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Abstract 
In this paper, a linearized three level difference scheme is derived for two-dimensional model of 
an alloy solidification problem called Sivashinsky equation. Further, it is proved that the scheme is 
uniquely solvable and convergent with convergence rate of order two in a discrete L∞-norm. At last, 
numerical experiments are carried out to support the theoretical claims. 
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1. Introduction 
In the solidification of a dilute binary alloy, a planer solid-liquid interface is often to be instable, spontaneously 
assuming a cellular structure. This situation enables one to derive an asymptotic nonlinear equation which di-
rectly describes the dynamic of the onset and stabilization of cellular structure  

( )
4

4 2 0,u u uu u
t x xx

α∂ ∂ ∂ ∂ + + − + = ∂ ∂ ∂∂  
                          (1.1) 

where α  is a positive constant, (see [1] [2]). Equation (1.1) is referred as the Sivashinsky equation. 
In this article, we introduce the mathematical model for a finite difference discretization to the solution of the 

periodical boundary of two-dimensional Sivashinsky equation:  

( ) ( )2 2, , , 0 ,tu u u f u x y t Tα+ ∆ + = ∆ ∈ < ≤                       (1.2) 
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with the initial condition  

( ) ( ) ( ) 2
0, ,0 , , , ,u x y u x y x y= ∈                            (1.3) 

subject to the ( )1 2,L L -periodic boundary conditions  
 ( ) ( ) ( ) ( )1 2, , , , , , , , , , 0 ,u x L y t u x y t u x y L t u x y t t T+ = + = < ≤                (1.4) 

where ( ) 21 2
2

f u u u= − , 0,α >  
2 2

2 2

u uu
x y
∂ ∂

∆ = +
∂ ∂

 is the Laplacian operator, and ( )0 ,u x y  is a given 

( )1 2,L L -periodic smooth function. 
Several numerical methods have been proposed in the literature for discretizing Sivashinsky equation. A 

semi-implicit finite difference scheme and a linearized finite difference method for the Sivashinsky equation in 
one-dimensional have been proposed respectively in [3] [4]. A semidiscrete approximation of the two dimen-
sional Sivashinsky equation with lumped-mass method and optimal order error bounds for the piecewise linear 
approximation are derived in [5]. There are many papers that have already been published to study the finite 
difference method for fourth-order nonlinear equation, for example [5]-[14] and so on.  

In this work, we investigate a linearized three level difference scheme for two-dimensional Sivashinsky equa-
tions. The remainder of this paper is organized as follows. In Section 2, a linearized difference scheme for (1.2) 
is derived. The unique solvability of the approximate solutions is shown in Section 3. A second order convergent 
linearized difference scheme is proved in Section 4. At last section, some numerical examples are presented to 
improve the theoretical results. 

2. Linearized Difference Scheme 
To solve the periodic initial-value problems (1.2)-(1.4), one can restrict it on a bounded domain  

( ) ( )1 20, 0,L LΩ = × . For a positive integer N, let time-step 
T
N

τ = , nt nτ= , 0 n N≤ ≤ , and  

( )1 1
2

1
2 n nn

t t t +
+

= + , 0 1n N≤ ≤ − . We define a partition of [ ] [ ]1 20, 0,L L×  by the rectangles  

[ ]1 1, ,i i j jx x y y+ + ×    with 1ix ih= , 2jy jh= , 1
10,1, 2, , :

Li M
h

 = =   
 , 2

20,1, 2, , :
Lj M
h

 = =   
 , such that 

1 1 ,h hγ=  2 2 ,h hγ=  
1
2

3 ,h
ε

τ γ
+

=  where 1 2 3, ,γ γ γ  and ε  are positive constants. The optimal choice for ε  is 
1
2

. Denote  

( ){ } { }1 2, /1 ,1 , / 0 .h i j nx y i M j M t n NτΩ = ≤ ≤ ≤ ≤ Ω = ≤ ≤  

We define the space of periodic grid functions on hΩ  as:  

( ){ }1 2, , , , , ,,
/ , , , , .h i j i j i M j i j i j M i ji j

V V V V V V V i j+ +∈
= = ∈ = = ∈


  

For hV ∈ , denote  

1, , , 1 ,
, ,, ,i j i j i j i j

x i j y i j

V V V V
V V

h h
δ δ+ +
+ +

− −
= =  

, 1, , , 1
, ,, ,i j i j i j i j

x i j y i j

V V V V
V V

h h
δ δ− −
− −

− −
= =  

2 2
, , , ,, ,x i j x x i j y i j y y i jV V V Vδ δ δ δ δ δ+ − + −= =  

( ) ( )2 2 2
, , , ,, .h i j x y i j h i j h i jV V V Vδ δ∆ = + ∆ = ∆ ∆  
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Further, define operators 
1
2

n
V

+
, n̂V  and n

tV∂ , respectively, as  
1 1 1

ˆ 12 3 1, , .
2 2 2

n n n nn n n n n
t

V V V VV V V V V
τ

+ ++ −+ −
= = − ∂ =

 
For hU ∈  and hV ∈  define the inner product  

( )
1 2

2
, ,

1 1
, ,

M M

i j i jh
i j

U V h U V
= =

= ⋅∑∑
 

and Sobolev norms (or seminorms) 

( )
1 2

1
2

,, 1 ,1
, , max ,i jhh h i M j M

V V V V V
∞ ≤ ≤ ≤ ≤

= =
 

( )1 2 1 2

1 1
2 22 2 2

1 2 , , 1 2 ,1, 2,
1 1 1 1

, .
M M M M

y i j y i j h i jh h
i j i j

V h h V V V h h Vδ δ+ +
= = = =

   
= + = ∆   
   

∑∑ ∑∑
 

Define 6,6,3
, ,x y tC  as the space of functions ( ), ,u x y t  which are of class 6C  with respect to ,x y  and class 

3C  with respect to t.  
It follows from summation by parts that the following Lemma holds [5] [6].  
Lemma 1. For , hU V ∈ , we have  

( ) ( ), ,h hh h
V U V U∆ = ∆                                 (2.1) 

( ) 2

1,,h hh
V V V− ∆ =                                   (2.2) 

( ) 22
2,, .h hh

V V V∆ =                                   (2.3) 

We discretize problems (1.2)-(1.4) by the following finite difference scheme: we approximate n
hu ∈ , 

( ), , , ,n n
i j i ju u x y t=  by n

hU ∈   

( )
1 1

ˆ2 2 2
, , , , 1 2, 1 , 1 , 1 1.

n nn n
t i j h i j i j h i jU U U f U i M j M n Nα

+ +
∂ + ∆ + = ∆ ≤ ≤ ≤ ≤ ≤ ≤ −           (2.4) 

( )0
, 0 1 2, , 1 , 1 ,i j i jU u x y i M j M= ≤ ≤ ≤ ≤                         (2.5) 

( ) ( ) ( ) ( )( )1 2
, 0 0 0 0 1 2, , , , , 1 , 1 .i j i j i j i j i jU u x y u x y u x y f u x y i M j Mτ α = + −∆ − + ∆ ≤ ≤ ≤ ≤      (2.6) 

3. Solvability of the Difference Scheme 
Next, we will discuss the unique solvability of the difference schemes (2.4)-(2.6).  

Theorem 1. Difference schemes (2.4)-(2.6) have a unique solution.  
Proof. It is obvious that 0U  and 1U  are uniquely determined by the initial conditions (2.5) and (2.6). Now, 

we suppose that 0 1, , , nU U U  ( 0 1n N≤ ≤ − ) can be solved uniquely. Consider the homogeneous equation of 
(2.4) for 1nU + :  

1 2 1 1
, , , 1 2

1 1 0, 1 , 1 .
2 2

n n n
i j h i j i jU U U i M j Mα

τ
+ + ++ ∆ + = ≤ ≤ ≤ ≤                    (3.1) 

Taking the inner product of (3.1) with 1
,
n
i jU + , it follows from Lemma 1 that  

2 2 21 1 1

2,

1 1 0.
2 2

n n n
h h h

U U Uα
τ

+ + ++ + =
 

This implies,  
21 0.n
h

U + =
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That is, (3.1) has only a trivial solution. Thus, by the induction principle, (2.4) determines 1nU +  uniquely. 
This completes the proof.  

4. Convergence of the Difference Scheme 
For a smooth function u, we have  

( )
1

ˆ 1 223 1 as 0.
2 2

nn n nu u u u O τ τ
+−= − = + →  

Therefore, the extrapolation just proposed will give second-order accuracy. To show the convergence of the 
difference scheme, we need the following Lemmas.  

Lemma 2. [15] [16]. Let 1 2,b b  and , 1, 2,3, ,ia i =   be positive and satisfy  

( )1 1 21 , 1, 2, ;i ia b a b iτ τ+ ≤ + + =   
then 

( ) 2
1 1 1

1

exp .i
ba b i a
b

τ+

 
≤ + 

   
Lemma 3. [17]. For any grid function v on ( ){ }1 2, /1 ,1h i jx y i M j MΩ = ≤ ≤ ≤ ≤  there is a positive con-

stant c independent h such that  

( )
11
22

, 2, .h h h hv c v v v
∞

≤ +
 

The main result of this article is the following Theorem.  
Theorem 2. Assume the solution of ( ), ,u x y t

 
of (1.2)-(1.4) belong to [ ] [ ] [ ]( )6,6,3

, , 1 20, 0, 0,x y tC L L T× × . Then, 
the solution of difference schemes (2.4)-(2.6) converges to the solution of the problems (1.2)-(1.4) with the con-
vergence order of ( )2 2 2

1 2O h h τ+ +  in the discrete L∞ -norm.  

Proof. Define the net function ( ), 1 2, , , 1 , 1 , 0 .n n
i j i iu u x y t i M j M n N= ≤ ≤ ≤ ≤ ≤ ≤  

Therefore, From Taylor expansion, we have for 1 21 , 1 ,i M j M≤ ≤ ≤ ≤  

( )
1 1

ˆ2 2 2
, , , , , , 1 1.

n nn n n
t i j h i j i j h i j i ju u u f u F n Nα

+ +
∂ + ∆ + = ∆ + ≤ ≤ −                   (4.1) 

( )0
, 0 , ,i j i ju u x y=                                   (4.2) 

( ) ( ) ( ) ( )( )1 2
, 0 0 0 0 ,, , , , ,i j i j i j i j i j i ju u x y u x y u x y f u x y Gτ α = + −∆ − + ∆ +              (4.3) 

where ,
n

i jF  and ,i jG  are truncation errors of difference schemes (2.4)-(2.6) and there exists a constant 1c  
such that  

( )2 2 2
, 1 1 2 1 2, 1 , 1 , 1 1.n

i jF c h h i M j M n Nτ≤ + + ≤ ≤ ≤ ≤ ≤ ≤ −                 (4.4) 

( )( )12 2
, 1 1 20

, , 1 d , 1 , 1 .i j tt i jG u x y s s s c i M j Mτ τ τ= − ≤ ≤ ≤ ≤ ≤∫                (4.5) 

Let , , ,
n n n
i j i j i jE u U= −  and subtracting (2.4)-(2.6) from (4.1)-(4.3), we obtain  

( ) ( )
1 1

ˆ ˆ2 2 2
, , , , , , 1 2, 1 , 1 , 1 1

n nn n n n
t i j h i j i j h i j h i j i jE E E f u f U F i M j M n Nα

+ +
∂ + ∆ + = ∆ −∆ + ≤ ≤ ≤ ≤ ≤ ≤ −    (4.6) 

0
, 1 20, 1 , 1 ,i jE i M j M= ≤ ≤ ≤ ≤                             (4.7) 

1
, , 1 2, 1 , 1 .i j i jE G i M j M= ≤ ≤ ≤ ≤                            (4.8) 

We prove by inductive method that  

( )2 2 2
2 1 2 , 0 .n

h
E c h h n Nτ≤ + + ≤ ≤                           (4.9) 
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From (4.5) and (4.7)-(4.8), we have  

( )0 1 2 2 2
1 1 20, .

h h
E E c h h τ= ≤ + +                           (4.10) 

It follows from (4.10) that (4.9) is valid for 0n =  and 1n = . Now suppose that (4.9) is true for n from 0 to l 
( )1 1l N≤ ≤ − . Therefore, for h sufficiently small  

( )2 2 2
, 2 1 2 1 2 1 21, 1 , 1 , 1 .n

i jE c h h h h i M j M n lτ≤ + + ≤ ≤ ≤ ≤ ≤ ≤ ≤             (4.11) 

Thus,  

, , , , , 1 21, 1 , 1 , 1 ,n n n n n
i j i j i j i j i jU u E u E s i M j M n l= − ≤ + ≤ + ≤ ≤ ≤ ≤ ≤ ≤            (4.12) 

where  

( )
1 20 ,0 ,0
max , , .

x L y L t T
s u x y t

≤ ≤ ≤ ≤ ≤ ≤
=

 

For 1 n l≤ ≤ , taking in (4.6) the inner product with 
1
2

,

n

i jE
+

  

( ) ( )
2 21 1 1 1 1

ˆ ˆ2 2 2 2 2

2,

, , , .
n n n n nn n n n

t h
h h h h h

E E E E f u f U E F Eα
+ + + + +     

∂ + + = − ∆ +          
     

        (4.13) 

Noting that from the Lipschitz condition of f  

( ) ( )ˆ ˆ ˆ
, , 3 , 1 2, 1 , 1 ,n n n

i j i j i jf u f U c E i M j M− ≤ ≤ ≤ ≤ ≤                    (4.14) 

where  

( )
( )3 1 1

dmax .
ds z s

fc z
z− + ≤ ≤ +

=
 

For 0α > , it follows from (4.13) and (4.14) that  

( )
2 2 21 1 122 2 2 2ˆ1 32 2 2

2, 2,

1 1 1 .
2 4 2 2

n n nn n n n
h h h h

h h h

cE E E E E F E
k

+ + ++ − + ≤ + + +

 
Using (4.4), we get  

( ) ( )22 2 2 2 21 1 1 2 2 2 2
4 1 1 2

1 .
2

n n n n n
h h h h h

E E c E E E c h h τ
τ

+ − + − ≤ + + + + +    
This yields  

( ) ( ) ( )22 2 21 1 2 2 2 2
4 4 4 1 1 21 2 1 2 2 2 .n n n

h h h
c E c E c E c h hτ τ τ τ τ+ −− ≤ + + + + +

 

Therefore, when 
4

1
6c

τ ≤   

( ) ( )22 2 21 1 2 2 2 2
4 4 1 1 21 6 3 3 .n n n

h h h
E c E c E c h hτ τ τ τ+ −≤ + + + + +

 
It follows easily from this inequality that  

( ) ( ) ( ) ( )22 2 2 21 1 2 2 2 2
4 1 1 2max , 1 9 max , 3 .n n n n

h h h h
E E c E E c h hτ τ τ+ −≤ + + + +

 
Applying Lemma 2, we obtain  

( ) ( ) ( ) ( )
2 22 2 2 21 0 2 2 21

4 1 2
4

max , exp 9 max , .
3

l l l
h h h h

cE E c l E E h h
c

τ τ+  
≤ + + + 

   
Using (4.10), we get  
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( ) ( ) ( )22 21 2 2 2 2
4 1 1 2

4

1max , exp 9 1 ,
3

l l
h h

E E c T c h h
c

τ+  
≤ + + + 

   
and hence,  

( )21 2 2 2
5 1 2 ,l

h
E c h h τ+ ≤ + +

 
where 5c  is constant dependent on 1,T c  and 4c . That means, by the induction principle (4.9) is true. 

Second, we will prove that  

( )2 2 2
6 1 22,

, 0 .n
h

E c h h n Nτ≤ + + ≤ ≤                          (4.15) 

From (4.7), we find  
0

2,
0.

h
E =                                     (4.16) 

Using (4.5), we obtain  

( ) ( ) ( ) ( )1 1 12
, 20

1

, , 2 , , , ,
1 d .tt i j tt i j tt i j

xh i j

u x y s u x y s u x y s
G s s

h
τ τ τ

τ + −− +
∆ = −∫

 
This implies that  

( ) ( )12
, 0

, , 1 d ,xh i j ttxx i jG u y s s sτ χ τ∆ = −∫  
where ( )1,i ix xχ +∈ . Thus, we get 2

xh hG Cτ∆ ≤ . Similarly we find, 2
yh h

G Cτ∆ ≤ . Then  

( )1 2 2 2
7 1 22,

.
h

E c h h τ≤ + +                               (4.17) 

Taking now in (4.6) the inner product with n
t E∂ , we obtain for 1, 2, ,n N=    

( ) ( ) ( )( ) ( )
1

2 2 ˆ ˆ2
2,

1 , , , .
2

nn n n n n n n n
t t t h h t th h hh

h

E E E E f u f U E F Eα
+ 

∂ + ∂ = − ∂ + ∆ − ∆ ∂ + ∂  
   

Using the differentiability of f and the Cauchy Schwartz inequality, we obtain  

( )
2122 2 2 2 2 2 2ˆ22

32,

1 1 1 1 .
2 2 2 4 4

nn n n n n n n
t t t t th h h h h h h

h

E E E E c E E F Eα +
∂ + ∂ ≤ + ∂ + + ∂ + + ∂

 
This yields by (4.4)  

( ) ( )22 2 2 21 1 2 2 2
8 1 22,

.n n n n
t h h h h

E c E E E h h τ− + ∂ ≤ + + + + +    
It follows from (4.9) that  

( ) ( )22 21 2 2 2
9 1 22, 2,

1 .n n
h h

E E c h h τ
τ

+ − ≤ + +
 

Here, by above,  

( )22 2 2 2
10 1 22,

,n
h

E c n h hτ τ≤ + +
 

and hence,  

( )( )2 2 2
1 22,

, , 1 .n
h

E C u T h h n Nτ≤ + + ≤ ≤                        (4.18) 

Applying Lemma 3, (4.9) and (4.16)-(4.18), we obtain  

( )2 2 2
1 2,

.n
h

E C h h τ
∞

≤ + +
 



M. Rouis, K. Omrani 
 

 
7 

This completes the proof.  

5. Numerical Experiments 
In this section, we give some numerical experiments to verify our theoretical results that are given in the pre-
vious sections. For that purpose, we consider the following periodic inhomogeneous Sivashinsky equation  

( ) ( ) ( ) ( ) [ ]2 212 2 , , , , 0, 2π 0,2π , 0,1 ,
2tu u u u u g x y t x y t + ∆ + + ∆ − = ∈ × ∈ 

 
          (5.1) 

with the initial condition  

( ) ( ) ( ) [ ] [ ], ,0 cos , , 0, 2π 0,2π ,u x y x y x y= + ∈ ×                      (5.2) 

where  

( ) ( ) ( ) ( )2 2, , 4cos sin 2sin .g x y t x y t x y t x y t= + + − + + − + +  
For which the exact solution is ( ) ( ), , cos .u x y t x y t= + +  
In the runs, we use the same spacing h in each direction, 1 2h h h= = , and compute the maximum norm errors 

of the numerical solution  

( )
0

, max .n n

n N
e h u Uτ∞ ∞≤ ≤

= −
 

The convergence order in spatial direction is defined as  

( )
( )1 2
2 ,

log ,
,

e h
rate

e h
τ
τ

∞

∞

 
=   

   
when τ  is sufficiently small. The convergence order in temporal direction is defined as  

( )
( )2 2

, 2
log ,

,
e h

rate
e h

τ
τ

∞

∞

 
=   

   
when h is sufficiently small. We also define the rate of convergence  

( )
( )3 2
2 , 2

log ,
,

e h
rate

e h
τ
τ

∞

∞

 
=   

   
when both h and τ  are sufficiently small.  

By computing the problems (5.1)-(5.2) with the difference schemes (2.4)-(2.6), we carry out the spatial and 
temporal convergence in the sense of the maximum norm. Table 1 and Table 2 give the errors between numeri-
cal solutions and exact solutions for spatial and temporal convergence, respectively. Once again, we conclude 
from Tables 1-3, that the difference schemes (2.4)-(2.6) are convergent with the convergence order of two both 
in space and in time. This is in accordance with Theorem 2. 

6. Conclusion 
In this paper, we use the discrete energy method to study the convergence of a linearized difference scheme for 
solving the two-dimensional Sivashinsky equation. The convergence is proved to be second order in the maxi- 

 
Table 1. The spatial convergence orders in maximum norm for difference schemes (2.1)-(2.3) to the inhomogeneous Siva-
shinsky Equations (5.1) and (5.2), with 0.0025τ = . 

h ( )τ,he∞  rate1 

0.1 5.832E−3 * 

0.05 1.454E−3 2.003 

0.025 3.462E−4 1.989 

0.0125 8.445E−5 1.997 
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Table 2. The temporal convergence orders in maximum norm for difference schemes (2.1)-(2.3) to the inhomogeneous Si-
vashinsky Equations (5.1) and (5.2), with 0.0025h = . 

h ( )τ,he∞  rate2 

0.1 8.745E−4 * 

0.05 1.913E−4 2.187 

0.025 4.115E−5 2.274 

0.0125 9.570E−6 2.042 

 
Table 3. The maximum norm errors and convergence orders for difference schemes (2.1)-(2.3) to the inhomogeneous Siva-
shinsky Equations (5.1) and (5.2). 

h τ  ( )τ,he∞  rate3 

0.1 0.1 7.452E−3 * 

0.05 0.05 1.733E−3 2.216 

0.025 0.025 4.266E−4 2.012 

0.0125 0.0125 1.043E−4 2.003 

 
mum norm, which extends the result in [3] [4] where they only prove the second order convergence of the dif-
ference scheme for one-dimensional Sivashinsky equation in the discrete 2L -norm. For obtaining the approx-
imate solution for the two dimensional Sivashinsky equation by finite element Galerkin method, one must need 
polynomials of the degree 3≥ . It means that they have to construct minimum 10 node triangle for approximat-
ing the solution. Computationally, it is very expensive and difficult to impose inter-element 1C  continuity con-
dition. If the boundary is curved, imposition of boundary conditions causes some more difficulties. Therefore, 
based on the linearized difference schemes (2.4)-(2.6), this article proposes a recipe to eradicate such numerical 
difficulties. 
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