management Platform) [86] is a novel multi-sni- 
ffer and multi-view visualization platform for WSNs. 
In SNAMP, data emitted by individual sensor nodes 
is collected by a multi-sniffer data collation network 
and passed to a flexible multi-view visualization me- 
chanism. SNAMP indicates network topology, sens-
ing data, network performance, hardware resource 
depletion, and other abnormalities in WSNs and al-
lows developers adding application specific visuali-
zation functions, which will facilitate the research and 
development of various sensor networks and shorter 
the time from laboratory to applications. 

• MeshNetics WSN Monitor [87] tool shows the net-
work topology, sensor data and the signal quality 
between the nodes. The WSN Monitor automatically 
generates network topology diagrams as network 
nodes are detected and added to the system. These 
nodes are then regularly monitored, with any sensor 
data received automatically displayed in charts and 
tables on a PC screen. MeshNetics WSN Monitor 
features an XML-based framework for rapid custo-
mization of user interfaces and measured sensor pa-
rameters. 

• Mica Graph Viewer [88] is a 2D visualization and 
monitoring tool for WSN. 

• MARWIS [89] is a management architecture for he-
terogeneous WSNs, which supports common man-
agement tasks such as visualization, monitoring, 
(re)configuration, updating and reprogramming. It 
uses a wireless mesh network as a backbone and of-
fers mechanisms for visualization, monitoring, recon-
figuration and updating program code. Using a 
graphical user interface, the topology of the hetero-
geneous WSN with all the sensor sub-networks is vi-
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sualized. 
• Oscilloscope [90] tool is also used to show the sensing 

data graphically on host screen and visualizing tool for 
the nodes. 

• GSN [91] is a software middleware for a variety of 
WSNs. It facilitates the viewing of large amount of 
data that is gathered form WSNs and saved in the 
form of numerical data in a central base station. 

• WiseObserver [92] tool visualizes and analyzes data 
collected by a WSN in a generic scope of application. 
It also tries to establish a sensor network control in-
terface. The tool will include several facilities to treat 
sensor network data. It allows the generation of evo-
lution charts, interpolation maps, evolution data vid-
eos, and report generation. It also includes modules to 
add external data not collected by nodes, but related 
to the network conditions. Node Management will be 
possible thanks to the execution of commands in 
network nodes, to perform changes in network opera-
tion. 

• SenseView [93] is a tool that enables hierarchical and 
visual browsing of physical location information and 
sensor values. Visual maps can be created by com-
posing polygons, each with the ability to link to a dif-
ferent view. Access to real-time data is provided by 
directly subscribing to event nodes captured as links in 
the map. The event nodes also provide attribute in-
formation describing the sensors. Map information is 
fetched from a dedicated map server with its own 
access control lists based on SOX authentication. 
Much like a web browser with hyperlinks, SenseView 
allows a user to traverse through different views by 
clicking on different parts of the map. The user can 
select and subscribe to available event nodes given the 
correct permissions. 

• XbowNet [94] is a CrossBow’s sensor network visua-
lization tool for xbow sensor nodes. A corresponding 
software driver called xServe is installed on gateway 
for the purpose of converting sensed data into XML 
stream and providing a TCP/IP service on port 9005, 
which can be used for visualization. 

 
5. Testbeds for Wireless Sensor Networks  
 
To achieve high-fidelity in WSN experiments use of 
testbed is very prolific. Testbeds are an environment that 
provides support to measure number of physical para-
meters in controlled and reliable environment. This en-
vironment contains the hardware, instrumentations, si-
mulators, various software and other support elements 
needed to conduct a test. Generally, testbeds allow for 
rigorous, transparent and replicable testing. Obstacles to 
using testbeds are:  
• Large Scale (LS): Until today, due to limited financial 

support it is very expensive to buy and maintain a 
testbed with large number of sensor nodes. 

• Not Replicable Environment (NRE): For hazardous 
applications deploying a real testbed can cause se-
rious damage of sensor nodes and testbeds.  

By providing the realistic environments for testing the 
experiments, the testbeds bridge the gap between the 
simulation and deployment of real devices. The testbeds 
thus deployed can improve the speed of innovation and 
productive research. 

Here is a list presenting 28 testbeds in highly conclu-
sive manner used for experimental purposes in various 
universities, colleges, research institutions or by individ-
uals: 
• Motelab [95] is an experimental WSN deployed in 

Maxwell Dworkin Laboratory, the Electrical Engi-
neering and Computer Science building at Harvard 
University. MoteLab consists of a set of permanent-
ly-deployed sensor network nodes connected to a 
central server which handles reprogramming and data 
logging while providing a web interface for creating 
and scheduling jobs on the testbed. MoteLab accele-
rates application deployment by streamlining access 
to a large, fixed network of real sensor network de-
vices; it accelerates debugging and development by 
automating data logging, allowing the performance of 
sensor network software to be evaluated offline. Ad-
ditionally, by providing a web interface MoteLab al-
lows both local and remote users access to the testbed, 
and its scheduling and quota system ensure fair shar-
ing. The MoteLab source is freely available, easy to 
install, and already in use at several other research in-
stitutions. 

• Tutornet: A Tiered Wireless Sensor Network Testbed 
[96] currently consists of 13 clusters, with each clus-
ter consisting of a stargate and several motes attached 
to it via USB cables. These stargates communicate 
with a central PC over 802.11 b, from where any 
node on the testbed can be programmed. Thus a 
testbed consisting of 13 stargates and 104 motes (91 
tmoteSky and 13 Mica-Z). Tiered sensor network 
testbed: consists of 3 tiers. It provide remote and pa-
rallel programming mote. 

• WUSTL [97] testbed at Washington University 
currently consists of 79 wireless sensor nodes (motes). 
This testbed deployment is based on the TWIST 
architecture originally developed by the telecommu- 
nications group (TKN) at the Technical University of 
Berlin. It is hierarchical in nature, consisting of three 
different levels of deployment: sensor nodes, micro- 
servers, and a desktop class host/server machine. 

• CitySense [98] is an urban scale sensor network 
testbed that is being developed by researchers at 
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Harvard University and BBN Technologies. City-
Sense will consist of 100 wireless sensors will cover 
the city of Cambridge, MA, with wireless-sensor 
nodes mounted to telephone poles that could allow 
researchers to see the specific locations and times of 
day when pollution peaks. Each node will consist of 
an embedded PC, 802.11 a/b/g interfaces, and vari-
ous sensors for monitoring weather conditions and 
air pollutants. Most importantly, CitySense is in-
tended to be an open testbed that researchers from all 
over the world can use to evaluate wireless network-
ing and sensor network applications in a large-scale 
urban setting. 

• Kansei [99] at the Ohio State University is a 
large-scale testbed including both 210 Extreme Scale 
Motes (XSM) and Extreme Scale Stargates (XSS). 
The devices are specially designed for Kansei testbed. 
The topology is using both Ethernet and 802.11b 
wireless LAN to control the testbed. Kansei also pro-
vide a web interface for users to upload programs, 
scheduled jobs, and retrieve results with EmStar 
software framework. 

• MistLab [100] consists of a mixture of 47 Mica-2 
nodes and 14 Cricket nodes spread across multiple 
rooms located on the 9th floor of MIT’s CS depart-
ment. 

• Orbitlab [101] is short for Open-Access Research 
Testbed for Next-Generation Wireless Networks (in-
cluding WSN also). It supports experimental research 
on a broad range of wireless networking issues and 
application concepts with various network topologies 
and network layer protocol options. It also supports 
virtual mobility for mobile network protocol and ap-
plication research. 

• Emulab [102] is a network emulation testbed, giving 
researchers a wide range of experimental environ-
ments in which to develop, debug, and evaluate their 
systems. In addition to fixed wireless nodes (currently 
predominantly 802.11), Emulab also features wireless 
nodes attached to robots that can move around a 
small area. These robots consist of a small body 
(shown on the right) with an Intel Stargate that hosts 
a mote with a wireless network interface. The goal of 
this “mobile wireless testbed” is to give users an op-
portunity to conduct experiments with wireless nodes 
that are truly mobile. TrueMobile and Mobile Emulab 
are some modified versions for dynamic WSNs. 

• WISEBED (Wireless Sensor Network Testbeds) [103] 
provides a multi-level infrastructure of interconnected 
testbeds of large-scale wireless sensor networks for 
research purposes, pursuing an interdisciplinary ap-
proach that integrates the aspects of hardware, soft-
ware, algorithms, and data. 

• REALnet [104] is an embryonic environmental WSN 
at the “Campus del Baix Llobregat” of the UPC (Un-
iversitat Politècnica de Catalunya). The technical ob-
jective of REALnet is to monitor physical parameters 
from the air (atmospheric temperature, humidity and 
pressure, and ambient light), ground (humidity, tem-
perature) and water (level, temperature, conductivity). 

• KonTest [105] is a 60-node indoor wireless sensor 
network testbed, distributed among six office rooms 
located on the fourth floor of the Faculty of Sciences 
of Vrije Universiteit Amsterdam. The testbed in-
cludes 60 TelosB-class nodes. 

• SANDbed (Sensor Actuator Network Development 
Testbed) [106] is an integrated testbed system for 
WSN monitoring and management. SANDbed con-
sists of 3 levels of hardware components organized in 
a hierarchical tree. The root level comprises the user 
interface, where the management of the testbed and 
configuration of the experiments is taking place. 
Management nodes connected to the Internet form the 
second level. They are responsible for managing the 
testbed nodes and controlling the execution of expe-
riments. The leaves of the tree are the testbed nodes, 
consisting of a mote and the SNMD. 

• BANAID [107] consists of seven Mica-2 motes and 
two Stargate sensor devices. It is the first actual 
testbed that shows the visibility of the Wormhole at-
tack in WSN and mainly used to simulate the worm-
hole attack on a wireless sensor network. 

• CENSE (a Century of Sensor nodes) [108] providing 
flexible modular platform for testing and optimization 
of nodes for Sensor Network applications. `CENSE' 
currently provides for processing, communication, 
sensing and power modules but the design can be 
easily extended to add more modules like mobility 
and localization. This test bed is very flexible, cost 
efficient, easy to use, power efficient, provides ex-
cellent debugging facilities and covers all major re-
quirements of sensors networks. Each node of the 
testbed consists of four modules: Power, Processor, 
Sensor and Communication. System has been design 
to accommodate more modules, if needed. 

• WINTeR (Wireless Industrial Sensor Network 
Testbed for Radio-Harsh Environments) [109] is an 
open access, multi-user experimental facility (MXF) 
that supports the development and evaluation of 
wireless sensor networks (WSNs) for radio-harsh en-
vironments (RHEs). The testbed supports the R&D of 
emerging WSN technologies, including protocols, 
security, physical layer, the validation of wireless so-
lutions for industrial processes, propagation models, 
and cross-layer optimization. 

• NESC-Testbed [110] 1.0 provides an actual platform 
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for the testing and developing of algorithm, protocol 
in WSN. B/S 3-tier and wireless-wired combined 
framework are used in this testbed, which makes the 
system user-friendly, easily used, robust and stable. 

• SWOON (Secure Wireless Overlay Observation Net- 
work) [111] is an emulation-based testbed for real 
world experiences and scalable tests over an overlay 
network, consisting of wireless sensor networks, 
802.11 a/b/g, etc. It can evaluate protocols, mechan-
isms and techniques for secure wireless communica-
tion. Researchers and designers can create their own 
topologies and run experiments on the SWOON 
testbed without re-establishing and re-installing 
hardware and software modules required for their 
wireless networks. In addition, the SWOON testbed 
also allows researchers to monitor the network traffic, 
evaluate the performance of the protocols under test 
and validate the researches they presented. 

• INDRIYA [112] is a large-scale 3D WSN testbed 
with 140 TelosB nodes deployed at the National 
University of Singapore. The Testbed facilitates re-
search in sensor network programming environments, 
communication protocols, system design, and applica-
tions. It provides a public, permanent framework for 
development and testing of sensor network protocols 
and applications. Users can interact with the Testbed 
through an intuitive web-based interface designed 
based on Harvard's Motelab's interface. 

• CLARITY [113] Centre for Sensor Web Technology 
in Ireland is currently constructing a ubiquitous ro-
botics testbed by integrating a collective of mobile 
robots with a WSN and a number of portable devices. 
The new, mixed testbed will be hosted at University 
College Dublin, (UCD), and will also avail itself of 
the laboratory facilities hosted in Dublin City Univer-
sity (DCU) and Tyndall, Cork. This testbed integrates 
and extends some pre-existing facilities, specifically: 
WSN of 70 Berkeley motes measuring humidity, light 
and temperature, 10 mobile robots, equipped with an 
array of state-of-the-art sensors, including USB cam-
eras, laser range finders, sonar, infrared, odometers 
and bumpers. Each robot carries a mote able to 
measure ambient variables, which is also equipped 
with triple-axis accelerometers, magnetometer, com-
pass and microphone, a variable number of Internet 
gateways, a variable number of PDAs and mobile 
phones equipped with Bluetooth. 

• Imote2 Sensor Network Testbed [114]: In its current 
version, the testbed consists of a set of Crossbow Im-
ote2 nodes programmed with a Linux kernel and run-
ning localization and routing codes written in C. One 
node is connected to a PC via USB and acts as a base 
node for the network. The PC runs a Java-based GUI 

intended as an interface for a user to read data from 
the nodes and to issue commands to the network. The 
user can control and observe the performance of var-
ious localization protocols in the network which are 
run locally in the Linux operating system on each de-
vice. 

• WSNTB [115] is designed for heterogeneous WSN 
experiments. It involves two WSNs and three gate-
ways. Each WSN has 17 sensor nodes. According to 
users’ requirements, users can choose the single one 
or both of WSNs, with or without the gateways to 
experiment. Users can use both the web-based inter-
face and the special function, called local mode, to 
run their applications on testbed.  

• TWIST [116] testbed is owned by Technical Univer-
sity Berlin. They help users load programs and run 
experiments such as time synchronization and power 
control. The system is divided into two major parts. 
The first part is the server to serve the demands of 
users and control all of nodes. The second part in-
cludes two types of sensor nodes, eyesIFX v2 and 
Telos motes which are plugged onto the switch. The 
architecture is extended form the UC Berkeley’s 
Omega testbed and Motescope testbed. 

• ENL Sensor Network Testbed [117] is intended to 
provide a multi-hop sensor network that could be 
used for the real time analysis and evaluation of sen-
sor network application. The ENL sensor network 
testbed consist of a number of mote assemblies 
hanging from the ceiling forming a grid pattern. Each 
mote assembly consists of a Mica mote and the stan-
dard programming board. The testbed provides means 
of remotely programming the motes and collecting 
data from the testbed. 

• X-sensor [118] is a new sensor network testbed 
integrates multiple sensor networks deployed at 
different sites. X-sensor provides three functionalities: 
(a) a sensor network search which enables users to 
find a sensor networks appropriate for experiment 
and data acquisition, (b) a sensor data archive which 
provides users with various sensor data acquired by 
sensor nodes, and (c) an experimental testbed which 
enables remote users to evaluate their network and 
data management protocols. 

• GNOMES [119] is a lowcost hardware and software 
testbed. This testbed was designed to explore the 
properties of heterogeneous wireless sensor networks, 
to test theory in sensor networks architecture, and be 
deployed in practical application environments. 

• PICSENSE [120] is a single hop WSN testbed which 
will send the sensor information to the gateway node. 
The gateway node will act as an embedded web serv-
er which serves the web pages with the dynamic data. 
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Most of the testbed uses commercial gateway nodes 
like stargate which is not as flexible as the Rabbit ga-
teway node, which is used in this testbed to integrate 
the WSNs with the IP networks. The firmware in the 
Rabbit gateway node can be designed to make the 
configuration of the gateway node either as a HTTP 
server or a FTP server or a simple router. 

• SOWNet [121] Technologies T301 Testbed is pri-
marily a WSN testbed consisting of SOWNet G-Node 
G301 wireless sensor nodes. Each sensor node is at-
tached to a G-Node testbed adaptor module for con-
necting the sensor emulation feature. Up to 4 G- 
Nodes and GTA301 modules can be interfaced to a 
single mini PC. The mini PC is connected to an IP 
network using its wired or wireless networking capa-
bility. This allows many mini PCs and a vast number 
of G-Nodes to form a WSN testbed together and still 
be managed from a single management console, pos-
sibly over the internet. 

• NetEye [122] is a high-fidelity testbed consists of 130 
TelosB motes at Wayne State University. In addition 
to providing a local facility for supporting research 
and educational activities, NetEye is being connected 
to Kansei as a part of the Kansei consortium. NetEye 
testbed consists of a controlled indoor environment 
with a set of sensor nodes and wireless nodes dep-
loyed permanently. NetEye testbed provides a web 
interface to create and schedule a job on the testbed 
while automated reprogramming of the sensor devic-
es and storing the experimental data on to the server. 

In addition to above discussed 28 WSN testbeds there 
are also a number of other academic and industrial 
testbed deployments. Some of these WSN testbeds are: 
SenseNet [123], Omega [124], Motescope [124], Share-
sense [125], Trio [126], sMote [127], CTI-WSN Testbed 
[128], FEEIT WSN Testbed [129], Roulette [130], Big-
Net [131], UCR Wireless Networking Research Testbed 
[132], IP-WSN [133], WHYNET [134], CENS-Testbed 
[135], SCADDS WSN Testbeds [136], Crossbow WSN 
Testbed [5], GaTech Testbed [137], Intel Research 
Berkeley’s 150-mote SensorNet Testbed [138]. 
 
6. Debuggers for Wireless Sensor Networks 
 
Due to extreme resource constraints nature, deployment 
in harsh and unattended environments, lack of run-time 
support tools and limited visibility into the root causes of 
system and application level faults make WSNs noto-
riously difficult to debug. Currently, most debugging 
systems in WSNs are aimed at diagnosing specific faults, 
such as detection of crashed nodes, sensor faults, or 
identifying faulty behavior in nodes. There are few de-
bugging solutions for WSNs available, with a fairly wide 

range of goals and feature sets. Debuggers for WSNs 
have been categorized [139] into three distinct catego-
ries: 
• Source-level debuggers 
• Query-oriented debuggers, and 
• Decision-tree debuggers. 

Here is a list presenting 26 debuggers and debugging 
concepts with their summarized content related to 
WSNs: 
• Clairvoyant [140] is comprehensive source-level de-

bugger for wireless, embedded networks. With 
Clairvoyant, a developer can wirelessly connect to a 
sensor network and execute standard debugging 
commands including break, step, watch, and back 
trace, as well as new commands that are specially de-
signed for debugging WSNs. Clairvoyant attempts to 
minimize its effect on the program being debugged in 
terms of network load, memory footprint, execution 
speed, clock consistency, and flash lifetime. 

• Dustminer [141] is a tool for uncovering bugs due to 
interactive complexity in networked sensing applica-
tions. Such bugs are not localized to one component 
that is faulty, but rather result from complex and un-
expected interactions between multiple often indivi-
dually non-faulty components. Because of the distri-
buted nature of failure scenarios, this tool looks for 
sequences of events that may be responsible for faulty 
behavior, as opposed to localized bugs such as a bad 
pointer in a module. With this tool an extensible 
framework is developed where front-end collects run-
time data logs of the system being debugged and an 
offline back-end uses frequent discriminative pattern 
mining to uncover likely causes of failure. The tool 
helped uncover event sequences that lead to a highly 
degraded mode of operation. Fixing the problem sig-
nificantly improved the performance of the protocol. 

• Sympathy [142] is a tool for detecting and debugging 
failures in sensor networks. Sympathy has selected 
metrics that enable efficient failure detection, and in-
cludes an algorithm that root-causes failures and lo-
calizes their sources in order to reduce overall failure 
notifications and point the user to a small number of 
probable causes. 

• FIND [143] is a novel method to detect nodes with 
data faults that neither assumes a particular sensing 
model nor requires costly event injections. After the 
nodes in a network detect a natural event, FIND ranks 
the nodes based on their sensing readings as well as 
their physical distances from the event. It works for 
systems where the measured signal attenuates with 
distance. A node is considered faulty if there is a sig-
nificant mismatch between the sensor data rank and 
the distance rank. 
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• REDFLAG [144] is the fault detection service for 
WSN applications, a Run-timE, Distributed, Flexible, 
detector of faults that is also Lightweight and Generic. 
REDFLAG addresses the two most worrisome issues 
in data-driven wireless sensor applications: abnormal 
data and missing data. REDFLAG exposes faults as 
they occur by using distributed algorithms in order to 
conserve energy. Simulation results show that RED-
FLAG is lightweight both in terms of footprint and 
required power resources while ensuring satisfactory 
detection and diagnosis accuracy. Being unrestrictive, 
REDFLAG is generically available to a myriad of ap-
plications and scenarios. As a matter of fact, RED-
FLAG has been applied into a subsurface contaminant 
transport model to improve the model performance in 
the presence of erroneous sensor data. 

• Chowkidar [145] is a stabilizing protocol that pro-
vides accurate and efficient network health monitor-
ing in WSNs. This approach adapts the well-known 
problem of message-passing rooted spanning tree 
construction and its use in propagation of information 
with feedback (PIF) for the case of a WSN. The 
Chowkidar protocol is initiated upon demand; that is, 
it does not involve ongoing maintenance, and it ter-
minates with accurate results, including detection of 
failure and restart during the monitoring process. 
Chowkidar is distinguished from others in two im-
portant ways. Given the resource constraints of 
WSNs, it is message-efficient in that it uses only a 
few messages per node. Also, it tolerates ongoing 
node and link failure and node restart, in contrast to 
requiring that faults stop during convergence. Chow- 
kidar protocol has been implemented as part of 
enabling a network health status service that is tightly 
integrated with a remotely accessible wireless sensor 
network testbed, Kansei, at the Ohio State University. 

• ActorNet [146] is an agent based framework for dy-
namically programming and debugging WSNs. end- 
users (WSN operators but not necessarily program-
mers) define actors in an expressive, high-level lan-
guage to specify debugging logic. The framework al-
lows actors to move through the network in order to 
accomplish their objective. 

• Debugging WSNs Using Mobile Actors [147] ap-
proach is for post-mortem debugging of WSNs using 
autonomous and mobile actors. By allowing the 
computation (mobile actor) to move to the nodes 
where the data is located, to overcome the necessity 
of moving the data while still providing the flexibility 
necessary to diagnose errors in WSNs. In this ap-
proach two mechanisms are defined for debug-
ging―namely, forward tracking and backward track-
ing in which an actor, starting at an error state, tracks 

the causal events, respectively, forward or backward 
in time in order to determine the root cause of the er-
ror. 

• Monitored External Global State (MEGS) [148] [149] 
is a tool that leverages existing debugging techniques 
to recreate (part of) the global state of a WSN on an 
external PC. A global state is the combined local 
states of all nodes in a system. The idea is that the 
global state of a system does not only allow a devel-
oper to see what is happening inside a WSN at a giv-
en time, but also relevant events that happened earlier. 
Using the recreated state the developer of a WSN can 
gain insight into the operation of the WSN. MEGS 
also allows the developer to define assertions and 
predicates on the recreated state to easily find loca-
tions in the execution where anomalous behavior oc-
curred. 

• Declarative Tracepoints [150] is a debugging system 
that allows the user to insert a group of action-asso- 
ciated checkpoints, or tracepoints, to applications be-
ing debugged at runtime. Tracepoints do not require 
modifying application source code. Instead, they are 
written in a declarative, SQL-like language called 
TraceSQL independently. By triggering the associated 
actions when these checkpoints are reached, this sys-
tem automates the debugging process by removing 
the human from the loop. Declarative tracepoints are 
able to express the core functionality of a range of 
previously isolated debugging techniques, such as 
EnviroLog, NodeMD, Sympathy, and StackGuard. 

• Envirolog [151] is a distributed service that improves 
repeatability of experimental testing of sensor net-
works via asynchronous event recording and replay. 
To use EnviroLog, an application programmer needs 
only to specify two types of simple annotations to the 
source code. Automatically, the preprocessor embeds 
EnviroLog into any desired level of an event-driven 
architecture. It records all events generated by lower 
layers and can replay them later to upper layers on 
demand. 

• NodeMD [152] is a fault management system de-
signed to improve node debugging capabilities prior 
to deployment, and enable remote debugging on 
in-situ sensor nodes that fail. This system successfully 
implements lightweight run-time detection, logging, 
and notification of software faults on wireless mote- 
class devices. It introduces a debug mode that catches 
a failure before it completely disables a node and 
drops the node into a state that enables further diagno-
sis and correction, thus avoiding on-site redeployment. 
It offers simple annotations to trace and avoid critical 
errors in specific parts of the code. 
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• StackGaurd [153] is a more generic tool for detecting 
stack corruption caused by buffer overruns (e.g., 
when the return address of a function is over-written). 
This problem is also known as the buffer overrun se-
curity exploit. Having received intensive attention, 
this problem is addressed in multiple ways, and 
StackGuard is one of the better-known techniques in 
that it virtually eliminates all buffer overflows with 
the help of the canary word. More specifically, 
StackGuard modifies the generated prologue and ep-
ilogue code for functions to insert canary words. The 
assumption held by StackGuard is that if some code 
in a function modifies the return address, it must have 
modified the canary word as well, assuming that the 
application does not know the value and size of the 
canary word. By checking the integrity of the canary 
word, StackGuard can detect malfunctioning code. 

• KleeNet [154] is a debugging environment for high- 
coverage testing of sensor network applications be-
fore deployment. It enables the detection of bugs that 
result from complex interactions of multiple nodes, 
nondeterministic events in the network, and unpre-
dictable data inputs. KleeNet executes unmodified 
sensor network applications on symbolic input and au-
tomatically injects non-deterministic failures. As a re-
sult, KleeNet generates distributed execution paths at 
high-coverage, including low-probability cornercase 
situations. Built on the symbolic virtual machine 
KLEE, KleeNet makes the following four key contri-
butions and facilitates rigorous testing of distributed 
WSN applications and protocols: Coverage, Non-de- 
terminism, Distributed Assertions and Repeatability. 

• Marionette [155] is a system that allows calling func-
tions and inspecting and changing memory locations 
in deployed nodes through an RPC-based system. A 
developer can use this much like a debugger, al-
though because it uses the wireless channel of the 
network it has a large impact on the operation of the 
network. 

• Passive Distributed Assertions (PDA) [156] allows 
developers to detect such failures and provides hints 
on possible causes. PDA allow a programmer to for-
mulate assertions over distributed node states using a 
simple declarative language, causing the sensor net-
work to emit information that can be passively col-
lected (e.g., using packet sniffing) and evaluated to 
verify that assertions hold. This passive approach al-
lows us to minimize the interference between the ap-
plication and assertion verification. Further, this sys-
tem provides mechanisms to deal with inaccurate 
traces that result from message loss and synchroniza-
tion inaccuracies. 

• Nucleus [157] network management system (NMS) 
facilitates monitoring of running WSN applications 
by providing access to the internal data structures of 
TinyOS nesC components over the network. To re-
duce interference of the Nucleus system and the WSN 
application, data is only sent over the network in re-
sponse to a user query. In addition to this query ap-
proach, unexpected events are logged to persistent 
local storage and can be retrieved later from the node 
on demand. 

• MDB [158] is a GDB like post-mortem debugging 
system for wireless embedded networks that exploits 
macro programming to provide four abstract views of 
a system state: 1) the temporally synchronous view, 2) 
the logically synchronous view, 3) the historical view, 
and 4) the hypothetical view. It enables application 
development and debugging at a single level of ab-
straction. It eliminates the need for a programmer to 
reason about low-level event traces and message 
passing protocols, instead allowing debugging in 
terms of abstract data types. 

• SNTS (Sensor Network Troubleshooting Suite) [159] 
uses distributed sniffer sensor nodes that record 
overheard traffic in local Flash storage. After an ex-
periment, the nodes are collected and the packet trac-
es are transferred to a central server. SNTS decodes 
the raw packet dumps based on a text file that de-
scribes the packet format. As an example for a possi-
ble processing of the packet traces, the authors em-
ployed machine-learning algorithms to identify bad 
sequences of events, which lead to an observed bug in 
the protocol/system, allowing them to fix the prob-
lem. 

• ANDES [160] is a framework for detection and find-
ing the root causes of anomalies in operational WSNs. 
The key novelty of ANDES is that it correlates in-
formation from two sources: one in the data plane as 
a result of regular data collection in WSNs, the other 
in the management plan implemented via a separate 
routing protocol, making it resilient to routing ano-
maly in the data plane. Unlike existing WSN diagno-
sis tools, it does not distinguish among faults due to 
software or hardware bugs and those induced by se-
curity threats or intrusion. Rather, it utilizes specifi-
cations of the targeted application known apriori and 
normal behaviors established by a self-learning algo-
rithm to identify potential anomalies. Localizing the 
faulty entities is made possible by incorporating in-
ferred knowledge of routes and fault signatures on a 
central node (typically the sink). 

• EvAnT [161] allows for specifying queries that are 
executed on the collected traces. EvAnT is speci- 
fically tailored to WSN testing and debugging. 
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• Storage-centric method for Debugging [162]: In this 
method performance and log data are stored locally 
on the node. This method opens new possibilities for 
debugging: A node can process the data itself; 
Neighbors can share performance and log data to 
detect root causes of problems and maybe even re-
solve problems; An operator can in an efficient 
one-hop batch download the data using a mobile node; 
A node can decide on its own when it is time to send 
stored log data to the sink for processing; The sink 
can request data on demand at the desired level of 
granularity. 

• Model-based diagnosis for WSNs [163] is a tech-
nique where a model of a system is combined with 
observations from that system, to generate diagnoses 
for failures of the system. The basic premise of this 
solution is to use the distributed nature of a WSN to 
solve these problems. By running a simple inference 
engine on every node, with a small local model, nodes 
can generate conflict sets. If the model can be made to 
only use local observations, observations no longer 
need to be sent over the network. As a final step, con-
flicts generated by the local inference engine can be 
sent to the sink node, which then calculates the minim-
al hitting set of these conflicts to produce the diag-
noses. 

• Post-Deployment Performance Debugging (PD2) 
[164] is a data-centric approach that focuses on the 
data flows that an application generates, and relates 
poor application performance to significant data 
losses or latencies of some data flows (problematic 
data flows) as they go through the software modules 
on individual nodes and through the network. PD2 
derives a few inference rules based on the data de-
pendencies between different software modules, as 
well as between different nodes, and use them to trace 
back in each problematic flow. Then, PD2 turns on 
the performance monitoring of, and collects debug-
ging information from, only those modules and nodes 
that the problematic flows go through. Finally, PD2 
provides the debugging information to help users iso-
late the causes of poor performance. 

• S2DB [165] is a debugger based on a distributed full 
system WSN simulator with high fidelity and scalable 
performance, DiSenS. By exploiting the potential of 
DiSenS as a scalable full system simulator, S2DB ex-
tends conventional debugging methods by adding 
novel device level, program source level, group level, 
and network level debugging abstractions. 

• Wringer [139] is an integrated debugging framework 
that allows for rapid prototyping and deployment of 
debugging tools: passive, active, in-network, and gate- 
way-based. The goal is to utilize these rap-
id-prototyping capabilities to discover the core set of 

debugging primitives that can detect and fix the ma-
jority of WSNs bugs. 

 
7. Code-Updaters for Wireless Sensor  

Networks 
 
Large scale WSNs may be deployed for long periods of 
time during which the requirements from the network or 
the environment in which the nodes are deployed may 
change. This may necessitate modifying the executing 
application or re-tasking the existing application with 
different sets of parameters, which will collectively refer 
to as code-updation/reprogramming. The relevant forms 
of code-updation/reprogramming are [166]: 
• Remote Multi-hop Reprogramming: It is the most 

relevant form of code-updation/reprogramming which 
uses the wireless medium to reprograms the nodes as 
they are embedded in their sensing environment. 

• Incremental Reprogramming: It is also attractive be-
cause it transfers a small delta (difference between 
the old and the new software) so that code-upda- 
tion/reprogramming time and energy can be mini-
mized. 

Incremental Reprogramming poses several challenges. 
A class of operating systems, including the widely used 
TinyOS, does not support dynamic linking of software 
components on a node. SOS and Contiki, do support dy-
namic linking, however, their reprogramming support 
also does not handle changes to the kernel modules. 

Here is a list presenting 10 code-updaters/ reprogram-
ming with their highly conclusive features related to 
WSNs: 
• Trickle [167] is an algorithm for propagating and 

maintaining code updates in WSNs. Borrowing tech-
niques from the epidemic/gossip, scalable multicast, 
and wireless broadcast literature, Trickle uses a “po-
lite gossip” policy, where motes periodically broad-
cast a code summary to local neighbors but stay quiet 
if they have recently heard a summary identical to 
theirs. When a mote hears an older summary than its 
own, it broadcasts an update. Instead of flooding a 
network with packets, the algorithm controls the send 
rate so each mote hears a small trickle of packets, just 
enough to stay up to date. 

• MARWIS (Management ARchitecture for WIreless 
Sensor Networks) [89] supports common management 
tasks such as visualization, monitoring, (re)configure- 
tion, updating and reprogramming. One of the main  
features of MARWIS is its hierarchical architecture.  
The applications running on the sensor nodes or net 
work properties can be reconfigured using the user in 
terface. Furthermore, updating and reprogramming the  
sensor nodes is a very important issue. In large WSNs  
manual execution of this task is unfeasible, and a  
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mechanism to handle it automatically and dynamically  
over the network is required. Both the OS and applica 
tions must be updated, either fully or partially. 

• Multihop Over-the-Air Programming (MOAP) [168] 
is a code distribution mechanism specifically targeted 
for Mica-2 Motes. These are the following imple- 
mentation choices for MOAP: Ripple dissemination 
protocol, Unicast retransmission policy and Sliding 
Window for segment management. The current ver-
sion of MOAP has been successfully used to repeat-
edly reprogram motes up to four hops away from the 
base station, using code images of various sizes, 
ranging from 600 up to 30K bytes. 

• FlexCup [169] is a flexible and efficient code update 
mechanism for WSNs that enable on fly reinstallation 
of software components in TinyOS-based nodes. 
FlexCup is an application that consists of a compi-
ler-extension (FlexCup-Analyzer), a middleware 
component (code distribution algorithm), a stand- 
alone operating system (FlexCup-Linker), and a ker-
nel component (FlexCup-Bootloader). It is able to re-
configure exchange or reinstall parts of an application.  
It has two phases: Code generation phase and linking 
phase. 

• Zephyr [166] is a multi-hop incremental reprogra- 
mming protocol. It reduces the delta size by using 
application-level modifications to mitigate the effects 
of function shifts. Then it compares the binary images 
at the byte-level with a novel method to create small 
delta that is then sent over the wireless network to all 
the nodes. 

• Deluge [170] is an epidemic protocol and operates as 
a state machine where each node follows a set of 
strictly local rules to achieve a desired global beha-
vior: the quick, reliable dissemination of large data 
objects to many nodes. Deluge considers many subtle 
issues to achieve high performance. The first is its den-
sity-aware capability, where redundant advertisement 
and request messages are suppressed to minimize con-
tention. Second, Deluge’s three-phase handshaking 
protocol helps ensure that a bidirectional link exists 
before transferring data. Third, Deluge dynamically 
adjusts the rate of advertisements to allow quick prop-
agation when needed while consuming few resources 
in the steady state. Fourth, Deluge attempts to minim-
ize the set of nodes concurrently broadcasting data 
within a given cell. Finally, Deluge emphasizes the use 
of spatial multiplexing to allow parallel transfers of 
data. 

• Stream [171] is a sensor network reprogramming 
protocol that significantly reduces the number of 
bytes to be transmitted over the wireless medium for 
reprogramming. It addresses a fundamental problem 
in all existing network reprogramming protocols, 

whereby the application image together with the re-
programming protocol image is transferred. Stream 
pre-installs the reprogramming protocol image in a 
node and transfers the application image with a small 
addition. Consequently, it reduces the reprogramming 
time, the number of bytes transferred, the energy ex-
pended, and the usage of program memory. Stream is 
implemented on TinyOS for the Mica-2 sensor node. 

• Hermes [172] is a multi-hop incremental reprogram-
ming protocol. It reduces the delta by using tech-
niques to mitigate the effects of function and global 
variable shifts caused by the software modifications. 
Then it compares the binary images at the byte level 
with a method to create small delta that needs to be 
sent over the air to all the nodes. 

• FIGARO [173] is a programming model supported by 
an efficient run-time system and distributed protocols, 
collectively enabling an unprecedented fine-grained 
control over what is being reconfigured, and where. 
Using FIGARO, the programmer can deal explicitly 
with component dependencies and version con- 
straints. 

• MNP [174] is a multi-hop network reprogramming 
service designed for Mica-2/XSM motes. To reduce 
the problem of collision and hidden terminal problem 
it implements a sender selection algorithm that 
attempts to guarantee that in a neighborhood there is 
at most one source transmitting the program at a time. 
Further, this sender selection is greedy in that it tries 
to select the sender that is expected to have the most 
impact. It also uses pipelining to enable fast data 
propagation. MNP is energy efficient because it 
reduces the active radio time of a sensor node by 
putting the node into “sleep” state when its neighbors 
are transmitting a segment that is not of interest. 

 
8. Network Monitoring Tools for Wireless 

Sensor Networks 
 

WSNs are typically composed of low cost tiny hardware 
devices and tend to be unreliable, with failures a com-
mon phenomenon. Accurate knowledge of network 
health status, including nodes and links of each type, is 
critical for correctly configuring applications on really 
deployed WSN and/or WSN testbeds and for interpreting 
the data collected from them. 

Here is a list presenting 8 network monitoring tools 
with their summarized features related to WSNs: 
• Memento [175] is a failure detection system that re-

quires nodes to periodically send heartbeats to the so 
called observer node. Those heartbeats are not di-
rectly forwarded to the sink node, but are aggregated 
in form of a bitmask (i.e. bitwise OR operation). The 
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observer node is sweeping its bitmask every sweep 
interval and will forward the bitmask with the node 
missing during the next sweep interval if the node 
fails sending a heartbeat in between. Hence the in-
formation of the missing node is disseminated every 
sweep interval by one hop, eventually arriving at the 
sink. Memento is not making use of acknowledge-
ments and proactively sends multiple heartbeats every 
sweep interval, whereas this number is estimated 
based on the link’s estimated worst-case performance 
and the targeted false positive rate. 

• NUCLEUS [157] is one of the network management 
systems for data-gathering application of WSN. 

• DiMo [176] is a distributed and scalable solution for 
node and topology monitoring, especially designed 
for use with event-triggered WSNs. The monitoring is 
done by so called observer nodes that monitor whe- 
ther the target node has checked in by sending a 
heartbeat within a certain monitoring time. 

• MARWIS (Management Architecture for hetero- 
geneous Wireless Sensor Networks) [89] supports 
common management tasks such as visualization, 
monitoring, (re)configuration, updating and repro-
gramming. The status information about every sensor 
node is monitored and displayed. This includes hard- 
ware features (micro-controller, memory, transceiver), 
software details (operating system versions, protocols, 
applications), dynamic properties (battery, free mem-
ory) and, if available, geographical position informa-
tion. 

• Sympathy [142] is a tool for detecting and debugging 
failures in pre- and post-deployment sensor networks, 
especially designed for data gathering applications. 
The nodes send periodic heartbeats to the sink that 
combines this information with passively gathered 
data to detect failures. For the failure detection, the 
sink requires receiving at least one heartbeat from the 
node every so called sweep interval, i.e. its lacking 
indicates a node failure. Direct-Heartbeat performs 
poorly in practice without adaptation to wireless 
packet losses. To meet a desired false positive rate, 
the rate of heartbeats has to be increased also in-
creasing the communication cost. 

• HERMES [172] is a lightweight framework and pro-
totype tool that provides fine-grained visibility and 
control of a sensor node’s software at run-time. 
HERMES’s architecture is based on the notion of in-
terposition, which enables it to provide these proper-
ties in a minimally intrusive manner, without requir-
ing any modification to software applications being 
observed and controlled. HERMES provides a gener-
al, extensible, and easy-to-use framework for speci-
fying which software components to observe and 

control as well as when and how this observation and 
control is done. 

• LiveNet [177] is a set of tools and techniques for re-
constructing complex dynamics of live sensor net-
work deployments. LiveNet is based on the use of 
passive sniffers co-deployed with the network. Snif-
fer nodes can be temporary or permanent, fixed or 
mobile, and wired or un-tethered. Sniffers record 
traces of all packet activity observed on the radio 
channel. Traces from multiple sniffers are merged 
into a single trace to provide a global picture of the 
network’s behavior. The merged trace is then subject 
to a series of analyses to study application behavior, 
data rates, network topology, and routing protocol 
dynamics. 

• Chowkidar [145] is a reliable and scalable health 
monitoring protocol for wireless sensor network test-
beds. It provides accurate and efficient network 
health monitoring in WSNs. The Chowkidar protocol 
is initiated upon demand and adapts the well-known 
problem of message-passing rooted spanning tree 
construction and its use in propagation of information 
with feedback (PIF) for the case of a WSN; that is, it 
does not involve ongoing maintenance, and it termi-
nates with accurate results, including detection of 
failure and restart during the monitoring process. 
Chowkidar is distinguished from others in two impor- 
tant ways. Given the resource constraints of WSNs, it 
is message-efficient in that it uses only a few mes-
sages per node. Also, it tolerates ongoing node and 
link failure and node restart, in contrast to requiring 
that faults stop during convergence. 

 
9. Educt of this Exploratory Study 

 
Simulation tools are widely used for the purpose of ex-
ploratory analysis in validating algorithms and protocols 
due to their rapid prototyping and tackling large scale 
systems. However, even the best simulator is still not 
able to simulate real wireless communication environ-
ments in terms of completeness, complexity, accuracy 
and authenticity. Researchers use emulators of WSNs to 
selectively track whether their applications have ex-
ecuted as intended. These emulators simulate the hard-
ware environments to facilitate the development and 
checking software applications. The emulator approach 
is quite laborious since extensive prior profiling is re-
quired. Taking these drawbacks of simulators and emu-
lators into account, using WSN testbeds to evaluate algo-
rithms and protocols of WSNs is essentially necessary 
before applying them into real world applications. The 
other experimental tools are also necessary before or 
after real deployment during whole life of real or virtual 
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WSN. The objective of this study has clearly brought 
forth important findings that are very useful for re-
searchers involve in any level of WSN experiments to 
find an appropriate tool. In real, efforts are on synchronic 
aspects for beginners than presenting highly technical 
aspects. 
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