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Abstract

The Fourier transformations are used mainly with respect to the space variables. In certain cir-
cumstances, however, for reasons of expedience or necessity, it is desirable to eliminate time as a
variable in the problem. This is achieved by means of the Laplace transformation. We specify the
particular concepts of the gq-Laplace transform. The convolution for these transforms is consi-
dered in some detail.
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1. Introduction

The Laplace transform provides an effective method for solving linear differential equations with constant coef-
ficients and certain integral equations. Laplace transforms on time scales, which are intended to unify and to
generalize the continuous and discrete cases, were initiated by Hilger [1] and then developed by Peterson and
the authors [2].

2. The q-Laplace Transform

Definition 2.1. A time scale T is an arbtrary nonempty closed subset of the real numbers. Thus the real numbers
R, the integers Z, the natural numbers N, the nonnegative integers N, , and the g-numbers gl = {q" ke NO}
with fixed g >1 are examples of time scales [2] [3].

Definition 2.2. Assume f :T —C isafunction and teT". Then we define f*(t) to be the number with
the property that given any & > 0, there is a nighbourhood U (in T) of t such that

|f(o(t)-T(s)- 2 (t)[o(t)-s]|<e|o(t)-s| forallseu.
Wecall f*(t) the delta (or Hilger) derivative of f at t.
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is the usual Jakson derivative if T =q™.

A f(qt)_f(t)
N CET

Definition 2.3. If x:q™ — C is a function, then its g-Laplace transform is defined by

(z)=L{x}(z)=q w—q”x(q”)
(= £E) =TT o

for those values of z # —%,
q

Let us set
P, (2) =1, (1+ a0 z), neN,,
which is a polynomial in Z of degree n+1. It is easily verified that the equations
P.(2)- Py1(2)=20'9"p, 4 (2), neN,
and

N
! - L =7 a9 , neNy,

Pos(2) Pa(z)  pu(2)

hold, where p_, (z)=1. The numbers

1

[2% =T k e NO,
q

-1
'

k € Ny, for which this series converges, where q'=q-1.

@

@

@)

(4)

where q'=q-1, belong to the real axis interval [—(q—l) O) and tend to zero as k —oo. Forany §>0

and ke N,, we set
Dy ={zeC:|z-a,|< 5]
and

Q, =C\[J; D} ={zeC:[z-,|>6,V\ 0y, |

so that € is a closed domain of the complex plane C, whose points are in distance not less than & from the

set {a, tkeNg}.
Lemma 2.4. Forany zeQ;,

n(n+1)

[P (2)]2(a8)™a 2, neNU{-1).

®)

Therefore, for an arbitrary number R >0, there exists a positive integer n, =n, (R, 0, q) such that

p, (2)|=R™ forallnzn, zeQ,.

In particular,

lim,,, p,(z)=o forallzeQ;.

(6)

U]

Example 2.5. We find the g-Laplace transform of x(t) =k (kis afixed number). We have in,
k

kg"

— ’OO = 3 1 - 1
ORI zé{m(z) m(zJ

zh.imm{l_ L }5
z Pn(2) | 2

Example 2.6. We find the g-Laplace transform of the functions x(z)=cosaz and x(z)=sinaz (aeR).

()
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We have (see [4]),

1-a
On the other hand, we know that

e = cosaz +isinaz
with respect to

1 z

z—ia z?+a® 7*+a?

a
The g-Laplace transform of the functions x(z)=cosaz and x(z)=sinaz, would be

+i

cosaz =
and

22 +a?

sinaz =

2 2
respectively.

22 +a?’

Theorem 2.7. If the function x:q"° — C satisfies the condition
[x(a") ®
where ¢ and R are some positive constants, then the series in (1) converges uniformly with respect to z in the re-

gion Q, and therefore its sum )?(Z) is an analytic (holomorphic) function in Q.
Proof. By Lemma 2.4, for the number R given in (8) we can choose an n, € N such that

p,(z)2[a(1+R)]" forallnzn, zeQ,.
Then for the general term of the series in (1), we have the estimate
q'x(a")|

c R Y

< forall n>n,, Q..
7.2 | q<1+R>(1+RJ e
Hence the proof is completed.

<cR" forallne N,

A larger class of functions for which the g-Laplace transform exists is the class F; of functions
x:qM — C satisfying the condition

o _n(n-1)
(a8 a2 [x(a")

n=0

<o, 9)
Theorem 2.8. For any X € F;, the series in (1) converges uniformly with respect to z in the region Q;, and
therefore its sum X(z) is an analytic function in Q.

Proof. By using the reverse (5), hence

n(n+1)

< (qré»)*(f‘*l) q’T
Py (2)

and comparison test to get the desired result.

Theorem 2.9. (Initial Value and Final Value Theorem). We have the following:
a)lf xeF; forsome & >0, then

x(1)=lim,_,, {z%(z)}. (10)
b) If xeF; forall §>0,then

lim, . x(a") =1im,_, {zX(2)}.

(11)
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Proof. Assume xe F; forsome &>0. It follows from (1) that

o ax() q'ax(q) q9'q’x(a)
X(2)= 1+q'z " (1+9'z)(1+9'qz) i (1+q'z)(1+ q’qz)(1+ q’qzz) " (12

and

. q'qx(q) q'a’x(q)
(1+9'2)%(z) = qX(1)+(1+q’q2)+(l+q’qz)(1+q’qzz)+m (13)

Hence
lim,,, %(z)=0 and lim,_, {(1+q2)%(z)}=0a'x(1),

Multiplying z =0, on both sides of the relation of (12) and by using equivalence relation, which yields (10).
Note that we have taken a term-by-term limit due to the uniform convergence (Theorem 2.8) of the series in the
region Q.

3. Convolutions

Definition 3.1. Let T be a time scale. We define the forward jump operator o:T —T by

o(t)=inf{seT:s>t} forteT.

Definition 3.2. For a given function f :[to,oo) — C, its shift (or delay) f(t, s) is defined as the solution of
the problem

f%(to(s))=—f*(ts), tseT; t2sxt,
. (14)
f f(t

(tt)=

Definition 3.3. For given functions f,g :[ O,OO)T — C, their convolution f *g is defined by
(f *g)(t):j: f(to(s))g(s)as, teT,txt, (15)

where f is the shift of f introduced in Definition 3.2 [4].
Definition 3.4. For given functions f,g:q"° — C , their convolution f *g is defined by

(f *9)(q”)=(<1—1)§qkf(q“,q“)g(qk)

SCYEDRICH TR TR B IETES

k=0

), teT,t>t,.

with (f+g)(q°)=0,where neN,.

Theorem 3.5. (Convolution Theorem). Assume that £{f}(z), £{g}(z), and L{f=g}(z) exist for a
given z eC . Then at the point z,

L{f*g}(z)=L{f}(z)L{g}(2). (16)

4. Concluding Remarks

1) We can see from Theorem 2.9(a) that no function has its g-Laplace transform equal to the constant function
1.

2) Finally, we note that most of the results concerning the Laplace transform on g™ can be generalized ap-
propriately to an arbitrary isolated time scale T = {tn}neNO such that

t,:neNg}>0.

n+l ~ 'n

lim t = inf {t

n—oo N
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