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Abstract 
This paper discusses consensus control for a kind of dynamical agents in network. It is assumed 
that the agents distributed on a plane and their location coordinates are measured by remote 
sensor and transmitted to its neighbors. By designing the linear distributed control protocol, it is 
shown that the group of agents will achieves consensus. The simulations are given to show the ef-
fectiveness of our theoretical result. 
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1. Introduction 
Distributed coordination of network of dynamic agents has attracted a great attention in recent years. Modeling 
and exploring these coordinated dynamic agents have become an important issue in physics, biophysics, systems 
biology, applied mathematics, mechanics, computer science and control theory [1]-[11]. How and when coordi-
nated dynamic agents achieve aggregation is one of the interesting topics in the research area. Such problem 
may also be described as a consensus control problem. 

To describe the collective behavior of agents in a large scale network, the agent in the network usually is 
modeled by a very simple mathematical model, which is an approximation of real objects. Saber and Murray [3] 
[4] proposed a systematical framework of consensus problems in networks of dynamic agents. In their work the 
dynamics of the agent is modelled by a simple scalar continuous-time integrator x u= , the convergence analy-
sis is provided in different types of the network topologies. Following the work of [3] [4], Guangming Xie [10] 
study the case where the agent is a point-mass distributed in a line, and its dynamics is described by the New-
ton’s law ma F= . In their work the dynamic agents connected by a network, which is characterized by a graph 
and each agent is Lyapunov stable. They show that by means of a simple linear control protocol based on the 
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structure of the graph, the dynamical agents will eventually achieve aggregation, i.e. all agents will gradually 
move into a fixed position, meanwhile their velocities converge to zero. 

In our work a similar problem is studied under the condition that the agents move in a plane. The agents may 
represent the vehicles or mobile robots spread over a wild area and they communicate by means of some remote 
sensors with certain error. When the agents are moving in a plane, the collective behavior conditions will depend 
on the communicated error and the algebraic characterization of the communicated network topology, as well as 
the dynamical behavior of agents. 

This paper is organized as follows. In Section 2, we recall some properties on graph theory and give the prob-
lem formulation. In Section 3 the main results of this paper are given and some simulation results are presented 
in Section 4. Final section is a conclusion. 

2. Preliminaries 
Consider a network of dynamical agents defined by a graph ( ), ,=G V E A . The node set V  consists of 
dynamical agents ;ip i M∈ . The dynamics of ip  for i M∈  is described as follows. 

Let ( ) 2
1 2,i i ix x x Rτ= ∈  be the coordinate of dynamical agent ip  in 2R , then the dynamical equation of 

agent ip  is 

i i

i i i i

i
i

i

x v
m v kv u

x
y F

v

=

= +

 
=  

 



                                        (1) 

where ( )1 2,i i ix x x τ=  indicates the location of agent ip  in the plane, ( )1 2,i i iv v v τ=  represents the velocity of 

the i-th agent and im  is its mass and 11 12

21 22

k k
k

k k
 

=  
 

 is a dynamical feedback matrix of the agent. F is an ob- 

servation matrix of the agent by some remote sensor. 
In what follows we simply assume that 1im =  for all i M∈  and i ip x= . Let [ ]0F C=  which means 

that the location information of the i-th agent is only measured by some remote sensor and is transmitted to its  

neighbors through the network. The matrix C is assumed to be an orthogonal matrix in the form 
1

1
C

δ
δ

 
=  − 

. 

The parameter δ  will indicates that the network transmitted error or the coordinates used for sensor could be 
different from that of the agents. 

For the dynamic agent (1) in network we have following assumption. 
Assumption 2.1 The dynamics (1) is Lyapunov stable when it disconnected with its neighbors, meaning that 

the dynamical agent as an autonomous will gradually stop by moving a finite distance for any non-zero initial 
velocity ( )0iv . 

The collective behavior of dynamical agents in network can be described by 

( ) ( ) ( ) ( )( ) 2
1 2: , , , M

Mx t x t x t x t R
ττ τ τ= ∈ ; 0t ≥ . We denote the initial locations and the initial velocities of the 

system as ( ) ( ) ( )( )10 0 , , 0Mx x x
ττ τ=  , ( ) ( ) ( ) ( )( )1 20 0 , 0 , , 0Mv v v v

ττ τ τ=   respectively. 

In this work, we discuss the collective behavior of the dynamical agents under a decentralized control law in 
the form that 

( )1 2
, , ,

lii i j j ju K y y y=                               (2) 

where indexes { }1 2, , ,
il

j j j M⊂ . 

We claim that a group of dynamical agents associated with ( ), ,=G V E A  asymptotically achieve the 
collective behavior under control protocol (2). That is to say, for any initial conditions of the agents ( ) 20ix R∈ , 
( ) 20iv R∈ ; i M∈ , there will exist a fixed position * 2x R∈ , which depends on the initial condition, such that 

for i M∈  
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( ) ( )*lim ,          lim 0i it t
x t x v t

→∞ →∞
= =                            (3) 

In our work, let (2) be 

( )
j i

i ij j i
x N

u a y y
∈

= −∑                                  (4) 

where iN  is the set of neighbors of agent ip . 
Remark 1: If we choose 11 22 12 21, 0k k k k k= = = =  and 0δ = , then the two-dimension agent systems (1) 

with the control protocol (4) can be decoupled into two identical linear systems of the form 

is isx v=  

( )
j i

i is is ij js is
p N

m v kv a x x
∈

= + −∑  

for 1, 2s = . i.e. 1idim x = , and it was discussed in [12]. 

3. Collective Behaviors of Dynamical Agents 
Consider a group of dynamical agents in network associated with a graph ( ), ,=G V E A . The node set V  
consists of dynamic ;ip i M∈ . The dynamical ip  for each i M∈  is described by linear dynamical equation 
(1) satisfying Assumption 2.1. Under control protocol (4) the dynamical equation of agent ip  is written by 

( )
j i

i i

i i ij j i
p N

x v

v kv a y y
∈

=

= + −∑




                              (5) 

Denote ( ) ( )1 2 1 2, , , , ,i i i i i i ix v x x v v i M
τ ττ τξ = = ∈ , then (5) is written in 

( )
j i

i i ij j i
p N

A B aξ ξ ξ ξ
∈

= + −∑                              (6) 

where 2 2 2 2 2 2 2

2 2 2 2

0 0 0
, .

0 0
I

A B
k C

× × ×

× ×

   
= =   
   

 

Let ( )1 2, , , M

ττ τ τξ ξ ξ ξ=  , then the dynamic network is of the following form. 

ξ ξ= Ω                                          (7) 

where 

MI A L BΩ = ⊗ − ⊗                                    (8) 

and L is the aforementioned Laplacian associated with the graph G . 
The collective behavior problem of dynamical agents can be described in χ -consensus asymptotical con-

sensus stability ([3]). Let 4 2: MR Rχ →  be a map, for 
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 4

1 1 2 20 : 0 , 0 , 0 , 0 , , 0 , 0 M
M Mx v x v x v R

τ
ξ = ∈ , ( ) ( )2: 0 x Rχ ξ ∈ . The group of dynamical 
agents is called χ -consensus asymptotically stable under control protocol (4) if let ( )( ) *0 xχ ξ =  for a given 
( )0ξ , then for each agent in network its state variables meets the properties of (3). 
As dynamics (7) is a standard linear time-invariant dynamical system, its trajectory can be described by 

( ) ( ) ( )exp 0t tξ ξ= Ω                                  (9) 

The consensus asymptotical stability implies that the matrix ( )exp tΩ  converges to a constant matrix, thus 
we will explore some properties of the matrix Ω . 

Lemma 3.1 The matrix Ω  has two eigenvectors associated with zero eigenvalue. Let ,r lv v  be the right 
and left eigenvectors (denoted by matrices) of matrix Ω  associated with zero eigenvalue, respectively. Then 

1

2 2 2

1 1,       
0r M l M
k k

v v
IM M

τ
τ

−

×

   
= ⊗ = ⊗   

−   
1 1                    (10) 
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and 2l rv v I= , where ( )1,1, ,1 M
M Rτ= ∈1  

Proof: It is well known that the graph ( ), ,=G V E A  is connected if and only if its Laplacian satisfies 
that ( ) 1rank L M= − . Moreover, ( )1,1, ,1 M

M Rτ= ∈1  is an eigenvector of L associated with eigenvalue 
0λ = , i.e., 0M ML ⋅ = ⋅1 1 . Then, there is only one zero eigenvalue of L, all the other ones are positive and real. 

By the definition of (8) one has 

( )
1 1

2 2 2 2

2 2
4 2 1

1 1
0 0

01 10 0

M M M

M M

k k
I A L B

M M

PkM M

− −

× ×

×
× −

   
Ω ⋅ ⊗ = ⊗ − ⊗ ⋅ ⊗   

   
 

= ⊗ − ⊗  
 

1 1

1

 

Thus, 
1

2 2

1
0r M
k

v
M

−

×

 
= ⊗  

 
1  represented two right-eigenvectors of Ω  associated with zero-eigenvalue. 

Similarly, it is easy to check [ ]2
1

l Mv k I
M

τ= ⊗ −1  represents two left-eigenvectors of Ω  and 2.l rv v I=   

The following Lemma is key to our work. 
Lemma 3.2 If the control gain k in dynamical agent (1) satisfies Assumption 2.1, and δ  in the C of (4) sa-

tisfies 

1 2 ,δ δ δ< <                                      (11) 

with 

( ) ( )1 22 2 2 2
,

2 2
abc abc

a b a b
δ δ

λ λ
− ∆ + ∆

= =
+ +

                          (12) 

where 21 12a k k= − , 11 22b k k= − − , 11 22 12 21c k k k k= − , ( ) ( )2 2 2 24abc a b b cλ∆ = + +  and Mλ λ=  denotes 
the biggest eigenvalue of matrix L, then it is hold that 

( )lim exp r lt
t v v

→∞
Ω =                                    (13) 

Proof: Denote the eigenvalues of L by 1 2 30 Mλ λ λ λ= < ≤ ≤ ≤ , and let Λ  be the Jordan form associated 
with L, there exists an orthogonal matrix W such that { }1 2diag , , , MW LWτ λ λ λ= Λ =  . 

One can verify the following formulae. 

( ) ( ) ( ) ( ) ( )

{ }

4 4 4 4

1 2diag , , ,

M

M

M

W I W I W I I A L B W I

I A B
A B A B A B

τ τ

λ λ λ

⊗ ⋅Ω ⋅ ⊗ = ⊗ ⊗ − ⊗ ⊗

= ⊗ − Λ⊗

= − − −

 

The dynamical behavior of the network (7) is characterized by the eigenvalues of iA Bλ−  for 
{ }1, 2, ,i M∈ 

. 
First we discuss the block with 1 0λ = . By Assumption 2.1, one has 11 22 12 21 11 220,k k k k k k+ < <  and 

( )1 2rank A B rank Aλ− = = , its four characteristic eigenvalues must satisfy 1 2 0s s= = , ( )3 0Re s < , 
( )4 0.Re s < . 

For 0iλ > , one has 2 2 20
i

i

I
A B

C k
λ

λ
× 

− =  − 
. As ( ) 2rank C = , ( ) 4irank A Bλ− = . Therefore, Ω  has on-

ly two zero eigenvalues. 
Consider the characteristic polynomial of ;iA B i Mλ− ∈  

( ) ( )( ) 4 3 2
1 2 3 4

11 12

21 22

0 1 0
0 0 1

=
iA B i

i i

i i

s
s

s det sI A B s a s a s a s a
s k k

k s k

λπ λ
λ δλ
δλ λ

−

−
−

= − − = + + + +
− −

− − −
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where 

( ) ( )
( )

1 11 22 2 11 22 12 21

3 21 12 11 22

2 2
4

,  2 ,  
,  

1

i

i i

i

a k k a k k k k
a k k k k

a

λ
δλ λ

λ δ

= − − = − +

= − − +

= +

                           (14) 

Construct the Routh array of ( )
iA B sλπ −  

4
2 4

3
1 3

2
1 2

1
1

0
1

1
0
0

0

s a a
s a a
s b b
s c
s d

 

with ( )
2 2

2 21 2 3 1 3 1 2 1 2 3 3 1 4
1 2 1 4 1

1 1 1 1

, 1 , .i
a a a b a a b a a a a a ab b d a c

a b a b
λ δ− − − −

= = = = − = =  By the Routh-Hurwith  

criterion, for stability it is necessary that 1 1 1 10, 0, 0, 0a b c d> > > > . Therefore, the dynamical network is stable 
if the following inequalities hold 

1

4

1 2 3
2 2

1 2 3 3 1 4

0
0

0

0

a
a
a a a

a a a a a a

>
 >
 − >
 − − >

                                 (15) 

By (14) one has 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 11 22 11 22 12 21 21 12 11 22

11 22 11 22 12 21 21 12 11 22

2 i i

i

a a a k k k k k k k k k k

k k k k k k k k k k

λ λ δ

λ δ

− = − + ⋅ − + − − − +  
= − + ⋅ − − − + +  

      (16) 

and 

( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( ) ( )

2 2
1 2 3 3 1 4 11 22 11 22 12 21 21 12 11 22

2 2 2
21 12 11 22 11 22

11 22 11 22 12 21 21 12 11 22

2 22 2
11 22 21 12

1

i

i i

i

i

a a a a a a k k k k k k k k k k

k k k k k k

k k k k k k k k k k

k k k k

λ δ

λ δ λ δ

δ λ

λ δ

− − = − + ⋅ − + − + +  

× − − + − + +  

= − + ⋅ − ⋅ − − +  

 + + + − 

    (17) 

The inequalities (15) can be rewritten as the following form by using the conditions of Lemma 3.2 and the 
Equations (16)-(17). 

( )
( )2 2 2 2

0

0

b c a

b c abc a b

λ λ δ

δ λ δ

 + − >


+ − + >
                               (18) 

We can further show that the second inequality in above implies the first one. Obviously, it is true when 
0a = . If 0a > , one gets 

( )

1 2

b c
a
λ

δ
λ

δ δ δ

+
<


 < <

 

where , 1, 2i iδ =  are defined in (12). 
Thus, one can consider the following inequalities 



H. W. Yu   
 

 
34 

( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2

22 2 2 4 2 2 2 2 2 2 2

4 4

2 2

2 2 4

4 4 8 4 0

abc b a c a b c ac a c a b cb c c
a aa b a b

a b a c b c a a c a b c

a b b c a b b c a b c

λ λλ λ
λ λ

λ λ

λ λ

+ + + + + ++ +
> ⇔ >

+ +

⇔ + + + > + +

⇔ + + + + + >

 

The last inequality obviously holds. Therefore, the solution of (18) leads 1 2δ δ δ< < . 

If 0a < , one can obtain 
( )b c

a
λ

δ
λ
+

>  and 1 2δ δ δ< < . So we can get that 
( )

1
b c

a
λ

δ
λ
+

>  with a similar  

computing process. It shows that 1 2δ δ δ< <  is the solution set of the inequalities (15) for any a. 
Therefore, ; 2iA B i Mλ− ≤ ≤  are Hurwitz. 
By ( ) 4 4

1 2 4 1 4: , , , , M M
M M Rθ θ θ θ ×
−Θ = ∈  one denotes right-eigenvectors of Ω  associated with eigenvalues 

1 2 2, , , Mγ γ γ , respectively. Thus, 

2

1

2

1

0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

M

M

J
J

J

J
J

−

 
 
 
 

ΩΘ = Θ = Θ 
 
 
 
  







    





 

where 1J  denote the Jordan form of two order associated with the eigenvalues 1γ , and 2γ . iJ  denote the 
Jordan form of four order associated with the eigenvalues 4 3iγ − , 4 2iγ − , 4 1iγ −  and 4iγ  for all 2,3, ,i M=  . 

Let ( )1 4 4
1 2 4 1 4: , , , , M M

M M R
ττ τ τ τθ θ θ θ− ×

−Θ = Θ = ∈   

 , where ; 4i i Mθ ∈  are 4M  row left-eigenvectors of Ω ,  

correspondingly. 

2

1

2

1

0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

M

M

J
J

J

J
J

−

 
 
 
 

ΘΩ = Θ = Θ 
 
 
 
  







  

    





 

As ( ) ( ) ( ) ( )3 4 4 1 40 M MRe Re Re Reγ γ γ γ−> ≥ ≥ ≥ ≥
, one has 

( )

( ) ( ) ( )

2 2 4 2

4 2 2 4 2 4 2

0
lim e

0 0
MJt

t
M M M

I × −

→∞
− × − × −

 
=  
  

 

and 

( ) ( )

( ) ( ) ( )

2 2 4 2

4 2 2 4 2 4 2

0
lim exp

0 0
M

t
M M M

I
t

× −

→∞
− × − × −

 
Ω = Θ Θ 

  

  

Let ( )1 2lv θ θ=  and 1

2
rv

θ

θ

 
=   
 





, one has 

( )lim exp .r lt
t v v

→∞
Ω =  

Due to the fact that 1
4 4M MI−

×Θ ⋅Θ = Θ ⋅Θ = , rv  and lv  satisfy the property 2l rv v I= .  
Theorem 3.1 Under conditions of Lemma 3.2 the control protocol (4) globally and asymptotically achieves 
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the collective behavior of the dynamic agents. 
Proof: As ( ) ( ) ( )exp 0t tξ ξ= Ω  and ( )lim expt r lt v v→∞ Ω = , it follows that 

 

( ) ( ) ( ) ( )

[ ] ( )

( )
( )

( )
( )

1

11 1
2

2
2 2 2 2 2 2

lim lim exp 0 0

0
0

1 10
0 0 0

0
0

r lt t

M M M M

M

M

t t v v

x
v

k I k
k I

M M
x
v

τ τ

ξ ξ ξ

ξ

→∞ →∞

− −

× × ×

= Ω =

 
 
    −  = ⊗ ⋅ ⊗ − = ⊗ ⋅        
 
 
 

1 1 1 1
 

Therefore, 

( ) ( ) ( )1

1

1lim 0 0
M

i j jt j
x t x k v

M
−

→∞ =

 
 = −  

 
∑                              (19) 

and it is obvious that 

( ) { }lim 0, 1, 2, ,it
v t i M

→∞
= ∈                                  (20) 

This implies the protocol (5) globally asymptotically achieve aggregation.  
Corollary 3.1 If the control gain k satisfies 12 21k k=  and ( )2

11 22 12 21k k k kλδ < − , then the control protocol 
(4) globally and asymptotically achieves the collective behavior of the dynamic agents. 

Under Assumption 2.1 one has 12 21 11 22k k k k< . Thus, by carefully examining (12) one finds that 0c >  and 
it further implies that 1 0δ <  and 2 0δ >  in (11). Thus we have the following. 

Corollary 3.2 The dynamical agents achieve collective behavior if 1δ   in control protocol (4). Again, the 
χ -map is defined by (19) and (20). 

4. Simulations 
We study some examples to show that our results are effective. The network of dynamic agents is described in 
Figure 1. 

We can obtain the Laplacian matrix L of the graph G  of Figure 1 and its eigenvalues are 1 0λ = ,  

( )2 3
1 7 13
2

λ λ= = − , 4 4λ = , ( )5 6
1 7 13
2

λ λ= = + . 

We consider that the dynamic agent (1) in the network has 
1 0.1

0.2 1
k

− 
=  − 

 and observation matrix 

1 0.3
0.3 1

C  
=  − 

. Thus, it is Lyapunov stable and satisfies Assumption 2.1. One can get 0.1a = , 2b = ,  

 

 
Figure 1. A undirected graph G  with M = 6 nodes.   
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0.98c = , 16.5699∆ = , and the 0.3δ =  belongs to the range of parameters i.e. 
1 20.467617 0.478812δ δ δ= − < < = . 
When a control protocol (4) is applied into the agents in network, the collective behavior of dynamic agents 

takes place according to our result. 
Figure 2 gives simulation results of the collective behavior of the agents with initial conditions 
( ) ( )11 120 0 15x x= = , ( ) ( )21 220 0 25x x= = , ( )31 0 2x = , ( )32 0 20x = , ( )41 0 1x = , ( )42 0 10x = , ( )51 0 1x = , 
( )52 0 2x = , ( )61 0 25x = , ( )62 0 1x = , and the initial velocities ( )11 0 12v = , ( )12 0 18v = , ( )21 0 25v = , 
( )22 0 18v = , ( )31 0 15v = , ( )32 0 25v = , ( )41 0 12v = , ( )42 0 15v = , ( )51 0 12v = , ( )52 0 13v = , ( )61 0 20v = , 
( )62 0 15v = . 

It is found that when the agents approach to * 29.6
33.1

x  
=  
 

, the speeds of agents tend to zero. 

5. Conclusion 
We discuss the consensus control of dynamical agents in network which associated with a graph G . When the  
 

 
 

 
Figure 2. State and velocity trajectories of the agents in G .                
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agents are moving in a plane, the aggregation of the dynamical agents are depended on not only the communi-
cated error, but also the algebraic characterization of the communicated network graph and the dynamical prop-
erties of agents. 
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