
Journal of Modern Physics, 2016, 7, 162-174 
Published Online January 2016 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2016.71018  

How to cite this paper: Olszewski, S. (2016) Quantum Aspects of the Joule-Lenz Law. Journal of Modern Physics, 7, 162-174.  
http://dx.doi.org/10.4236/jmp.2016.71018   

 
 

Quantum Aspects of the Joule-Lenz Law 
Stanisław Olszewski 
Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka, Warsaw, Poland 

  
 
Received 22 December 2015; accepted 24 January 2016; published 28 January 2016 

 
Copyright © 2016 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Quantum aspects of the Joule-Lenz law for the dissipation energy have been studied. In the first 
step, in an analysis of the energy-time principle of uncertainty, this gives a lower limit of the time 
interval and an upper limit of the energy interval which can be admitted in a quantum transition 
process. Moreover, for the low energy excitations, the transition time between the levels is found 
to be close to the oscillation time periods characteristic for these levels. A reference obtained 
among the transition time ∆t, transition energy ∆E and the Planck constant h indicates that ∆t 
should approach approximately the time period of the electromagnetic wave produced in course 
of the transition. 
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1. Introduction 
Certainly any change of a physical system represented by a single physical event is connected with some 
interval of time ∆t. This is a rather trivial statement concerning both the classical and quantum physical theory. 
However, the approach to ∆t offered by each of these two theoretical formalisms is quite different. 

In brief one can say that ∆t given by the classical physics is usually of a definite character. On the other hand, 
the quantum theory provides systematically ∆t of a probabilistic, or statistical nature. 

This kind of discrepancy began to exist already on the level of the old quantum theory [1]-[3], it became 
however, more acute in the modern quantum mechanics [4]-[6]. For example, when concerning the spectroscopy 
phenomena, it is hardly possible to define the time moment in which the transition of the electron particle from 
one of the quantum levels to another begins, as well as the time moment when this transition ends. Nevertheless 
the exsistence of a finite interval ∆t between these two limiting events seems intuitively to be rather evident. 

An approach to ∆t connected with a single electron transition of a quantum system becomes easy to effectuate 
when, for example, the interval ∆E of the system energy is known together with the time rate of this energy 
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change. Such knowledge is offered, for example, by the Joule-Lenz dissipation law for energy [7] [8]. 
The law is of a typical classical nature, nevertheless its inspection done on the basis of quantum parameters, 

shows a posteriori its formal behaviour much similar to the Heisenberg uncertainty principle specialized for the 
case of quantum intervals belonging to energy and time. 

In the first step we show the quantum aspect of the Joule-Lenz law and its effect on the uncertainty principle. 
This approach allowed us to obtain a minimal admissible interval of time associated with the electron transition 
process. In the next step, a maximal limit of the electron transition energy could be calculated. As a final result, 
due to the existence of a minimal interval of time, a minimal geometrical size of a distance parameter entering 
small quantum systems could be estimated. 

2. Historical Background of the Heisenberg Uncertainty Principle 
A complementary character of the intervals of energy and time concerning a given physical phenomenon has 
found its well-known representation in the Heisenberg principle of uncertainty [4] [9]. Mathematically the 
principle states that the product of ∆E and ∆t should not provide a number smaller than the Planck constant  :  

.E t∆ ∆ >                                            (1) 

The Formula (1) has been outlined parallelly to the Heisenberg rule of uncertainty concerning a product of the 
change of a Cartesian coordinate of the particle position and the particle momentum, for example  

.xx p∆ ∆ >                                           (2) 

Evidently the Formula (2) can be extended equally to the Cartesian coordinates y and z. 
But a mathematical and historical background of (1) and (2) became much different: the Formula (2) found its 

wide justification in numerous approaches [10] [11] contrary to the rule of (1) which was strongly objected on 
several occasions [12]-[14]. In effect, in some textbook presentations (see e.g. [15] [16]), the Formula (1) 
contrary to (2) did not appear at all. 

A characteristic point is that shortly after (1) and (2) have been published, some proposals concerning the 
limits of the observables entering (1) and (2) were done. These limits concerned in particular x∆  and t∆ . 
According to [17]-[20], x∆  should be not smaller than the Compton wave length  

0
hx x

mc
∆ > ∆ =                                      (3) 

and t∆  should satisfy the relation  

0
0 2 .x ht t

c mc
∆

∆ > ∆ = =                                   (4) 

3. Modification of the Principle (1) and Its Effect 
An essential change of (1) can be attained when the velocity condition of the special theory of relativity, namely  

,v c<                                 (5) 

is applied in the motion analysis of the fermion particles [21]-[23]. In this case the transition energy E∆  done 
within the time interval t∆  should satisfy instead of (1) the formula  

( )22 22 .mc E t∆ ∆ >                                    (6) 

By assuming that  
2

,
2

xpE
m

∆ =                                      (7) 

where xp  is the electron momentum  

x x
xp mv m
t

∆
= ≅

∆
                                   (8) 

because of the Hamilton equation  
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( )d ,
d

x

x

E px
t p m

∂ ∆
= =

∂
                                 (9) 

we obtain from (8)  

.
x

mt x
p

∆ = ∆                                    (10) 

This expression substituted into (6) together with (7) gives the relation  

( ) ( )
2

2 22 2 2 2
22
x

mmc E x c m x
p

∆ ∆ = ∆ >                           (11) 

from which  

0 .x x
mc

∆ > ∆ =
                                   (12) 

By dividing (12) by c, an operation similar to that applied in (4), we obtain  

0
0 2 .xxt t

c c mc
∆∆

∆ = > ∆ = =
                              (13) 

The limits in (12) and (13) are smaller than, respectively, limits in (3) and (4) solely by the factor of 2π ; see 
[24]. This is an important correction because 0x∆  from (12) assumed as a radius of the circular-like trajectory 
of a spinning electron leads to a correct driving velocity of that electron. The correctness property is examined 
by the agreement of the driving velocity provided by a spinning particle with the Bohr orbital velocity of the 
electron; see [25] [26] and Section 3.1. Moreover the magnetic moment produced by a spinning particle is equal 
to that experimentally observed [25] [26].  

3.1. Driving Velocity of a Spinning Electron Is Equal to the Velocity on the Bohr Orbit  
A spinning electron provides the electric field of the strength  

( )

22 2

2 2
0

ce
e e emceE
x

mc

 = = =  
 ∆  

 
 





                            (14) 

and the magnetic field due to the same electron is [25] [26]  
2 3

.ce
m cB

e
=


                                      (15) 

The driving velocity of a spinning electron is given by the formula [25] [26]  
2 2 2

2 2 2 3 .ce ce ce
d

cece

E em c e ev c c c
BB m c

×
= = = =

E B




                       (16) 

The result in (16) is exactly equal to the orbital electron velocity on the Bohr quantum level 1n = . This 
velocity is obtained from the relation  

2 4 2
1

1 2 3
1

2π 2π
2π

r me ev
T me

= = =




                               (17) 

where  
2

1 2r
me

=


                                         (18) 

is the Bohr radius of the first orbit and  
3

1 4
2πT
me

=
                                         (19) 
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is the corresponding circulation time period, see e.g. [27].  

4. Joule-Lenz law and Its Quantum Aspect   
Our aim is now to obtain a minimal t∆  with the aid of a more fundamental reasoning than applied in (13). To 
this purpose the rate of energy produced according to the Joule-Lenz classical law [7] [8] [28]  

2d
d
E Ri
t
=                                       (20) 

is examined for the case of the quantum systems. R is the electric resistance  

,VR
i

=                                       (21) 

V is a voltage of the electron transition, and  
ei
T

=                                        (22) 

the current intensity. We assume that any considered quantum state is periodic in time, which means that after 
the time interval nt T T∆ = =  the state n is exactly the same as before nT . 

Let the voltage be calculated by assuming that  
EV
e
∆

=                                      (23) 

where  

1n nE E E+∆ = −                                    (24) 

is the energy difference between two neighbouring quantum states. In Section 5.1 the Formula (20) modified 
into  

2E Ri
t

∆
=

∆
                                   (24a) 

has been applied—together with (21)-(24) —to three quantum systems: the hydrogen atom, electron particle in a 
one-dimensional potential box and the harmonic oscillator. A posteriori several characteristic features 
concerning R and the Joule-Lenz law have been obtained. 

The first of them is that  

2
hR
e

=                                     (25) 

is a constant for all systems and all quantum states taken into account. The constant number (25) is well known 
from the experiments on the quantum Hall effect [29]. Another feature is that the product of E∆  and t∆  
calculated in all examined cases is formally similar to that represented by the Formula (1):  

E t h∆ ∆ =                                    (26) 

In fact the Formula (26) disproves that given in (1) in the sense that now we have  
E t h∆ ∆ = >                                  (26a) 

instead of (1). 
Another result found in the course of calculations is that  

;n
ht T
E

∆ = =
∆

                                (27) 

other arguments justifying (26) and (27) are given in [30].  

5. Repercussions of (26) on the Energy-Time Uncertainty Principle 
By assuming that E∆  in (26) is equal to E∆  entering (6) we obtain—after a substitution of (26) into (6)—the 
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relation  

( )22 2 2 22 2 4πmc E t mc t mc t∆ ∆ = ∆ = ∆ >  
                       (28) 

from which  

min 2 .
4π

t t
mc

∆ > ∆ =
                                  (29) 

But the Formula (26) can be applied also in the case when  

min .t t∆ = ∆                                       (30) 

Since maxE E∆ = ∆  in this case, this substitution gives the relation  

max minE t h∆ ∆ =                                      (31) 

from which a maximal energy E∆  involved in an electron transition is  
2

2 2
max

min

4π 8π .h h mcE mc
t

∆ = = =
∆ 

                            (32) 

Let us note that the energy  
22E mc∆ =                                        (33) 

estimated as valid for transition from the Dirac’s antiparticle sea to the electron particles area [31] [32] satisfies 
the condition imposed by (32):  

2 2 22 8π .mc mc<                                      (33a) 

5.1. Quantum Aspect of the Joule-Lenz Law Demonstrated on Three Quantum Systems  
This kind of relation involves the Planck constant h. As a beginning the Joule-Lenz Formula (20) for the 
emission E∆  within the time interval t∆  is applied in the form:  

2.E Ri
t

∆
=

∆
                                        (34) 

Here R is the electric resistance of the circuit having intensity i associated with the emission. The R, i and the 
potential V of the emission are given in (21)-(23). 

For particular systems considered in the present paper this gives  
5

3 32πn
n

e mei
T n

= =


                                     (35) 

for the hydrogen atom because the time period in this case is (see e.g. [27])  
3 3

4
2π .n

nT
me

=


                                        (36) 

For the electron particle in a one-dimensional potential box  

24n
n

e ehni
T mL

= =                                         (37) 

because the particle energy nE  and its velocity nv  are coupled by the Formula (see e.g. [33])  
2 2 2

22 8
n

n
mv n hE

mL
= =                                        (38) 

so  

2n
nhv
mL

=                                         (38a) 
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and the time period of the electron oscillation in the box having length L is  
22 4 .n

n

L mLT
v nh

= =                              (38b) 

In the case of the quantum harmonic oscillator its energy is  

1
2nE n nω ω = + ≈ 

 
                             (39) 

where the last step is valid for large n, and the oscillator frequency is  
2π 2π

n
nT T

ω ω= = =                              (39a) 

valid for all quantum states n, so the time period of the oscillation  
2π

nT T
ω

= =                                (39b) 

is the same for all states n giving  

.
2π

e ei
T

ω
= =                                 (40) 

The E∆  needed to obtain V in (23) are (see e.g. [27])  

( )

4 4

2 2 2 2 3
1 1

2 1
me meE

n nn

 
∆ = − − ≈ 

+   

                      (41) 

for the hydrogen atom on condition a transition between the quantum levels 1n +  and n is considered. 
For a similar pair of levels in a one-dimensional potential box we have  

( )2 2 2
2

2 2

1
8 4

n n nhE h
mL mL

+ −
∆ = ≅                         (42) 

[see (38)] and for the quantum harmonic oscillator the separation between a pair of the neighbouring quantum 
levels of energy is the same for all pairs: 

.E ω∆ =                                  (43) 
This gives  

4 3 3

2 3 5 2 2
1 2π 2πV me n hR

i en me e e
= ≅ = =

 



                      (44) 

for the transition 1n n+ →  in the hydrogen atom on condition large n  is considered,  
2 2

2 2

1 4
4

V nh mL hR
i e ehnmL e

= = =                         (45) 

for a similar transition in a one-dimensional potential box, and  

2
2πV hR

i e e e
ω

ω
= = =

                            (46) 

for a transition done also between the neighbouring levels in the harmonic oscillator. 
A characteristic point is that all R are the same [see (44), (45) and (46)] giving the result typical for the 

electric resistance in the integer quantum Hall effect; see e.g. [29]. 
As a result of substitution of the data calculated in (35) and (44) into the Formula (34) we obtain the 

following quantum emission rate  
25 2 8

2
2 3 3 6 52π 2πn

E h me m eRi
t e n n

 ∆
= = = ∆   

                      (47) 
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for the hydrogen atom; for the electron particle in a one-dimensional potential box (34) gives  
2 3 2

2
2 2 2 44 16n

E h ehn h nRi
t e mL m L

∆  = = = ∆  
                       (48) 

[see (45) and (37)]; finally in the case of the quantum harmonic oscillator the data of (40) and (46) substituted to 
(34) give the emission rate  

( )

2 2 2
2

2 2 .
2π2π

E h eRi
t e

ω ω∆
= = =

∆
                           (49) 

A characteristic point other than equal R values obtained in (44)-(46) is the quantum property which concerns 
the products of E∆  and t∆ . The t∆  which can be readily obtained from (47), (48) and (49) are:  

4 6 5 3 3

2 2 3 2 8 4
2π 2πE me n nt

Ri n m e me
∆

∆ = = =
 



                         (50) 

for the transition examined in the case of the hydrogen atom,  
2 2 4 2

2 2 3 2
16 4

4
E nh m L mLt

nhRi mL h n
∆

∆ = = =                           (51) 

for the transition in a one-dimensional potential box,  

2 2
2π 2πEt

Ri
ω

ωω
∆

∆ = = =



                              (52) 

for the transition considered in the harmonic oscillator. 
The time intervals of (50), (51) and (52) can be multiplied by the intervals E∆  which were at the basis of 

the mentioned results for t∆ ; see (41), (42) and (43). In effect we obtain  
4 3 3

2 3 4
2π 2π ,me nE t h

n me
∆ ∆ = ⋅ = =







                           (53) 

2 2

2
4 ,

4
n mLE t h

nhmL
∆ ∆ = ⋅ =



                              (54) 

and  
2π 2π ,E t hω
ω

∆ ∆ = = =                                (55) 

respectively in the case of the hydrogen atom, a particle in the potential box and the harmonic oscillator. 
Because of the results obtained in (53), (54) and (55) the time rate of the quantum emission of energy takes 

the form  

( )2
quant EE

t h
η

∆∆
= =
∆

                                 (56) 

in view of the fact that  

( ) 1 Et
h

− ∆
∆ =                                     (57) 

is given systematically by equations (53)-(55); see also [30]. 

6. Observables Obtained with the Aid of the Time Intervals ∆t and ∆tmin   
Some interesting results seem to be obtained with the aid of the velocity observable  

d
dt t

∆
= ≈

∆
r rv                                     (58) 

and the intervals of time combined with it. A simple multiplication applied in (58) should give  
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.t∆ = ∆v r                                     (59) 
Our first aim is to check whether result (59) is obtained when t∆  entering (59) satisfies the relation  

,ht
E

∆ =
∆

                                    (60) 

where the last formula is a result of (26). 
For the hydrogen atom we have the orbit radius:  

2 2

2n
nr
me

=


                                    (61) 

and the electron velocity in state n is  
2

.n
ev
n

=


                                     (62) 

In the next step the energy interval concerning the neighbouring levels 1n +  and n is that given in (41) so, 
because of (60), we have  

2 3 3 3

4 4
2π ;n

h n nt T
me me

∆ = = =
 

                             (63) 

see (36). The result for the product of the velocity and time t∆   
2 3 3 2 2

4 2
2π 2π 2π n

e n n r
n me me

= =
 



                            (64) 

represents the whole of the circular length associated with the orbit n; see (61). 
For a free particle in the potential box having length L the distance travelled within one period of time nT  is 

the same for all n namely  
2 2

2
8 2 .

2 2 2n n n
nh h nh mLv t v T L
mL E mL nh

∆ = = ≅ =
∆

                      (65) 

The velocity term nv  in (65) satisfies the formula for the kinetic energy of a free particle; see (38). The 
second term in (65) should be evidently  

22 4
n

n

L mLt T
v nh

∆ = = =                                 (66) 

because the energy difference of free electrons is given in (42), so we obtain t∆  equal to nT  in (66). This 
time interval multiplied by nv  entering the Formula (38) gives the product identical with that calculated in 
(65). 

For the low energy excitation of the harmonic oscillator we have  
E ω∆ =                                        (67) 

where ω  is the circular frequency. Therefore    
2π 1 .h ht T

E ω ω ν
∆ = = = = =

∆ 

                             (68) 

All formulae (63), (66) and (68) give  
t T∆ =                                         (69) 

where T is a time period characteristic for a quantum state involved in the energy transition. 
Other calculations for the harmonic oscillator are less accurate because the variables applied in them are 

dependent on time, for that reason only the average quantities are taken into account [34]. The average distance 
having the same sign occupied by the oscillator is evidently  

2
ax =                                         (70) 

where a is the oscillator amplitude. 
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Since the absolute value of the oscilator velocity is [34]  

( ) ( )
1 2

1 2 1 22 2 2 2d ,
dx
x kv a x a x
t m

ω = = − = − 
 

                     (71) 

where k is oscillator strength and ω  the oscillator frequency, the average oscillator velocity taken over the 
distance of the amplitude is  

2 2
0

πd .
4

a
xv a x x a

a
ω ω

= − =∫                             (72) 

Because of (67) we have  
2π π

4 2x x
h hv t v a a
E

ω
ω

∆ = = =
∆ 

                           (73) 

which is a result 2π  times larger than in (70). 
In general we found that t∆  can reproduce the observables of geometrical distance in small quantum 

systems with the accuracy to a constant coefficients. 
An interesting point is the calculation of the distance observables when the interval t∆  is replaced by mint∆  

given in (29). For the hydrogen atom in the state of 1n =  we obtain  
2 2

1 min 2 24π 4π
e ev t

mc mc
∆ = =





                             (74) 

which is equal to ( ) 14π −  times the radius of a sphere representing the microstructure of the electron particle [8] 
[35]. 

A similar product calculated for a one-dimensional free-electron case gives  
2

1 min 2 2 2 2 ,
2 4π 4

hv t L
mL mc m c L

∆ = = =
 

                          (75) 

where 1v  is taken from (65). Here we require that the equality of (75) with 2L  entering 1v  should be 
satisfied, in result an equation for 2L  is obtained. Its solution is close to 0x∆  derived in (12). 

For the harmonic oscillator a requirement that (72) should hold also in the case of mint t∆ = ∆ , so  
2

min 2
π π ,

4 24πxv t a a
mc

ω
∆ = =



                              (76) 

leads to a maximal frequency ω  which can be admitted by the oscillator:  
2 2

2 20 1
max

8π 8π 9 10  secmcω ω −= = ≈ × ×


                         (77) 

This number is not extremely different from a maximal frequency of the oscillator attained in another way 
[21].  

7. Discussion on ∆t and Emission Rate of the System Energy 
If we combine the Formulaes (26) and (69) together with  

1
T

ν =                                           (78) 

we obtain  
h hE h
t T

ν∆ = = =
∆

                                   (79) 

which is the well-known fundamental Planck formula on condition ν  is considered as the frequency of the 
electromagnetic wave associated with the energy E∆ . Consequently T has to be identified with the time period 
of that wave. From our derivation of (68) given in Section 6 it can be deduced that T is not much different than 
the time periods associated with quantum states 1n +  and n entering the difference E∆ ; see (63), (66) and 
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(68). 
A new result in (78) which seems to be neglected by many authors is that  

.T t= ∆                                        (80) 
This means that performance of the electron transition between quantum states 1n +  and n occupies solely 

one oscillation time period of the electromagnetic wave strictly connected with the period of the quantum level 
involved in the mentioned transition. 

In effect of (26) and (69) the emission rate of energy in a quantum system can take a very simple formula  

( )2

2 .
EE E h

t h T T
∆∆ ∆

= = =
∆

                              (81) 

A maximal time rate of energy which can be attained by a fermion particle of mass m in a single transition is  

( )
( )

( )22 2 2
max

2
max min

8π
;

mcEE h
t h ht

∆∆  = = = ∆  ∆
                    (81a) 

see (29) and (32). 
For the hydrogen atom at large n we have [see (41) and (50)]  

14 3 3 2 8

3 2 4 6 5
2π .

2π
E me n m e
t n me n

−
 ∆

≅ = ∆  



 

                          (82) 

This result can be compared with a classical emission rate; see Section 9. 
On the other hand for a harmonic oscillator we obtain  

2

.
2π

E E
t T

ωων∆ ∆
= = =

∆
                               (83) 

A reference of this formula to the classical emission rate of energy is discussed also in Section 9.  

8. Corollary Concerning the Time Rate of Disspation Energy in a Metal   
The Joule-Lenz dissipation rate of the electron energy in a metal referred to a single electron transition can be 
represented by the formula [8]:  

22d 1 .
d 2

e lE E
t t m v

∆
≈ =
∆

E
                               (84) 

Here l is the electron free path, E  is the strength of the electric field acting on the metal, v  is the average 
electron velocity which is  

F
lv v
τ

= ≅                                   (85) 

where Fv  is the Fermi velocity because the electrons located mainly near the Fermi level are submitted to the 
motion due to the action of E , the parameter τ  is the relaxation time. The work done along the length l is 
connected with τ  by the acceleration formula  

( )
2

2 1
2

E e l e
m
τ

∆ = =E E                            (86) 

because  
2

.
2

e
l

m
τ

=
E

                                   (87) 

In effect from (86)  

( )2

2 .
2

eE
mτ

∆
=

E
                                  (88) 
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On the other hand, because of (84) and (85)  

( ) ( )
2 2

,
2

e EE
t m h

τ
∆∆

= =
∆

E
                             (89) 

where the last step is coming from the present formalism; see (81). From (88) and (89) we obtain the relation  

( ) ( )
2 2

22
e EE

m hττ
∆∆

= =
E

                              (90) 

or  
.E hτ ∆ =                                      (91) 

If we note that relation  

t E h∆ ∆ =                                     (92) 

is satisfied for small E∆  according to the present formalism, we obtain  
.t τ∆ =                                       (93) 

In consequence the rate  

( )2 2
E h h
t t τ

∆
= =

∆ ∆
                                 (94) 

does hold for a single electron transition in the metal. The Formula (94) can be submitted to the experimental 
verification. 

It can be noted that for  

,τ → ∞                                        (95) 

which is the case of the electron transport in superconductors, we obtain in result of (94) that  

0.E
t

∆
→

∆
                                      (96) 

9. Application of the Formalism: Classical Emission Rate of Energy Compared  
with the Quantum Rate 

The classical emission rate depends both on the amplitude a of the oscillator and the emitted frequency ω  
[36]:  

2
class 2 4

3 .
3
e a
c

η ω=                                     (97) 

We assume the transition is going on between two neighbouring quantum levels 1n +  and n. 
For the harmonic oscillator being in state n the amplitude can be deduced from a classical relation between 

the energy and amplitude. Therefore for the energy  

1
2nE n nω ω = + ≅ 

 
                                   (98) 

this gives (see e.g. [34])  
1 2 1 2 1 2

2 2
2 2 2 .nE n na

mm m
ω

ωω ω
     = ≅ =         

                             (99) 

The frequency ω  is assumed to be that given by the transition energy  

.E ω∆ =                                        (100) 

For the classical emission rate of the harmonic oscillator having frequency ω  we obtain with the aid of (98) 
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the formula  
3

class 2
3

1 2
3

n e
m c

ωη =


                                 (101) 

and an interesting result is the ratio of the classical and quantum emission rates of the oscillator. This is given by 
the formula [see (83)]  

class 2 3 2 2

quant 3 3
2 4π: .
3 2π 3
n e en

m c mc
η ω ω ω
η

= =
                            (102) 

The ratio (102) differs solely by the factor of  
2π nn nT
ω ν

= =                                   (103) 

from the damping constant  
2

2
3

2
3

e
mc

γ ω=                                   (104) 

of the classical emission see [36] [37]. The T entering (103) is the oscillation time period of the electromagnetic 
wave having the frequency ν . The product  

nT N=                                     (105) 
is the number of excitations within the time period T; see [36]. 

A similar calculation can be done for the hydrogen atom. In this case the classical emission rate between 
levels 1n +  nad n becomes  

2 4 22 2 2 2 2 14 2
class 2 2

3 3 3 2 2 3 8 8
2 d 2 2 2 ;

d3 3 3 3
n

n

vE e e me e me e
t t r nc c c n c n

η
     ∆  = = ≅ = =      ∆       

v
  

            (106) 

here (61) and (62) are taken into account. The quantum rate of emission is  

( ) 22 4 2 8
quant

2 3 5 6
1

2π
EE me m e

t h hn n
η

∆  ∆
= = = = ∆   

                       (107) 

on the basis of (80) and (81). Therefore the ratio of (106) to (107) becomes  
class 14 2 5 6 6

3
quant 3 8 8 8 2 3 3 2 2

2 2π 4π 1 4π 1
3 33

e m n e
c n e m c n n

η α
η

= = =


 

                  (108) 

where  
1

137
α ≅                                     (109) 

is the fine-structure atomic constant; see e.g. [4].  

10. Summary   
The physical consequencies of a quantum aspect of the Joule-Lenz law for the dissipation rate of energy are 
examined. 

The mentioned aspect seems to influence the uncertainty principle for energy and time. In consequence a 
lower limit of the time interval and an upper limit of the energy interval admissible in a quantum transition 
process could be calculated. 

The next point concerned the time rate of the low-energy transitions was performed in small quantum systems. 
On the basis of the Joule-Lenz law the transition time between quantum levels could be calculated in a definite, 
i.e. non-probabilistic, way. This calculation indicates a similarity existent in the size of the seeked transition 
time and time periods characterizing the examined quantum levels. 

In effect a simple formula coupling the transition time t∆  with transition energy E∆  could be obtained. 
The formula makes a reference to the Planck constant h and points out that transition time is in fact equal to the 
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time period T of the electromagnetic wave produced in effect of the transition. 
As an application of the theory, the classical and quantum emission rate of energy in two systems (harmonic 

oscillator and the hydrogen atom) taken as examples have been calculated and compared. 
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