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Abstract 
 
In this paper an encryption-decryption algorithm based on two moduli is described: one in the real field of 
integers and another in the field of complex integers. Also the proper selection of cryptographic system pa-
rameters is described. Several numeric illustrations explain step-by-step how to pre-condition a plaintext, 
how to select secret control parameters, how to ensure feasibility of all private keys and how to avoid ambi-
guity in the process of information recovery. The proposed public key cryptographic system is faster than 
most of known public key cryptosystems, since it requires a small number of multiplications and additions, 
and does not require exponentiations for its implementation. 
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1. Introduction and Primary Residues 
 
This paper describes and briefly analyzes a public key 
cryptographic (PKC) based on primary residues and 
Gaussian modulus. The framework of the proposed PKC 
partially resembles NTRU PKC [1,2] {more details are 
provided in www.ntru.com} that was introduced in 1996 
and later patented by three mathematicians from Brown 
University. Their PKC was analyzed in several papers 
[3-5]: in [3] it was pointed out that the decryption did not 
always recover the initial plaintext. Nevertheless, the 
NTRU had such a computational appeal that its authors 
were granted a USA patent even before the flaws in the 
algorithm were eliminated. Papers [4,5] provided several 
scenarios of cryptanalysis of the NTRU. 

In this paper we consider a public key cryptographic 
system with two modulo reductions: 
● Real integer modulus n and 
● Complex (Gaussian) modulus R [6]. 

As a result, all public and private keys of each user 
and secret controls S are also Gaussians. Since plaintext 
blocks are also Gaussian, to avoid ambiguity in informa-
tion recovery a concept of primary residues is introduced. 
It is demonstrated how to ensure that all keys of the pro-
posed cryptosystem provide unambiguous recovery of 
initially pre-conditioned and subsequently-encrypted in- 

formation. 
In the proposed cryptosystem there is no necessity to 

consider polynomials with binary coefficients as it is 
done in papers [1] and [2]. 
 
1.1. Complex Modulo Reduction 

Real modulus: In a group based on real modulo reduction 
n there are two results, whether n is either prime or 
composite: if mod 0a n b  , then mod 0a n b n    
is also correct. 

In order to avoid ambiguity, we can stipulate that only 
non-negative results are feasible. 

Complex modulus: Consider Gaussian integers 
 1 2: ,B b b , and  1 2: ,R r r . In an arithmetic based on 

modulo reduction with complex integer R there are four 
possible results: if modA R B , where both A and B 
are complex integers, then 

   
   

1 2 1 1 2 2

1 2 2 1 1 1 2 2 1 2

mod , ; , ;

, ; ,

A R b b b r b r

b r b r b r r b r r

  

     
 

are also correct. In order to avoid ambiguity in this case, 
it is stipulated in this paper that only primary residues 
are feasible {a definition and details are provided below}. 

Let’s define the norm N of R as 
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2 2
1 2 : :N R r r                 (1.1) 

Then 
     

       
1 2

1 2 1 2

, : , mod ,

, , , ,

x y a b r r

a b a b r r N r r



    
 (1.2) 

 
1.2. Primary Residues 
 
Let’s define two functions of integer variables x1 and x2 
with integer parameters r1 and r2: 

 1 2 1 2 2 1, : ;H x x r x r x           (1.3) 

and            1 2 1 1 2 2, :V x x r x r x  .          (1.4) 

Definition 1.1 {primary residue}: A Gaussian integer 
 1 2,A a a  is called a primary residue modulo R if it 

satisfies four inequalities: 

 1 20 , 1H a a N   ;           (1.5) 

and           1 20 , 1V a a N   .           (1.6) 

Property 1.1: If a Gaussian integer G is a primary 
residue modulo Gaussian R, then 

mod .G R G                 (1.7) 

In the cryptographic scheme described below a plain-
text M is divided onto pairs of blocks  1 2,M m m , 
where each pair is treated as a Gaussian integer. In the 
cryptographic algorithm below, it is important to assure 
that the numeric representation  1 2,M m m  is a pri-
mary residue modulo R. 
 
1.3. Plaintext as Primary Residue 
 
In general,  1 2,M m m  is the primary residue modulo 
R, if m1 and m2 satisfy the following inequalities: 

 1 20 , 1H m m N   ;          (1.8) 

 1 20 , 1V m m N   .           (1.9) 

Remark 1.1: If both components in R are positive, then 
   1 2, 1, 0a a   is not a primary residue modulo R since 
(1.5) does not hold. Indeed,      2 1 1 21,0 1 , mod ,r r r r  . 

And, as a result, property (1.7) does not always hold. 
However, if 2 10r r  , then (1,0) is the primary resi-

due. 
If 2 0r  , then (1.8) implies 

2 2
1 2 2 1 1 20 r m r m r r    ;        (1.10) 

and (1.9) implies that 

2 2
1 1 2 2 1 20 .r m r m r r           (1.11) 

Therefore, the right inequalities in (1.10) and (1.11) 
are respectively equivalent to 

 1 1 2 2 2 10 ( )r r m r r m     

and         1 1 1 2 2 20 ( )r r m r r m    , 

which hold if 

2 1 1 2 1 1; ;  and m r m r m r   .      (1.12) 

In addition, the left inequality in (1.11) holds if 

   2 1 1 2m m r r .            (1.13) 

 
1.4. Geometric Interpretation 
 
All primary residues are located inside a tilted square 

(rhomb) with vertices    0,0 ; ; ; 1R iR i R  and with 

sides equal 
2 2

1 2r r  (1.1). 
If  1 2gcd , 1r r  , then there are exactly 1N   pri-

mary residues inside this rhomb. 
 
2. Cryptographic System Based on Primary 

Residues 
 
1) All users (i = 1, 2, ···) agree to select a large real inte-
ger n {the same for all of them}; 

2) The i-th user has private and public keys, and secret 
controls , , , ,i i i i iP R U Q S  with index i; {in the forthcom-
ing discussion index i is omitted for the sake of simplic-
ity of notations}; 

3) Variables: P, R, U, Q, S, F, W, where each of them 
is a complex (Gaussian) integer; 

4) User’s private keys:  1 2, ;P p p   1 2,R r r ; where 
R is also a Gaussian prime 

and         1 2 1 2gcd , 1; gcd , 1;p p r r        (2.1) 

{the second condition in (2.1) holds if R is a Gaussian 
prime}; 

Remark 2.1: The stipulation that R is a Gaussian prime 
is sufficient to assure that certain conditions hold, but not 
necessary. Hence, it can be omitted under other consid-
erations. 

5) Every user pre-computes inverse  

    1

1 2 1 2: , : , modF f f p p n
    [7];    (2.2) 

Remark 2.2: a Gaussian multiplicative inverse F of P 
modulo real integer n exists  

if         2 2
1 2gcd , 1; :P n P p p   ;    (2.3) 

6) Every user pre-computes her/his public key 

    1 2 1 2 1 2: , : , , mod ;U u u f f r r n       (2.4) 

7) Every user pre-computes a multiplicative inverse Q 
of P modulo Gaussian prime R: 
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     1

1 2 1 2 1 2: , : , mod , ;Q q q p p r r
       (2.5) 

Multiplicative inverse Q of P modulo R exists if 

   gcd , 1,0 .P R                (2.6) 

Remark 2.3: As demonstrated in [7], P has multiplica-
tive inverse modulo R even if  gcd , 1P R  . For 
instance, although    1 2 2 1, ,r r r r , 

yet              1 2 2 1gcd , , , 1,0 .r r r r           (2.7) 

Therefore, if R is a Gaussian prime, then every Gaus-
sian is co-prime with R, i.e., it has a multiplicative in-
verse modulo R. Primality of R is sufficient, but not nec-
essary condition. The algorithm for computation of Q in 
(2.5) is provided below in Section 9. 

Remark 2.4: Condition (1.13) is not directly verifiable 
by a sender since R is the private key of the receiver. Yet, 
the sender has an option to indirectly satisfy (1.13). In-
deed, if 2 1r r  and 2 1 1m m  , then (1.13) holds; oth-
erwise switch m1 and m2 in M: 

2 1 1 2: ; :w m w m                 (2.8) 

Then, as a result, 

   2 1 1 21 .w w r r               (2.9) 

Remark 2.5: Since r1 and r2 are design parameters of 
the cryptographic algorithm, they can be properly se-
lected. On the other hand, m1 and m2 are inputs of the 
algorithm. As a result, a designer of this algorithm must 
ensure that both inequalities (1.11) hold for every pair 
 1 2,m m  by partitioning the plaintext onto blocks of 
appropriate sizes. 

Remark 2.6: In the forthcoming discussion it is as-
sumed that  1 2: ,W w w  is already pre-conditioned 
plaintext; i.e., in every Gaussian block 1 2w w . 
 
3. Hiding Information and Its Recovery 
 
3.1. Threshold Parameter 
 
Suppose that a sender (Sam) transmits a plaintext mes-
sage  1 2,M m m  to a receiver (Rene). The size of 
plaintext blocks m1 and m2 must be selected in such a 
way that 

1 2 10 , ;m m u r               (3.1) 

and plaintext M must be a primary residue modulo R 
{see (1.8-1.13)}. Here variable u (threshold) is the same 
for all users; its value is established below. 
 
3.2. Sender’s Secret Key 
 
For security reason, the sender periodically selects a 
randomized secret key  1 2: ,S s s . S plays two roles: it 

is a screen/veil that hides information; and at the same 
time it is a control that enables the system user to satisfy 
certain constraints. Proper selection of S is discussed 
below. 

Encryption: Using Rene’s public key U, Sam selects 
secret control S and computes ciphertext: 

 : mod .C M SU n              (3.2) 

Decryption: {requires real and Gaussian modulo re-
ductions}: 

Stage 1 {Real modulo n reduction}: 

: modD PC n ;                 (3.3) 

Stage 2 {Gaussian modulo R reduction}: 

: mod .Z QD R              (3.4) 

 
3.3. Algorithm for Multiplicative Inverse of P 

Modulo Complex R 
 
The algorithm computes the user’s private key 

 1 mod ,Q P R   where  , .R p q    (3.5) 

If R is a Gaussian prime, then 

 2 modNQ P R  , where 2 2.N p q   (3.6) 

Computation (3.6) of multiplicative inverse (3.5) is 
based on the following identity. 

Proposition 3.1 {cyclic identity}: If  
     gcd , , , 1,0a b p q     and  ,p q  is a prime, then the 

following identity holds: 

     1
, mod , 1,0

N
a b p q

    [6].     (3.7) 

 
4. Validation of Encryption-Decryption  

Algorithm 
 
Proposition 4.1: If W is a primary residue and private 
keys P, R and secret control S are selected in such a way 
that holds 

 mod ,PW RS n PW RS          (4.1) 

then in (3.4) 

.Z W                   (4.2) 

Proof: (2.2, 2.4, 2.5, 3.3 and 4.1) imply that 

    
   

   

     

4.1

2.2

2.4

3.2 3.3

1,0 mod

mod mod

mod mod

mod mod .

PW RS PW RS n

PW PF n RS n

P W FR n S n

P W US n PC n D

 

     

     

   

(4.3) 
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Equation (4.3) holds since W, P, R, S are properly se-
lected to ensure Equation (4.1). 

Then 

   
  
  
       

4.3

2.5 ; 1.7

mod mod

mod mod

     mod mod

     1,0 mod 0

.

Z QD R Q PW RS R

QP R W R

QS R R R

W QS R

W

    





   



 (4.4) 

Finally, the latter equality in (4.4) holds since W is a 
primary residue modulo R (1.5)-(1.7), i.e., because 

modW R W .                           Q. E. D. 
Proposition 4.2: if 
● Absolute value of every component of private keys 

P and R is larger than threshold parameter 6u n  
and does not exceed 2u; 
● Each component of plaintext W is positive and does 

not exceed u; and 
● Absolute value of each component in secret control 

S does not exceed u, 
then the encryption/decryption cryptosystem (3.2)-(3.4) 
provides unambiguous results. 
 
5. Cryptosystem Design 
 
Inputs m1 and m2 are independent variables known only 
to the sender (Sam). There are two types of variables: 
long-term static system parameters (strategic variables) 
and short-term dynamic controls (tactical variables): 
System parameter n; Strategic variables P and R; Dy-
namic controls S; and Observable inputs: W  1 2w w . 
Here it is assumed that plaintext  1 2,  w w  is already 
preconditioned; {more details are provided below}. 

In addition, every W must be a primary residue for the 
receiver, i.e., W and modulus R for every user must sat-
isfy the following system of inequalities with eight inte-
ger variables: 

1 1 2 20 ; 0 ;w u r w u r              (5.1) 

2 2
1 2 2 1 1 2 2 1 1 20 ; ;r w r w r w r w r r        (5.2) 

2 2
2 2 1 1 1 1 1 2 2 2; .r w r w r w r r r w          (5.3) 

(5.1)-(5.3) are conditions that ensure that W is a primary 
residue modulo R. 

If 1 0s   and 2 0p  , then controls S and private key 
P must satisfy constraints: 

1 1 1 1 2 2 2 20 ;p w r s p w r s            (5.4) 

1 1 1 1 2 2 2 2 ;p w r s p w r s n            (5.5) 

1 2 2 1 1 2 2 10 ;p w p w r s r s            (5.6) 

1 2 2 1 1 2 2 1 .p w p w r s r s n            (5.7) 

If (5.4)-(5.7) hold, then (4.1) also holds. 
 
6. Equalizing the Feasibility Intervals 
 
Notice that at most three terms in (5.5) and (5.7) are 
positive. Hence, if every product does not exceed 3n , 
then the sum of three terms does not exceed n. 

Let 
0 ; ; ; ,k k k kw u s u u p v u r v           (6.1) 

where u and v are unknown real numbers. 

Hence  3 ,PC uv n   i.e., 3.uv n        (6.2) 

Select such u and v that the lengths of feasibility inter-
vals for private keys P and R, secret key S and plaintext 
W are equal. Hence, u v u  , which implies 2u = v. 

Thus, 
22 3u n                 (6.3) 

which implies that 

6u n  and 2 3.v n              (6.4) 

Therefore, the following inequalities must hold: 

0 6; 6;

6 2 3; 6 2 3.

k k

k k

w n s n

n p n n r n

  

   
 (6.5) 

Notice that Sam (the sender) 
● Knows the input w1 and w2; 
● Does not know P and R of Rene (the receiver); 
● Dynamically selects controls s1 and s2. 
Corollary 6.1: If 3   and  3i j k lp w n r s n  , the 

value of each component in W and S is smaller than 
6,n  1,p  2 ,p  1r  and 2r  are on interval 6, 2 3n n 

  , 
then it ensures that W is a primary residue and that 
 modPW RS n PW RS    (4.1). 

Remark 6.1: By analogy with (5.1-5.3, 4.1) means that 
PW + RS is a “primary residue” modulo n. 
 
7. Plaintext Preconditioning and Recovery 

Plaintext preconditioning: Compute 

1 1 2: ;w m m                   (7.1) 

if 

1 2 ,m m  then 2 1 2:w m m   else 2 2 1: 1.w m m     (7.2) 

Plaintext recovery: After decryption, the receiver com- 
pares parities of w1 and w2: 

if         1 2 mod 2 ,w w   then 

 1 1 2:= 2m w w  and 2 1 1: ;m w m     (7.3) 
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Table 1. Public keys {n-real, U-Gaussian} and private keys {P, Q, R-all Gaussian}. 

R Private key P Private key  1 modQ P R  Private key modU FR n  Public key 

R = (2270,−2203) P = (2291, −2180) Q = (2858, 421) U = (7624492, 258305) 

 
Table 2. {Encryption/Decryption}: n = 10006001; 0 1291W  ; 0 1291S  . 

 1 2,W w w   1 2,S s s  C = (W + SU) mod n D = PC mod n Z = QD mod R Plaintext M Recovered

(1223, 973) (−859, 949) (9511830, 9559186) (5063750, 3609610) (1223, 973) (1098, 125) 

(959, 941) (−999, 1234) (9149875, 5092460) (4699221, 5067188) (959, 941) (950, 9) 

(1234, 95) (−954, 1285) (8880702, 5324391) (3699469, 2546137) (1234, 95) (569, 665) 

(1267, 1201) (−999, 1234) (9150183, 5092720) (5971649, 4991408) (1267, 1201) (1234, 33) 

(18, 17) (−16, 1291) (4812437, 3187326) (2886051, 2965525 (18, 17) (0, 18) 

 

else      
 

 
1 1 2

2 1 1 1 2

: 1 2  and

: 1 2.

m w w

m w m w w

  

    
     (7.4) 

 
8. Numeric Illustrations 
 
Let n = 10006001; the user’s private keys P, Q, R and 
public key U are listed in Table 1. Here 

 2291, 2180 10001081;P     

P is a primary residue modulo R; R  = 10006109; and 
feasibility threshold parameters are equal: 
u = 6n  = 1291; and 2u = 2 3n  = 2582. 

In Table 2 every block of plaintext W is primary resi-
due of R, and the following constraints are satisfied: 

1 2 2 10 6; 0 6s s n w w n      . 

Notice that for each of five blocks W we considered 
different secret controls S. 
 
9. Algorithm for Multiplicative Inverse of P 

Modulo complex R 
 
This algorithm computes  

 1 modQ P R , 

where 

  ,R p q . (1.1)           (9.1) 

If R is a Gaussian prime, then  2 modNQ P R , 

where 

|| ||N R                  (9.2) 

If 1 2R R R , where each factor in R is a Gaussian 

prime, then 
  1 modNQ P R  ,            (9.3) 

where  N  is Euler totient function and  

1 2|| || || || || ||R RN R  .          (9.4) 

Computation (9.2) and (9.3) of multiplicative inverse 
(9.1) is based on the following identity. 

Proposition 9.1 {cyclic identity}: If  
gcd[(a, b), (p, q)]=(1,0), 

then the following identity holds: 
      1|| , || 1( , ) , mod( , )p qa b a b p q   .    (9.5) 

Proof follows from identity  

    || , ||( , ) mod( , ) 1,0p qa b p q   [6].     (9.6) 

Example 9.1: Suppose R = (9,-2) and P = (3,2); then 
N=||(9,-2)||=85 and  85 64  . 

Hence, 

     631 mod 3,2 mod 9, 2 (5, 2)Q P R     . 

Indeed, 

      3,2 5, 2 1,0 mod R  . 

Remark 9.1: The inverse of P can be also computed 
via solution of a Diophantine equation, but that is beyond 
the scope of this paper. 
 
10. Computational Complexity 
 
Encryption of each W requires three multiplications and 
five additions of real integers. 

Decryption requires twice as many of these operations. 
Since addition/subtractions are much faster than multi-
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plications, they can be neglected [8]. Therefore, we need 
nine multiplication of  log 2n -digit long integers, 
which means that bit-wise complexity is of order 

 2log n . This complexity can be reduced if we apply 
more elaborate algorithms for multiplication of multi- 
digit long real integers [9,10]. 
 
11. Conclusions 
 
In this paper an encryption-decryption algorithm based 
on real and complex modulo reductions is considered 
and analyzed. A concept of primary residues is intro-
duced to avoid ambiguity in information recovery. Sev-
eral numeric illustrations explain step-by-step how to 
pre-condition a plaintext, how to select public and pri-
vate keys for every user, and how to select secret con-
trols for every block of the plaintext in order to ensure 
unambiguous recovery of the initial information. The 
proposed cryptosystem requires a small number of mul-
tiplications and additions, and as a result, it is extremely 
fast. 
Although certain steps in the proposed cryptosystem re-
semble the NTRU cryptosystem, yet it differs from the 
NTRU in many features. One of them is absence of 
polynomials. 
In paper [8] is provided a brief history on the NTRU, 
which is reiterated below. The NTRU that was initially 
presented at Crypto ’96 was cryptanalyzed and broken in 
[11] by the method of lattice-basis reduction methods [12] 
that determines short vectors in a lattice, which arise on 
the decryption stage. Soon after that in papers [13] and 
[14] were described two other successful attempts to 
break the NTRU. An NTRU signature scheme was pro-
posed in [15], but that scheme and its revision were bro-
ken in [16] and [17]. 
 
12. Acknowledgements 
 
I express my appreciations to P. Garrett and C. Pomer-
ance for suggestions on Gaussian modulus reduction, and 
to R. Rubino for comments that improved this paper. 
Numerical illustrations provided in this paper were fa-
cilitated thanks to programming support by S. Sadik and 
B. Saraswat. 
 
13. References 
 
[1] J. Hoffstein, J. Pipher and J. Silverman, “NTRU: A Ring- 

Based Public Key Cryptosystem,” Algorithmic Number 
Theory: 3rd International Symposium (Lecture Notes in 
Computer Science), Portland, Vol. 1423, 21-25 June 1998, 
pp. 267-288. 

[2] J. Hoffstein, J. Pipher and J. Silverman, “NSS: An NTRU 
Lattice-Based Signature Scheme,” Advances in Cryptol-

ogy—EUROCRYPT 2001: International Conference on 
the Theory and Application of Cryptographic Techniques 
(Lecture Notes in Computer Science), Innsbruck, Vol. 
2045, 6-10 May 2001, pp. 211-228. 

[3] N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. 
Proos, J. Silverman, A. Singer and W. Whyte, “The Im-
pact of Decryption Failures on the Security of NTRU En-
cryption,” Advances in Cryptology—CRYPTO 2003: 23rd 
Annual International Cryptology Conference (Lecture Notes 
in Computer Science), Santa Barbara, Vol. 2729, 17-21 
August 2003, pp. 226-246. 

[4] D. Coppersmith and A. Shamir, “Lattice Attacks on NTRU,” 
Advances in Cryptology—EUROCRYPT ’97: International 
Conference on the Theory and Application of Crypto-
graphic Techniques (Lecture Notes in Computer Science), 
Konstanz, Vol. 1233, 11-15 May 1997, pp. 52-61. 

[5] E. Jaulmes and A. Joux, “A Chosen Ciphertext Attack 
against NTRU,” Advances in Cryptology—CRYPTO 2000: 
20th Annual International Cryptology Conference (Lec-
ture Notes in Computer Science), Santa Barbara, Vol. 
1880, 20-24 August 2000, pp. 20-35. 

[6] B. Verkhovsky, “Protection of Sensitive Messages Based 
on Quadratic Roots of Gaussians: Groups with Complex 
Modulus,” International Journal Communications, Net-
work and System Sciences, Vol. 4, No. 5, 2011, pp. 287- 
296. doi:10.4236/ijcns.2011.45033 

[7] B. Verkhovsky, “Cubic Root Extractors of Gaussian In-
tegers and Their Application in Fast Encryption for 
Time-Constrained Secure Communication,” International 
Journal Communications, Network and System Sciences, 
Vol. 4, No. 4, 2011, pp. 197-204.  
doi:10.4236/ijcns.2011.44024 

[8] N. Koblitz and A. J. Menezes, “A Survey of Public-Key 
Cryptosystems,” Research Report, Department of Com-
binatorics & Optimization, University of Waterloo, Wa-
terloo, August 2004, pp. 1-47. 

[9] A. L. Toom, “The Complexity of a Scheme of Functional 
Elements Realizing the Multiplication of Integers,” Soviet 
Mathematics Doklady, No. 3, 1963, pp. 714-716. 

[10] D. J. Bernstein, “Fast Multiplication and its Applica-
tions,” In: J. P. Buhler and P. Stevenhagen, Eds., Algo-
rithmic Number Theory: Lattices, Number Fields, Curves 
and Cryptography, MSRI, Cambridge University Press, 
New York, 2008, pp. 325-384. 

[11] D. Coppersmith and A. Shamir, “Lattice Attacks on 
NTRU,” Advances in Cryptology, EUROCRYPT 1997, 
Lecture Notes in Computer Science, Vol. 1233, Springer- 
Verlag, Berlin, 1997, pp. 52-61. 

[12] A. K. Lenstra, H. W. Lenstra Jr. and L. Lovasz, “Factor-
ing Polynomials with Integer Coefficients,” Mathema-
tische Annalen, Vol. 261, 1982, pp. 513-534. 

[13] E. Jaulmes and A. Joux, “A Chosen Ciphertext Attack 
against NTRU,” Advances in Cryptology, CRYPTO 2000, 
Lecture Notes in Computer Science, Vol. 1880, Springer- 
Verlag, Berlin, 2000, pp. 20-35. 

[14] N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. 
Proos, J. Silverman, A. Singer and W. Whyte, “The Im-



B. VERKHOVSKY 
 

Copyright © 2011 SciRes.                                                                                IJCNS 

481

pact of Decryption Failures On The Security of NTRU 
Encryption,” Advances in Cryptology, CRYPTO 2003, 
Lecture Notes in Computer Science, Vol. 2729, Springer- 
Verlag, Berlin, 2003, pp. 226-246. 

[15] J. Hoffstein, J. Pipher and J. Silverman, “NSS: An NTRU 
Lattice-Based Signature Scheme,” Advances in Cryptol-
ogy, EUROCRYPT 2001, Lecture Notes in Computer 
Science, Vol. 2045, Springer-Verlag, Berlin, 2001, pp. 
211-228 

[16] C. Gentry, J. Jonsson, M. Szydlo and J. Stern, “Crypt-

analysis of the NTRU Signature Scheme (NSS) from 
Eurocrypt 2001,” Advances in Cryptology, ASIACRYPT 
2001, Lecture Notes in Computer Science, Vol. 2248, 
Springer-Verlag, Berlin, 2001, pp. 1-20. 

[17] C. Gentry and M. Szydlo, “Analysis of the Revised 
NTRU Signature Scheme R-NSS,” Advances in Cryptol-
ogy, EUROCRYPT 2002, Lecture Notes in Computer 
Science, Vol. 2332, Springer-Verlag, Berlin, 2002, pp. 
299-320. 

 


