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Abstract 
The bipartite Star123-free graphs were introduced by V. Lozin in [1] to generalize some already 
known classes of bipartite graphs. In this paper, we extend to bipartite Star123-free graphs a linear 
time algorithm of J. L. Fouquet, V. Giakoumakis and J. M. Vanherpe for finding a maximum match-
ing in bipartite Star123, P7-free graphs presented in [2]. Our algorithm is a solution of Lozin’s con-
jecture. 
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1. Introduction 
A matching M of a graph ( ),G V E=  is a subset of edges with the property that no two edges of M share a 
common vertex. A matching is called induced if the subgraph of G induced by M consists of exactly M itself. 
The maximum matching problem is to find a matching with the maximum cardinality. Graph matching is one of 
the fundamental problems in combinatorial optimization because of its use in various fields such as computa-
tional biology [3], pattern recognition [4], computer vision [5], music information retrieval [6], and computa-
tional music theory [7]. For arbitrary graphs, it is known that this problem can be solved in ( )O m n  time [8]. 
Moitra and Johnson gave an ( )logO n n  time algorithm on interval graphs [9]. In addition Alt, Blum, Mehlhorn,  
and Paul gave an ( )1.5 logO n m n  time algorithm on bipartite graphs [10]. In [11] Yu and Yang exhibited an 

( )O n  time algorithm for the maximum matching problem on cographs. This result was extended in [12] by 
Fouquet, Parfenoff and Thuillier to a wider class, namely the 4P -tidy graphs. Also the technique developed in 
[11] was used by Fouquet, Giakoumakis and Vanherpe in [2] to find an ( )O n  time algorithm for the maximum 
matching problem on bipartite 7 123,P Star -free graphs (see Figure 1). In [1], Lozin studied the class of bipartite  
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Figure 1. Forbidden configurations for 7 123,P Star -free graphs.               

 
123Star -free graphs and conjectured that both maximum induced matching problem and maximum matching 

problem in this class can be solved in linear time. The first one has been solved in [13]. In this paper we shall 
solve Lozin’s conjecture for maximum matching problem by extending the matching algorithm for the class of 

7 123,P Star -free graphs [2] to the class of bipartite 123Star -free graphs. Our algorithm is based on the recognition 
algorithm of the class 123Star -free bipartite graphs introduced by Quaddoura in [14]. 

2. Definitions and Properties 
For terms not defined in the paper the reader can refer to [15]. The graphs considered in this paper are finite 
without multiple edges and loops. As usual, for any graph G we denote the set of its vertices by ( )V G  and by 
( )E G  the set of its edges (or simply by V and E if there is no risk of confusion) and their respective cardinali-

ties by n and m. A bipartite graph ( ),G B W E=   is defined by two disjoint vertex subsets B the black vertices 
and W the white ones, and a set of edges E B W⊆ × . The bi-complement of a bipartite graph ( ),G B W E=   
is the bipartite graph defined by ( ),bipG B W B W E= × − . If the color classes B and W are both non empty, 
the graph will be called bichromatic, monochromatic otherwise. A vertex x will be called isolated (resp. univer-
sal) if x has no neighbors in G (resp. in bipG ). A complete bipartite graph is a graph having only universal white 
vertices and universal black vertices. A stable set is a subset of pairwise non-adjacent vertices. A chordless path 
on k vertices is denoted by kP  and a chordless cycle on k vertices is denoted by kC . Given a subset X of the 
vertex set ( )V G , the subgraph induced by X will be denoted by [ ]G X . A set A V⊆  is called a module if 
every vertex in V A−  is either adjacent to all vertices in A or none of them. The representative graph of a 
graph G is the subgraph of G induced by the set of vertices containing one vertex from each proper maximal 
module of G. A graph G is called Z-free where Z is a set of graphs, when G does not contain an induced sub-
graph isomorphic to a graph of Z. 

Definition 1 [2]. Given a bipartite graph ( ),G B W E=   of order at least 2, G is K S+  graph if and 
only if G contains an isolated vertex or its vertex set can be decomposed into two sets K and S such that K 
induces a complete bipartite graph while S is a stable set. 
Property 2 [2]. Let ( ),G B W E=   be a bipartite graph of order at least 2. G is K S+  graph if and 
only if there exists a partition of its vertex set into two non empty classes 1V  and 2V  such that all possi-
ble edges exists between the black vertices of 1V  and the white vertices of 2V  while there is no edge 
connecting a white vertex of 1V  with a black vertex of 2V . 

Such partition is referred as associated partition of G and is denoted by the ordered pair ( 1V , 2V ) [2].  

Property 3 [2]. A bipartite graph G is a K S+  graph if and only if G admit a unique (up to isomorphism) 
partition of its vertex set ( )1 2 kV V V   satisfying the following conditions: 
1) ( )1 11, , 1, ,i i ki k V V V V+∀ = −    is an associated partition to the graph G. 
2) [ ]1, , , ii k G V∀ =   is not a K S+  graph. 

The partition ( )1, , kV V  of the above property is called K S+  decomposition while a set iV  said to be 
K S+  component of the graph. 

From K S+  decomposition together with the decomposition of bipartite graph G into its connected compo-
nents (parallel decomposition) or those of bipG  (series decomposition) yield a new decomposition scheme for 
G called canonical decomposition. It is shown in [2] that whatever the order in which the decomposition opera-
tors are applied ( K S+  decomposition, series decomposition or parallel decomposition), a unique set of inde- 
composable (or prime) graphs with respect to canonical decomposition is obtained. Obviously, a unique tree is 
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associated to this decomposition. The internal nodes are labeled according to the type of decomposition applied, 
while every leaf correspond to a vertex of G. Hence there are four types of internal nodes, parallel node (labeled 
P), series node (labeled S), K S+  node (labeled K S+ ), and indecomposable node (labeled N). By conven-
tion, the set of vertices corresponding to the set of leafs having an internal node α  as their least common an-
cestor will be denoted simply by α . 

Lozin in [1] gives the following characterization for bipartite Star123-free graphs.  

Theorem 4 [1]. Let G be a bipartite Star123-free graph. One of the following hold.  
1) G is K S+  graph. 
2) G and bipG  aren’t both connected. 
3) The representative graph of G or the bi-complement of the representative graph of G is a path kP  or a 
cycle kC  with 7k ≥ . 

It is shown in [14] that the representative graph of a graph G is a path kP  or bip
kP  or a cycle kC  or bip

kC  
if and only if G is an extended path kEP  or a bi-complement of an extended path kEP  or an extended cycle 

kEC  or a bi-complement of an extended cycle kEC  respectively. More precisely, (see Figure 2). 

Definition 5 [14]. A graph G is said to be an extended path kEP  if there is a partition of the vertex set of  
G into a monochromatic sets { }1, , kV V  such that 1

11

k
i ii

E V V−
+=

= ×


. 

Definition 6 [14]. A graph G is said to be an extended cycle kEC  if there is a partition of the vertex set of  
G into a monochromatic sets { }1, , kV V  such that 1

1 11

k
i i ki

E V V V V−
+=

= × ×



. 

The construction of the canonical decomposition tree of a bipartite Star123-free graph can be obtained in linear 
time from the algorithm given by Quaddoura in [14]. According to this algorithm, every child of a N-node is a 
node marked by P′  corresponding to a set , 1, ,iV i k=  , if 1iV > , or to a vertex of G otherwise. Figure 3 
illustrates a bipartite Star123-free graph and its canonical decomposition tree. 

3. Maximum Matching of Bipartite Star123-Free Graphs 
In this section we will extend the techniques developed in [2] to provide an ( )O n  time algorithm for the 
maximum matching problem on bipartite Star123-free graph. We present first the required tools for this purpose. 

A classical tool for solving the maximum matching problem was introduced by Berge in [16]. Let M be any 
matching of a graph ( ),G V E= , an M-alternating path is a path whose edges are alternately in M and in 
E M− . If some edge of M is incident to a vertex v, this vertex is said to be saturated by M, otherwise v is 
M-unsaturated. An M-augmenting path is an M-alternating path whose both endpoints are M-unsaturated.  
 

 

Figure 2. An 8EP  and an 8
bipEP .                                             
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Figure 3. A bipartite Star123-free graph and its canonical decomposition tree.                                             
 

Theorem 7 [16]. A matching M of a graph G is maximum matching if and only if G contain no M-aug- 
menting path. 

Consider a bipartite graph G such that G admit a decomposition according to some rule into two graphs 1G  
and 2G . Let 1M  and 2M  be maximum matchings of 1G  and 2G , let 1 2M M M=   which is a matching 
of G. In order to increase the size of M we use the operations Match and Split (see [11]) described below. 

Let 1U  be the set of 1M -unsaturated vertices of 1G  and 2U  be the set of 2M -unsatureted vertices of 
2G . A Match operation occurs if there are two adjacent vertices 1 1v U∈  and 2 2v U∈  then the edge 1 2v v  is 

added to M, the vertices 1v  and 2v  are thus saturated by M and they are respectively deleted from the sets 1U  
and 2U .  

Let U be the set of M-unsaturated vertices, a Split operation occurs if there exists an edge of M say xy and 
vertices u and v belonging to U such that u is adjacent to x and v is adjacent to y. In that case the Split operation 
constructs a new matching M ′  defined by { } { },M M ux vy xy′ = − , the vertices u and v being saturated by 
M ′  and deleted from U and the edge xy is deleted from M. Note that, if ( ),G B W E=   is a bipartite com-
plete then a maximum matching of G can be obtained by applying Match operations between the two sets B and 
W. 

Let now G be a bipartite Star123-free graph and ( )T G  is its canonical decomposition tree. For our purpose 
we shall modify ( )T G  to a binary tree ( )BT G  as follows: We visit all nodes of ( )T G  in DFS order. For a 
node α  of type P, S or K S+  let 1, , kα α  be the children of α . If 2k =  then α  does not change. 
Else 1α  remains its left child and 'α  is its new child labeled by P, S or K S+  respectively with 2 , , kα α  
are its children. For a N-node α , using the Procedure MAXMATCH ,k kEP EC , the Procedure MAXMATCH

bip
kEP , or the procedure MAXMATCH bip

kEC  described below, which find a maximum matching of an ex-
tended path kEP  or an extended cycle kEC  or their bi-complements, we replace α  by a leaf 'α  together 
with a maximum matching of the subgraph [ ]G α  and the set of unsatureted vertices with respect to this 
matching. Our algorithm uses post order traversal to visit all the nodes of ( )BT G . Whenever an internal node 
α  of this binary tree is visited, we compute a maximum matching of [ ]G α  from the maximum matching 1M  
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of [ ]1G α  and 2M  of [ ]2G α  where 1α  and 2α  are the two children of α  in ( )BT G . For this purpose 
we distinguish the following cases according to the type of α . 

3.1. α Is of Type P, S or K + S 
Consider now the set 1 2M M M=   which is a matching of [ ]G α . Obviously, if α  is a P-node then M is a 
maximum matching of [ ]G α . In the case when α  is of type S or K + S we use the same technique used in [6] 
to find a maximum matching of [ ]G α .  

Let 1U  be the set of 1M -unsaturated vertices of [ ]1G α  and 2U  be the set of 2M -unsatureted vertices of 
[ ]2G α . Let [ ]1 2,Match U U  be the matching of [ ]G α  obtained when all possible Match operations have been 

sequentially performed.  
Let now U be the set of M-unsaturated vertices, and Let [ ],Split U M  be the matching obtained when all 

possible Split operations have been sequentially performed. 

Theorem 8 [2]. If α  is a K + S-node, the set [ ]1 2,Match U U  is a maximum matching of [ ]G α .  
Theorem 9 [2]. Assume that α  is a S-node and M is equal to [ ]1 2,Match U U . Let U be the set of M-un- 
saturated vertices of [ ]G α , then the set [ ],Split U M  is a maximum matching of [ ]G α . 

3.2. α Is of Type N 

In this section we will develop an ( )O n  algorithm to find a maximum matching of an extended path kEP  or 
an extended cycle kEC  and an ( )O n  algorithm to find a maximum matching of their bi-complement (see 
Definitions 5 and 6). We can suppose that 2k n′=  if k is even or 2 1k n′= +  if k is odd. We denote by 

,i jMatch V V    the matching of the bipartite complete graph i jG V V  
 obtained by Match operations be-

tween the two monochromatic sets iV  and jV . When an edge xy is added to this matching where ix V∈  and 
jy V∈  then x will be deleted from iV  and y will be deleted from jV . Note that, during the execution of Pro-

cedure MAXMATCH ,k kEP EC  or the Procedures MAXMATCH bip
kEP  and MAXMATCH bip

kEC , the 
matching ,i jMatch V V    is not necessarily maximum for i jG V V  

, this is because some vertices of iV  or 
jV  may already be saturated. 

3.2.1. α Is EPk or ECk 
Procedure MAXMATCH ,k kEP EC  provides a maximum matching of an extended path kEP  or an extended 
cycle kEC . By convention, every monochromatic set of an extended path or an extended cycle has an odd index 
consists of black vertices and those having an even index consist of white ones. For the purpose of simplification, 
the length k of the extended path in this Procedure is considered to be odd, if this length is even then the set 

2 1nV ′+  is considered to be empty. 

Procedure MAXMATCH EPk, ECk 
1) M ←∅  
2) if kG EC=  then [ ]1, kM M Match V V←   
3) for 1i =  to n′  do 
  begin for 
4) [ ]2 1 2,i iM M Match V V−←   

5) [ ]2 2 1,i iM M Match V V +←   
  end for 
Theorem 10. Let ( ),G V E=  be an extended path kEP  or an extended cycle kEC  where  

1 2 2 1nV V V V ′+=   . Procedure MAXMATCH ,k kEP EC  produces a maximum matching of G. 

Proof. Let 1 2 tP v v v=   be an M-augmenting path in G. Since G is a bipartite, t is even, so 1v  and tv  are 
of different colors. Without loss of generality, assume that 1v  is a black vertex and tv  is white. Let 

( )1 2 1 1 1jv V j n− ′∈ ≤ ≤ +  and ( )2 1t rv V r n′∈ ≤ ≤ .  
Claim 1. There is no black vertex of P in 2 1jV + . 
Proof. Let sv  be the first black vertex of P in 2 1jV + , then 1sv −  must be in 2 jV . Since 1v  is a black vertex 

non saturated, it must be 1s sv v M− ∈ . According to our Procedure, the edge 1s sv v−  has been added to M by the 
operation 2 2 1,j jMatch V V +   , but before this step, the edge 1 1sv v −  must be added to M by the step 



R. Quaddoura 
 

 
18 

2 1 2,j jMatch V V−   , a contradiction. ■ 
Claim 2. There is no white vertex of P in 2 2rV + . 
Proof. Let sv  be the last white vertex of P in 2 2rV + , then 1sv +  must be in 2 1rV +  or in 2 3rV +  or in 1V  and 

1s sv v M+ ∈ . The vertex 1sv +  does not belong to 2 3rV + , otherwise, since 2t rv V∈ , the path 1s tv v+   must con-
tain a vertex in 2 2rV + , a contradiction with our choice of sv . If 1 2 1s rv V+ +∈  then according to our Procedure, 
the edge 1s sv v +  has been added to M by the operation [ ]2 1 2 2,r rMatch V V+ +  when 1i r= + , but in the step 
i r= , the edge 1t sv v +  must be added to M by the operation [ ]2 2 1,r rMatch V V + , a contradiction. If 1 1sv V+ ∈  
then kG EC=  and 2 2 2r n′+ = . In this case, the vertex 1v  does not belong to 2 1nV ′−  or to 2 3nV ′− , otherwise 

1 tv v  must be added to M, so 2j n′< − . But now the set 2 1jV +  must contain a vertex of P, a contradiction with 
Claim 1. ■ 

Suppose that G is an kEP  or G is an kEC  such that there is no edge of P connecting 1V  and kV . If j r<  
then either 2 1jV +  contains a vertex of P or there is an edge of P connecting 1V  and kV , a contradiction. If 
j r>  then either 2 2rV +  contains a vertex of P or there is an edge of P connecting 1V  and kV , a contradiction. 

Therefore j r= . But now the edge 1 tv v  must be added to M by the operation [ ]2 1 2,r rMatch V V− , a contradic-
tion. 

Suppose now G is an kEC  and there is an edge of P connecting 1V  and kV . Let 1i iv v +  be the first edge of 
P connecting 1V  and kV . By Claim 1 and Claim 2, t kv V∈ . Thus 1v  does not belong to 1 1kV V − . If i kv V∈  
then according to our choice of 1i iv v + , the set 2 1jV +  must contain a vertex of P, a contradiction with Claim 1. 
Therefore 1iv V∈ . Since the vertex 1v  is a black non-saturated vertex, the edge 1i iv v +  does not belong to M, 
By our choice of the edge 1i iv v + , the vertex 1iv −  must belong to 2V . Now, the edge 1i iv v−  has been added to M 
by the operation [ ]1 2,Match V V . But before this step, the edge i tv v  must be added to M by the operation 

[ ]1, kMatch V V , a contradiction. □ 
The following Table 1 illustrates a trace of the Procedure MAXMATCH ,k kEP EC  for the 8EP  in Figure 

2 where a vertex in iV  is denoted by , 1, ,8, 1, ,j
i iv i j V= =  . 

3.2.2. α Is bip
kEP  or bip

kEC  
Note that the matching obtained by the Procedure MAXMATCH ,k kEP EC  is ensured to be maximum because 
of the order of applying Match operations. In the case when α  is bip

kEP  or bip
kEC , we must also design an 

order of applying Match operations and Split operations to ensure that the resulting matching is maximum. For 
this purpose, we will study first the structure of a M-augmenting path of a matching M of α  obtained by doing 
in an arbitrary order all possible Match operations then all possible Split operations (Lemma 12 and Lemma 13). 
Knowing this structure will enable us to design an order of applying Match operations (Procedure Match (G)) 
then developing a Procedure of a maximum matching M for bip

kEP  or bip
kEC .  

Recall that when an edge xy is added to a matching M by a Match operation ,i jMatch V V    where ix V∈  
and jy V∈  then x will be deleted from iV  and y will be deleted from jV . In addition, we suppose here that 
Match operation associates labels with x and y as ( )Label x i=  and ( )Label y j=  when ix V∈  and jy V∈  
respectively. Two monochromatic sets iV  and jV  of different color are called independent if i jV V  form a 
stable set, non-independent otherwise. 

Lemma 11. Let bip
kG EP=  or bip

kG EC= , let M be a matching of G obtained when all possible Match 
operations have been performed. If there are at least two M-unsaturated vertices of different color then all 
the M-unsaturated vertices are located in at most three consecutive monochromatic sets 1,s sV V +  and 2sV +  
where { }1, ,s k∈  . 

 
Table 1. Illustration of procedure MAXMATCH ,k kEP EC S  for the 8EP  in Figure 2.             

i [ ]2 1 2,i iMatch V V−  [ ]2 2 1,i iMatch V V +  M 

1 { }1 1 2 2
1 2 1 2,v v v v  ____ { }1 2 1 2

1 1 2 2,v v v v  

2 { }1 1 2 2
3 4 3 4,v v v v  { }3 1

4 5v v  { }1 2 1 2 1 1 2 2 3 1
1 1 2 2 3 4 3 4 4 5, , , ,v v v v v v v v v v  

3 { }2 1
5 6v v  ____ { }1 2 1 2 1 1 2 2 3 1 2 1

1 1 2 2 3 4 3 4 4 5 5 6, , , , ,v v v v v v v v v v v v  

4 { }1 1 2 2
7 8 7 8,v v v v  ____ { }1 2 1 2 1 1 2 2 3 1 2 1 1 1 2 2

1 1 2 2 3 4 3 4 4 5 5 6 7 8 7 8, , , , , ,v v v v v v v v v v v v v v v v  
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Proof. By the hypothesis of the Lemma, all the M-unsaturated vertices must be in independent sets. Obvious-
ly any three consecutive sets are independent and the maximum number of independent sets is three. □ 

Assume that bip
kG EP=  or bip

kG EC=  and M is a matching of G obtained when all possible Match opera-
tions have been performed (in an arbitrary order). The following Procedure determines the sets 1 2, ,s s sV V V+ +  
which are the possible location of M-unsaturated vertices. Note that when bip

kG EC= , the sets kV  and 1V  are 
consecutive. 

Procedure M-unsaturated vertices (G, M) 
1) Find the small index { }1, ,s k∈   for which sV ≠ ∅  
2) if there is no such s then return M is maximum  

else 
3) if bip

kG EP=  or 1s ≠  then 
//when bip

kG EP=  and 1s k= − , 2sV +  does not exist, when bip
kG EC=  and 1s k= − , 2sV + = ∅  

4)       if 1s k= −  then return 1s kV V −=  and 1s kV V+ =  
5)       else return 1 2, ,s s sV V V+ +  
  else // bip

kG EC=  and 1s =  
6)       if kV = ∅  then return 1 1 2 2 3, ,s s sV V V V V V+ += = =  
7)       else if 1kV − = ∅  then return 1 1 2 2, ,s k s sV V V V V V+ += = =  
8)          else return 1 1 2 1, ,s k s k sV V V V V V− + += = =  

According to Lemma 11, one of the two M-unsaturated vertices of any M-augmenting path in G is in sV  and 
the second in 1sV + , or one in 1sV +  and the second in 2sV + . Consider first a M-augmenting path in G which its 
M-unsaturated vertices are in sV  and in 1sV + . 

To augment the size of M, Split operations can be done between the M-unsaturated vertices of sV , the 
M-unsaturated vertices of 1sV +  and the edges of M whose extremities belong to monochromatic sets non-inde- 
pendent of sV  and 1sV + , namely the edges of M whose extremities don’t belong to 1 1, ,s s sV V V− +  when 

bip
kG EP=  and 1s k= − , and the edges of M whose extremities don’t belong to 1 1, ,s s sV V V− +  and 2sV +  other-

wise. The following Procedure performs these Split operations. 

Procedure Split (M, Vs, Vs+1) 
1) if bip

kG EP=  and 1s k= −  then 
      ( ) ( ){ }| and 1, and 1M xy M label x label y s s s′ = ∈ ≠ − +  

2) else ( ) ( ){ }| and 1, , 1 and 2M xy M label x label y s s s s′ = ∈ ≠ − + +  
3) while sV ≠ ∅  and 1sV + ≠ ∅  and M ′ ≠ ∅  do  

Begin while  
4) let { } { }1, , , ,s su V v V xy M M M xy ux vy+ ′∈ ∈ ∈ = −   
5)       { } { } { }1 1, ,s s s sV V u V V v M M xy+ + ′ ′= − = − = −  

// assuming that u and x also v and y are of different color  
end while 

The following Lemma describes the structure of a M-augmenting path whose extremities belong to sV  and 
1sV + . 

Lemma 12. After the execution of Procedure Split ( )1, ,s sM V V +  if there is a M-augmenting path 
1 tP v v=   in G whose extremities in sV  and 1sV +  then: 

• bip
kG EP≠  or 1s k≠ − . 

• P can be reduced to a M-augmenting path 1 2 3 4 5 6v v v v v v  where 1 2 3 2 4 1 5, , , , ,s i s s jv V v V v V v V v V+ −∈ ∈ ∈ ∈ ∈
6 1t sv v V += ∈ , iV  is any non-independent set of sV  and jV  is any non-independent set of 1sV + . 

Proof. Let 1 2 tP v v v=   be a M-augmenting path in G where 1 sv V∈  and 1t sv V +∈ . Since after the execu-
tion of Procedure Split ( )1, ,s sM V V + , sV ≠ ∅  and 1sV + ≠ ∅ , the set M ′  must be empty. Therefore, if 

bip
kG EP=  and 1s k= − , every edge of M has an extremity in 1,s sV V−  or 1sV + , and if bip

kG EP≠  or 
1s k≠ − , every edge of M has an extremity in 1 1, ,s s sV V V− +  or 2sV + . Obviously, the color of every vertex of P 

having an odd index (resp. even index) is as the color of 1v  (resp. tv ).  
Let iv  be the first vertex of P having an odd index and belongs to a set distinct of sV , then 1i iv v M− ∈ . 
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Since M ′ = ∅  and i sv V∉ , either 1 1 1i s sv V V− − +∈   or 2i sv V +∈ . If 1 1 1i s sv V V− − +∈   then 2i sv V− ∉ , a con-
tradiction with our choice of iv , therefore 2i sv V +∈ . Since 2sV +  does not exist when bip

kG EP=  and 
1s k= − , then bip

kG EP≠  or 1s k≠ − . Since 1 1 1i s sv V V− − +∉  , ( )1 1iv v E G− ∈ . Now the subpath 1 2 iv v v  of 
P can be reduced to 1 1i iv v v− . 

Let jv  be the last vertex of P having an even index and belongs to a set distinct of 1sV + , then 1j jv v M+ ∈ . 
Since M ′ = ∅  and 1j sv V +∉ , either 1 2j s sv V V+ +∈   or 1j sv V −∈ . If 1 2j s sv V V+ +∈   then 2 1j sv V+ +∉ , a con-
tradiction with our choice of jv , therefore 1j sv V −∈ . Since 2i sv V +∈  and 1j sv V −∈ , ( )i jv v E G∈ . Obviously 

i jv v M∉ . Since 1 2j s sv V V+ +∉  , ( )1j tv v E G+ ∈ . Now the path P can be reduced to the M-augmenting path
1 1 1i i j j tv v v v v v− + . □ 
Consider now a M-augmenting path in G such that its M-unsaturated vertices are in 1sV +  and in 2sV + . In a 

similar way, by replacing in the above Procedure and in Lemma 12, 1s −  by s, s by 1s + , 1s +  by 2s +  
and 2s +  by 3s + , we obtain the Procedure Split ( )1 2, ,s sM V V+ +  and Lemma 13which describes the struc-
ture of a M-augmenting path whose extremities belong to 1sV +  and 2sV + . 

Procedure Split (M, Vs+1, Vs+2) 
1) if bip

kG EP=  and 1 1s k+ = −  then 
        ( ) ( ){ }| and , 1, 2M xy M label x label y s s s′′ = ∈ ≠ + +  
2) else   ( ) ( ){ }| and , 1, 2 and 3M xy M label x label y s s s s′′ = ∈ ≠ + + +  
3) while 1sV + ≠ ∅  and 2sV + ≠ ∅  and M ′′ ≠ ∅  do  

begin while 
4) let { } { }1 2, , , ,s su V v V xy M M M xy ux vy+ + ′′∈ ∈ ∈ = −   
5)       { } { } { }1 1 2 2, ,s s s sV V u V V v M M xy+ + + + ′′ ′′= − = − = −  

//assuming that u and x also v and y are of different color 
end while 

Lemma 13. After the execution of Procedure Split ( )1 2, ,s sM V V+ +  if there is a M-augmenting path 
1 tP v v=   in G whose extremities in 1sV +  and 2sV +  then: 

• bip
kG EP≠  or 1 1s k+ ≠ − . 

• P can be reduced to a M-augmenting path 1 2 3 4 5 6v v v v v v  where 1 1 2 3 3 4 5, , , , ,s i s s jv V v V v V v V v V+ +∈ ∈ ∈ ∈ ∈
6 2t sv v V += ∈ , iV  is any non-independent set of 1sV +  and jV  is any non-independent set of 2sV + . 

We start now by developing a Procedure for a maximum matching in bip
kG EP=  or bip

kG EC= . The order of 
applying Match operations is defined in following Procedure which called MATCH (G). Recall that either 

2k n′=  or 2 1k n′= + .  

Procedure MATCH (G) 
1) M ←∅  
2) 2, 1l h= =  
3) For 2i =  to n′  (or to 1n′ +  if 2 1

bip
nG EP ′+= ) do  

begin for  
4)    j l=  
5)    while 2 1iV − ≠ ∅  and 2 4j i≤ −  do 

   begin while 
6)              2 1,i jM M Match V V− ←  

 
7)              if jV = ∅  then 2j j= +  

   end while 
8)    l j=  
9)    j h=  
10)    while 2iV ≠ ∅  and 2 3j i≤ −  do 

   begin while 
11)             2 ,i jM M Match V V ←    
12)             if jV = ∅  then 2j j= +  
        end while 
13)    h j=  

end for 
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Procedure MATCH (G) works as following, for every 2i =  to n′  (or to 1n′ +  if 2 1
bip

nG EP ′+= ): 
• Add to M the possible edges between 2 1iV −  as long as it is non empty and (the non-independent sets of 2 1iV −  
having indices less than 2 1i − ) 2 2 4, , ,l l iV V V+ −  with respect to this order, where l determines the last non 
empty set in 2 2 2, , iV V −  during the for loop iterations 2, , 1i − . 
• Add to M the possible edges between 2iV  as long as it is non empty and (the non-independent sets of 2iV  
having indices less than 2i) 2 2 3, , ,h h iV V V+ −  with respect to this order, where h determines the last non empty 
set in 1 2 1, , iV V −  during the for loop iterations 2, , 1i − . 

Observation 14. According to Procedure MATCH (G): 
• if xy  is an edge of M created by the operation ,i jMatch V V    then i j> .  
• if i i′<  (resp. j j′< ) then the edges of ,i jMatch V V    have been added to M before adding the edges of 

,i jMatch V V′    (resp. ,i jMatch V V ′   ). 
• if i j r> >  then the edges of ,j rMatch V V    have been added to M before adding the edges of 

,i jMatch V V   . 
The following Table 2 illustrates a trace of the Procedure MATCH (G) for the 8

bipEP  in Figure 2. The 
second and the third column of this table represent the execution of steps 5 and 10 respectively. 

The combination of Procedures MATCH (G), M-unsaturated vertices ( ),G M , Split ( )1, ,s sM V V + , and Split 
( )1 2, ,s sM V V+ +  provides the Procedure MAXMMATCH bip

kEP . For a maximum matching of bip
kEC  we need  

a little addition. Theorem 15 proves their correctness. 

Procedure MAXMATCH bip
kEP  

1) MATCH ( )bip
kEP  

2) M-unsaturated vertices ( ),bip
kEP M  

3) Split ( )1, ,s sM V V +  
4) Split ( )1 2, ,s sM V V+ +  
Procedure MAXMATCH bip

kEC  
1) MATCH ( )bip

kEC  
2) M-unsaturated vertices ( ),bip

kEC M  
3) Split ( )1, ,s sM V V +  
4) Split ( )1 2, ,s sM V V+ +  
5) if 1kV − ≠ ∅  and kV ≠ ∅  then  

//Assuming that x and the vertices of kV  also y and the vertices of 1kV −  are of the same color 
6)    ( ) ( ){ }| 2, 1M xy M label x k label y′ = ∈ ≠ − = ≠ ∅  
7)    ( ) ( ){ }| 2, 1M xy M label x k label y′′ = ∈ = − ≠  
8) while 1kV − ≠ ∅  and kV ≠ ∅  and M ′ ≠ ∅  and M ′′ ≠ ∅  do 
  begin while 
     let 1, , ,k ku V v V xy M x y M− ′ ′ ′ ′′∈ ∈ ∈ ∈  
9)    { } { }, , ,M M xy x y ux x y vy′ ′ ′ ′← −   
10)    { } { } { } { }1 1 , , ,k k k kV V u V V v M M xy M M x y− − ′ ′ ′′ ′′ ′ ′= − = − = − = −  
  end while 
Theorem 15. Procedure MAXMATCH bip

kEP  and Procedure MAXMATCH bip
kEC  produce a maximum 

matching of bip
kG EP=  and bip

kG EC=  respectively. 

Proof. Suppose that after execution of Procedure MAXMATCH bip
kEP  or Procedure MAXMATCH bip

kEC  
there is a M-augmenting path 1 2 tP v v v=  . Since 1v  and tv  are of different color and all the monochromatic 
sets are empty except at most 1,s sV V +  and 2sV + , there are two cases, either 1 1,s t sv V v V +∈ ∈  or  

1 1 2,s t sv V v V+ +∈ ∈ .  
Let r s=  when 1 1,s t sv V v V +∈ ∈  or 1r s= +  when 1 1 2,s t sv V v V+ +∈ ∈ . By Lemma 12 and Lemma 13, P 

can be reduced to a path 1 2 3 4 5 6v v v v v v  where 1 2 3 2 4 1 5 6 1, , , , ,r i r r j t rv V v V v V v V v V v v V+ − +∈ ∈ ∈ ∈ ∈ = ∈ , iV  is any 
non-independent set of rV  and jV  is any non-independent set of 1rV + . Assume first that 1r k≠ −  and 
r k≠ . 

Claim 1. The edge 2 3v v  is obtained by Split operation. 
Proof. Suppose that the edge 2 3v v  is obtained by Match operation. Since 3 2rv V +∈  the edge 2 3v v  is ob-

tained either by [ ]2 ,r iMatch V V+  or by [ ]2,i rMatch V V + . Without loss of generality, assume that 2 3v v  is ob- 
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Table 2. Illustration of Procedure MATCH (G) for the 8
bipEP  in Figure 2.                                

i h l j 2 1 ,i jMatch V V−    j 2 ,i jMatch V V    M 

2 2 2 
2 ____ 1 { }1 1 2 2 3 3

4 1 4 1 4 1, ,v v v v v v  
{ }1 1 2 2 3 3

4 1 4 1 4 1, ,v v v v v v  
2 ____ 3 ____ 

3 2 3 
2 { }1 1 2 2

5 2 5 2,v v v v  3 { }1 1
6 3v v  

{ }1 1 2 2 3 3 1 1 2 2 1 1
4 1 4 1 4 1 5 2 5 2 6 3, , , , ,v v v v v v v v v v v v  

4 ____ 3 ____ 

4 4 3 
4 ____ 3 { }1 2

8 3v v  
{ }1 1 2 2 3 3 1 1 2 2 6 3 1 2

4 1 4 1 4 1 5 2 5 2 1 1 8 3, , , , , ,v v v v v v v v v v v v v v  
6 ____ 6 ____ 

 
tained by [ ]2 ,r iMatch V V+ . By Observation 14, 2r i+ > . Since 1 rv V∈ , r i> . So the operation [ ],r iMatch V V   
exists and must precedes the operation [ ]2 ,r iMatch V V+  by Observation 14 and since 1,r k k≠ − . Therefore, the  
edge 1 2v v  must be added to M instead of adding the edge 2 3v v , a contradiction. ■ 

Claim 2. r s= . 
Proof. If 1r s= +  then 3 3sv V +∈ . By Claim 1, 2 3v v  is obtained by Split operation, thus the vertex 2v  

must belong to 2sV + , a contradiction since 2sV +  and 3sV +  are independent. ■ 
Since 3 2sv V +∈ , the edge 2 3v v  is obtained by the step 4, that is by Split ( )1 2, ,s sM V V+ + . Let xy M ′′∈  be the 

edge which was in M and which has been used in step 4 of the Procedure Split ( )1 2, ,s sM V V+ +  to obtain the edge 
2 3v v . The vertex 2v  must be identical to x or to y. Let x be the vertex 2v . By the definition of M ′′ , the vertices 

x and y don’t belong to 1 2s s sV V V+ +  . Since 1 sv V∈  and 1 2v v E∈ , 2 1sx v V −= ∉ . Obviously, 1sy V −∉ . 
Therefore xy M ′∈  where M ′  is the set defined in step 4 of the Procedure Split ( )1, ,s sM V V + . But before ex-
ecuting the step Split ( )1 2, ,s sM V V+ + , the set M ′  must be empty since 1,s sV V +≠ ∅ ≠ ∅ , a contradiction. 

Assume that 1r k= − . Then 1 1kv V −∈  and t kv V∈ . By Lemma 12 and Lemma 13, bip
kG EC= , 1 1,kv V −∈

2 3 1 4 2 5 6, , , ,i k j t kv V v V v V v V v v V−∈ ∈ ∈ ∈ = ∈ , iV  is any non-independent set of 1kV −  and jV  is any non-in- 
dependent set of kV . Since 1 1 6,k kv V v V−∈ ∈  then 1kV − ≠ ∅  and kV ≠ ∅ . Therefore one of the sets M ′  and 
M ′′  in step 8 must be empty. This is contradicted with the fact that 2 3v v M ′∈  and 4 5v v M ′′∈ . 

Assume finally that r k= . Then 1 kv V∈  and 1tv V∈ . Since in this case kV  and 1V  must be independent, 
bip
kG EC= . By Lemma 12 and Lemma 13, 1 2 3 2 4 1 5 6 1, , , , ,k i k j tv V v V v V v V v V v v V−∈ ∈ ∈ ∈ ∈ = ∈ , iV  is any 

non-independent set of kV  and jV  is any non-independent set of 1V . 
Claim 3. The edge 4 5v v  is obtained by Split operation. 
Proof. Suppose that the edge 4 5v v  is obtained by Match operation. Since 1k j− > , 4 1kv V −∈  and 5 jv V∈ , 

then the edge 4 5v v  is obtained by 1,k jMatch V V−   . By Observation 14, since 1 1k j− > > , the operation 
1,jMatch V V    exists and must precede the operation 1,k jMatch V V−   . Therefore, the edge 5 6v v  must be 

added to M instead of adding the edge 4 5v v , a contradiction. ■ 
Claim 4. 1r s= + . 
Proof. If r s=  then 4 1sv V −∈ . By Claim 3, 4 5v v  is obtained by Split operation, thus the vertex 5v  must 

belong to sV , a contradiction since 1sV −  and sV  are independent. ■ 
Since 4 sv V∈ , the edge 4 5v v  is obtained by the step 3, that is by Split ( )1, ,s sM V V + . Let xy M ′∈  be the 

edge which was in M and which has been used in step 4 of the Procedure Split ( )1, ,s sM V V +  to obtain the edge 
4 5v v . The vertex 5v  must be identical to x or to y. Let x be the vertex 5v  and let hy V∈ . By the definition of 

M ′ , 1h ≠ . Obviously, xy  was not created by split operation. By Observation 14, if j h>  (resp. j h< )  
then xy  was created by ,j hMatch V V    (resp. ,h jMatch V V   ). Since 1 h<  (resp. 1h j> > ), the operation  

1,jMatch V V    precedes the operation ,j hMatch V V    (resp. ,h jMatch V V   ). So the edge 5 6v v  must be 
added to M instead of adding xy , a contradiction. □ 

Lets apply the Procedure MAXMATCH bip
kEP  on the graph 8

bipG EP=  in Figure 2. As we shown above,  
Procedure MATCH (G) produces the matching { }1 1 2 2 3 3 1 1 2 2 6 3 1 2

4 1 4 1 4 1 5 2 5 2 1 1 8 3, , , , , ,M v v v v v v v v v v v v v v= . Procedure M-unsa-  

turated vertices ( ),G M  gives that 1 7 1 8,s k s kV V V V V V− += = = =  and 2sV +  does not exist. Procedure Split  
( )1, ,s sM V V +  gives that { }1 1 2 2 3 3 1 1 2 2

4 1 4 1 4 1 5 2 5 2, , , ,M v v v v v v v v v v′ =  and { }1 1 2 2 3 3 1 1 2 2 1 1 1 1 1 2
4 1 4 1 4 1 5 2 8 5 7 2 6 3 8 3, , , , , , ,M v v v v v v v v v v v v v v v v= .  

Since 2sV +  does not exist, Procedure Split ( )1 2, ,s sM V V+ +  gives nothing. 
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3.3. The Whole Algorithm 
Let us present now our algorithm for the maximum matching problem on bipartite 123Star -free graphs. Theo-
rems 8, 9, 10, and 15 prove its correctness. 

Algorithm Maximum Matching 
Input: A bipartite 123Star -free graph G and its binary canonical decomposition tree ( )BT G . 
Output: M a maximum matching of G and U the set of M-unsaturated vertices of G.  
1) Let α  be a node on a postorder traversal of ( )BT G . 
2) If α  is a leaf or α  is a P′ -node then { },M U α←∅ ← . 
3) Else if α  is a N-node then. 
4)  If [ ] kG EPα =  or [ ] kG ECα =  then MAXMATCH ,k kM EP EC← , U M← -unsaturated  

vertices.  
5)  Else if bip

kG EP=  then MAXMATCH bip
kM EP← , U M← -unsaturated vertices. 

6)  Else MAXMATCH bip
kM EC← , U M← -unsaturated vertices. 

7)  Replace α  by a leaf α′  together with M and U. 
8) Else let 1α  and 2α  be the two children of α  in ( )BT G . 
9)  Let 1M  and 2M  be respectively the maximum matchings and. 
10)  1U  and 2U  be respectively the sets of unsaturated vertices of [ ]1G α  and [ ]2G α . 
11)  If α  is a P-node then 1 2 1 2,M M M U U U← ←  . 

12)  Else if α  is a K S+ -node then [ ]1 2,M Match U U← , U M← -unsaturated vertices.  
13)   Else [ ]1 2,M Match U U← , U M← -unsaturated vertices [ ]1 2,M Split U U← ,  

U M← -unsaturated vertices. 

3.4. Complexity 
We show now that the complexity of our algorithm is ( )O n .  

The total number of Match operations performed by ,i jMatch V V   , is at most ( )min ,i jV V . So the run 
time of step 4 (Procedure MAXMATCH_ _k kEP EC ) is ( )O n .  

Consider the steps 5 and 6 which are the Procedures MAXMATCH bip
kEP  and MAXMATCH bip

kEC . The 
variables l and h in Procedure MATCH (G) assure that the sum of iterations of all while loops in this Procedure  
is ( )O n′ . Since n n′ <  and the number of Match operation performed by ,i jMatch V V    is at most  

( )min ,i jV V  then MATCH (G) runs in ( )O n  time. The Procedure M-unsaturated vertices ( ),G M  runs in 

( )O n  time since n n′ < . 
Since the size of the matching obtained by MATCH (G) is less than or equal to 2n , the construction of the 

set M ′  and M ′′  defined in Procedures Split ( )1, ,s sM V V + , Split ( )1 2, ,s sM V V+ +  and MAXMATCH bip
kEC , 

as well as the while loops defined in these Procedures costs ( )O n  time. So steps 5 and 6 runs in ( )O n  time. 
The total number of Match or Split operations performed in steps 8 to 13 is bounded by the size of maximum 

matching obtained, which is less or equal to 2n  ([2]), so the run time of steps 8 to 13 is ( )O n .  
Finally, since the number of visited nodes in ( )BT G  is ( )O n , this algorithms runs with ( )O n  time com-

plexity. 

4. Conclusion 
The maximum matching is computed in ( )O n  time, given a binary canonical decomposition tree of a bipartite 

123Star -free graph. The canonical decomposition of a bipartite 123Star -free graph can be done in ( )O n m+  
time [14] including the binary canonical decomposition tree construction. Thus, the whole process is in 
( )O n m+  time. 

Acknowledgements 
This research is funded by the Deanship of Research and Graduate Studies in Zarqa University/Jordan. The au-



R. Quaddoura 
 

 
24 

thor is grateful to anonymous referee’s suggestion and improvement of the presentation of this paper. 

References 
[1] Lozin, V.V. (2002) Bipartite Graphs without a Skew Star. Discrete Mathematics, 257, 83-100. 

http://dx.doi.org/10.1016/S0012-365X(01)00471-X 
[2] Fouquet, J.L., Giakoumakis, V. and Vanherpe, J.M. (1999) Bipartite Graphs Totally Decomposable by Canonical De-

composition. International Journal of Foundation of Computer Science, 10, 513-533.  
http://dx.doi.org/10.1142/S0129054199000368 

[3] Ben-Dor, A., Karp, R.M., Schwikowski, B. and Shamir, R. (2003) The Restriction Scaf-Fold Problem. Journal of 
Computational Biology, 10, 385-398. http://dx.doi.org/10.1089/10665270360688084 

[4] Buss, S.R. and Yianilos, P.N. (1995) A Bipartite Matching Approach to Approximate String Comparison an Search. 
Technical Report, NEC Research Institute, Princeton.  

[5] Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L. and Dickinson, S. (2006) Object Recognition as Many- 
to-Many Feature Matching. International Journal of Computer Vision, 69, 203-222. 
http://dx.doi.org/10.1007/s11263-006-6993-y 

[6] Toussaint, G.T. (2004) A Comparison of Rhythmic Similarity Measures. 5th International Conference on Music Infor- 
mation Retrieval, 242-245.  

[7] Toussaint, G.T. (2005) The Geometry of Musical Rhythm. Japan Conference on Discrete and Computational Geome-
try, Berlin-Heidelberg, 198-212. http://dx.doi.org/10.1007/11589440_20 

[8] Micali and Vazirani, V.V. (1980) An ( )O m n  Algorithm for Finding Maximum Matching in General Graphs. FOCS, 

17-27.  
[9] Moitra and Johnson, R.C. (1989) A Parallel Algorithm for Maximum Matching in Interval Graphs. Proceedings of In-

ternational Conference on Parallel Processing, 3, 114-120.  
[10] Alt, H., Blum, N., Mehlhborn, K. and Paul, M. (1991) Computing a Maximum Cardinality Matching in Bipartite 

Graphs in Time ( )1.5 logO n m n . Information Processing Letters, 37, 237-240.  

http://dx.doi.org/10.1016/0020-0190(91)90195-N 
[11] Yu, M.S. and Yang, C.H. (1993) An O(n) Time Algorithm for Maximum Matching on Cographs. Information Process- 

ing Letters, 47, 89-93. http://dx.doi.org/10.1016/0020-0190(93)90230-7 
[12] Fouquet, J.L., Parfenoff, I. and Thuillier, H. (1997) An O(n) Time Algorithm for Maximum Matching in P4-Tidy 

Graphs. Information Processing Letters, 62, 281-287. http://dx.doi.org/10.1016/S0020-0190(97)00081-1 
[13] Quaddoura, R. (2014) An O(n) Time Algorithm for Maximum Induced Matching In Bipartite Star123-Free Graphs. 

World of Computer Science and Information Technology Journal (WCSIT), 4, 38-41. 
[14] Quaddoura, R. (2006) Linear Time Recognition Algorithm of Bipartite Star123-Free Graphs. International Arab Journal 

of Information Technolog, 3, 193-202. 
[15] Bondy, J.A. and Murty, U.S.R. (1979) Graph Theory with Applications. North Holland, New York.  
[16] Berge, C. (1957) Two Theorems in Graph Theory. Proceedings of the National Academy of Sciences of the United 

States of America, 43, 842-844. http://dx.doi.org/10.1073/pnas.43.9.842 

http://dx.doi.org/10.1016/S0012-365X(01)00471-X
http://dx.doi.org/10.1142/S0129054199000368
http://dx.doi.org/10.1089/10665270360688084
http://dx.doi.org/10.1007/s11263-006-6993-y
http://dx.doi.org/10.1007/11589440_20
http://dx.doi.org/10.1016/0020-0190(91)90195-N
http://dx.doi.org/10.1016/0020-0190(93)90230-7
http://dx.doi.org/10.1016/S0020-0190(97)00081-1
http://dx.doi.org/10.1073/pnas.43.9.842

	Solving the Maximum Matching Problem on Bipartite Star123-Free Graphs in Linear Time
	Abstract
	Keywords
	1. Introduction
	2. Definitions and Properties
	3. Maximum Matching of Bipartite Star123-Free Graphs
	3.1. α Is of Type P, S or K + S
	3.2. α Is of Type N
	3.2.1. α Is EPk or ECk
	3.2.2. α Is  or 

	3.3. The Whole Algorithm
	Algorithm Maximum Matching

	3.4. Complexity

	4. Conclusion
	Acknowledgements
	References

