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Abstract 
As the fundamental theory of quantum information science, recently I proposed the linguistic in-
terpretation of quantum mechanics, which was characterized as the linguistic turn of the Copen-
hagen interpretation of quantum mechanics. This turn from physics to language does not only ex-
tend quantum theory to classical theory but also yield the quantum mechanical world view. Al-
though the wave function collapse (or more generally, the post-measurement state) is prohibited 
in the linguistic interpretation, in this paper I show that the phenomenon like wave function col-
lapse can be realized. That is, the projection postulate is completely clarified in the linguistic in-
terpretation. 
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1. The Linguistic Interpretation of Quantum Mechanics 
Recently in [1]-[4], I proposed quantum language (i.e., the linguistic interpretation of quantum mechanics, or 
measurement theory), which was characterized as the linguistic turn of the Copenhagen interpretation of quan-
tum mechanics. This turn from physics to language does not only extend quantum theory to classical theory but 
also yield the quantum mechanical world view. Also, I believe that the linguistic interpretation is the true colors 
of the Copenhagen interpretation, though there are a lot of opinions about the Copenhagen interpretation (cf. [5]). 

As mentioned in a later section (Section 1.3 (C)), the wave function collapse (or more generally, the post- 
measurement state) is prohibited in the linguistic interpretation. Thus, some asked me “How is the projection 
postulate?”. This question urges me to write this paper. The reader who would like to know only my answer may 
skip this section and read from Section 2.  

http://www.scirp.org/journal/jqis
http://dx.doi.org/10.4236/jqis.2015.54017
http://dx.doi.org/10.4236/jqis.2015.54017
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/
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1.1. Preparations 
Now we briefly introduce quantum language as follows.  

Consider an operator algebra ( )B H  (i.e., an operator algebra composed of all bounded linear operators on a  
Hilbert space H with the norm ( ) 1sup

HuB H HF Fu== ), and consider the pair [ ] ( ), B H  , which is called a 

basic structure. Here, ( )( )B H⊆  is a *C -algebra, and   ( )( )B H⊆ ⊆   is a particular *C -algebra  

(called a *W -algebra) such that   is the weak closure of   in ( )B H . 
The measurement theory (=quantum language = the linguistic interpretation) is classified as follows.  

( )
( ) ( )( )
( ) ( )( )

1

2 0

A : quantum system theory when
A  measurement theory

A : classical system theory when

H

C

 == 
= Ω

 


 

That is, when ( )H=  , the *C -algebra composed of all compact operators on a Hilbert space H, the (A1) 
is called quantum measurement theory (or, quantum system theory), which can be regarded as the linguistic as-
pect of quantum mechanics. Also, when   is commutative (that is, when   is characterized by ( )0C Ω , the 

*C -algebra composed of all continuous complex-valued functions vanishing at infinity on a locally compact 
Hausdorff space Ω  ( cf. [6] [7])), the (A2) is called classical measurement theory.  

Also, note that, when ( )H=  , 
1) ( )* Tr H=  (=trace class), ( )B H= , ( )* Tr H=  (i.e., pre-dual space), thus,  

( )
( )

( )
( ), Tr

HTr H B H
T Tρ ρ=  ( ( ) ( ),Tr H T B Hρ ∈ ∈ ).  

Also, when ( )0C= Ω , 
2) *  = “the space of all signed measures on Ω ”, ( ) ( )( )( )2, ,L B Lν ν∞= Ω ⊆ Ω , ( )1

* ,L ν= Ω , 

where ν  is some measures on Ω , thus, 
( )

( )
( )

( ) ( ) ( )
1 , ,

, d
L L

T T
ν ν

ρ ρ ω ω ν ω
∞Ω Ω Ω

= ∫  ( ( ) ( )1 , , ,L T Lρ ν ν∞∈ Ω ∈ Ω ) 

(cf. [6]).  
Let ( )( )B H⊆  be a *C -algebra, and let *  be the dual Banach space of  . That is,  

{ }* is a continuous linear functional n| oρ ρ=  , and the norm *ρ


 is defined by  

( ) ( )( ){ }sup | such that 1B HF F F Fρ ∈ = ≤


 . Define the mixed state ( )*ρ ∈  such that * 1ρ =


 and 

( ) 0Fρ ≥  for all F ∈  such that 0F ≥ . And define the mixed state space ( )*mS   such that  

( ) { }* * | is a mixed state .m ρ ρ= ∈S    

A mixed state ( )( )*mρ ∈S   is called a pure state if it satisfies that “ ( )1 21ρ θρ θ ρ= + −  for some 

( )*
1 2, mρ ρ ∈S   and 0 1θ< < ” implies “ 1 2ρ ρ ρ= = ”. Put  

( ) ( ){ }* * | is a pure state ,p mρ ρ= ∈S S   

which is called a state space. It is well known (cf. [6]) that  

( )( ) ( ){ }* . ., the Dirac nota 1tionp
Hi eH u u u= =S  , and 

( )( ) { }0 0

*
0 0is a point measu e at| rp C ω ωδ δ ωΩ = ∈ΩS , where ( ) ( ) ( )

0 0df fωω δ ω ω
Ω

=∫  ( )( )0f C∀ ∈ Ω . The 

latter implies that ( )( )*
0

p C ΩS  can be also identified with Ω  (called a spectrum space or simply spectrum) 

such as  

( )( )
( )

( )

*
0 spectrum

state space

p C ωδ ωΩ ↔ ∈ ΩS                               (1) 
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For instance, in the above 2) we must clarify the meaning of the “value” of ( )0F ω  for ( ),F L ν∞∈ Ω  and  

0ω ∈Ω . An element ( )F ∈  is said to be essentially continuous at ( )( )*
0

pρ ∈S  , if there uniquely exists 

a complex number α  such that  

(B) If ( )
** , 1ρ ρ∈ =


  converges to ( )( )*

0
pρ ∈S   in the sense of weak* topology of * , that is,  

( ) ( ) ( )( )0 ,G G Gρ ρ→ ∀ ∈ ⊆                               (2) 

then ( )Fρ  converges to α .  
And the value of ( )0 Fρ  is defined by the α . 
According to the noted idea (cf. [8]), an observable ( )O : , ,X F=   in   is defined as follows:  
1) [σ -field] X is a set,   ( 2X⊆ , the power set of X) is a σ -field of X, that is,  

“ 1 2 1
, , nn

∞

=
Ξ Ξ ∈ ⇒ Ξ ∈



  ”, “ \XΞ∈ ⇒ Ξ∈  ”.  

2) [Countable additivity] F is a mapping from   to   satisfying: a): for every Ξ∈ , ( )F Ξ  is a 
non-negative element in   such that ( )0 F I≤ Ξ ≤ , b): ( ) 0F ∅ =  and ( )F X I= , where 0 and I is the  
0-element and the identity in   respectively, c): for any countable decomposition { }1 2, , , ,nΞ Ξ Ξ   of Ξ  

(i.e., ( ), 1, 2,3,n nΞ Ξ ∈ =  , 
1 nn

∞

=
Ξ = Ξ



, i jΞ Ξ = ∅
 ( )i j≠ ), it holds that ( ) ( )1 nnF F∞

=
Ξ = Ξ∑  in the 

sense of weak* topology in  .  

1.2. Axiom 1 [Measurement] and Axiom 2 [Causality] 
Measurement theory (A) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system S, a ba-
sic structure [ ] ( ), B H   can be associated in which the measurement theory (A) of that system can be formu-
lated. A state of the system S is represented by an element ( )( )*pρ ∈S   and an observable is represented by 
an observable ( )O : , ,X F=   in  . Also, the measurement of the observable O  for the system S with the  

state ρ  is denoted by ( )[ ]M O, S ρ  (or more precisely, ( ) [ ]( )M O : , , ,X F S ρ=  ). An observer can obtain 

a measured value x ( X∈ ) by the measurement [ ]( )M O, S ρ .  

The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpretation 
of quantum mechanics. And thus, it is a statement without reality. 

Now we can present Axiom 1 in the *W -algebraic formulation as follows.  
Axiom 1 [Measurement]. The probability that a measured value x ( X∈ ) obtained by the measurement 

( ) [ ]( )M O : , , ,X F S ρ=   belongs to a set ( )Ξ ∈  is given by ( )( )Fρ Ξ  if ( )F Ξ  is essentially conti-

nuous at ( )( )*pρ ∈S  . 

Next, we explain Axiom 2. Let [ ] ( )11 1, B H   and [ ] ( )12 2, B H   be basic structures. A continuous linear 

operator 1,2 2:Φ   (with weak* topology) 1→   (with weak* topology) is called a Markov operator, if it sa-

tisfies that 1): ( )1,2 2 0FΦ ≥  for any non-negative element 2F  in 2 , 2): ( )1,2 2 1I IΦ = , where kI  is the 

identity in k , ( )1,2k = . In addition to the above 1) and 2), we assume that ( )1,2 2 1Φ ⊆   and  

( ){ }21
1,2 2 2 2 2sup | such that 1 1F F FΦ ∈ ≤ =


 . 

It is clear that the dual operator * * *
1,2 1 2:Φ →   satisfies that * * *

1,2 1 2( ( )) ( )m mS A S AΦ ⊆ . If it holds that 

( )( ) ( )* * *
1,2 1 2

m mΦ ⊆S S  , the 1,2Φ  is said to be deterministic. If it is not deterministic, it is said to be non-  

deterministic. Also note that, for any observable ( )2 2O : , ,X F=   in 2 , the ( )1,2 2, ,X FΦ  is an observa-
ble in 1 . 

Now Axiom 2 is presented as follows (For details, see [4]).  
Axiom 2 [Causality]. Let 1 2t t≤ . The causality is represented by a Markov operator 

1 2 2 1, :t t t tΦ →  . 
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1.3. The Linguistic Interpretation 
In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical statements), and 
thus, it is nonsense to verify them experimentally. Therefore, what we should do is not “to understand” but “to 
use”. After learning Axioms 1 and 2 by rote, we have to improve how to use them through trial and error. 

We can do well even if we do not know the linguistic interpretation (=the manual to use Axioms 1 and 2). 
However, it is better to know the linguistic interpretation, if we would like to make progress quantum language 
early. 

The essence of the manual is as follows:  
(C) Only one measurement is permitted. And thus, the state after a measurement is meaningless since it can-

not be measured any longer. Hence, the wave function collapse is prohibited. We are not concerned with the 
problem: “When is a measurement taken?”. Also, the causality should be assumed only in the side of system, 
however, a state never moves. Thus, the Heisenberg picture should be adopted, and thus, the Schrödinger picture 
should be prohibited.  
and so on. For details, see [4]. 

2. The Wave Function Collapse (i.e., the Projection Postulate) 
From here, I devote myself to quantum system (A1) (and not classical system (A2)). 

2.1. Problem: The von Neumann-Lüders Projection Postulate 

Let ( ) ( ) ( )
,

B H
H B H    be a quantum basic structure. Let Λ  be a countable set. Consider the projection va-

lued observable ( )O , 2 ,P Pλ= Λ  in ( )B H . Put  

{ }( ) ( )P Pλ λ λ= ∀ ∈Λ                                  (3) 

Axiom 1 says:   
(D1) The probability that a measured value 0λ  ( )∈Λ  is obtained by the measurement  

( ) ( ) [ ]( )M O : ,2 , ,PB H P Sλ
ρ= Λ  is given by  

( )( ) ( )0 0 0

2
Tr , , whereH P u P u P u u uλ λ λρ ρ= = =                      (4) 

Also, the von Neumann-Lüders projection postulate (in the Copenhagen interpretation, cf. [9] [10]) says:  

(D2) When a measured value 0λ  ( )∈Λ  is obtained by the measurement ( ) ( ) [ ]( )M O : ,2 , ,PB H P Sλ
ρ= Λ , the 

post-measurement state postρ  is given by  

0 0

0

post 2

P u u P

P u

λ λ

λ

ρ =  

And therefore, when a next measurement ( ) ( )( )post
M O : , , ,FB H X F S

ρ  
=   is taken (where OF  is arbitrary 

observable in ( )B H ), the probability that a measured value belongs to ( )Ξ ∈  is given by  

( )( ) ( )0 0

0 0

postTr ,
H

P u P u
F F

P u P u
λ λ

λ λ

ρ
 
 Ξ = Ξ
 
 

                         (5) 

Problem 1. In the linguistic interpretation, the phrase: post-measurement state in the (D2) is meaningless. Al-

so, the above (=(D1) + (D2)) is equivalent to the simultaneous measurement ( ) [ ]( )M O O ,F PB H S ρ× , which does  

not exist in the case that OP  and OF  do not commute. Hence the (D2) is meaningless in general. Therefore, 
we have the following problem: 
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(E) Instead of the O OF P×  in ( ) [ ]( )M O O ,F PB H S ρ× , what observable should be chosen?  

In the following section, I answer this problem within the framework of the linguistic interpretation. 

2.2. The Derivation of von Neumann-Lüders Projection Postulate in the Linguistic  
Interpretation  

Consider two basic structure ( ) ( ) ( )
,

B H
H B H    and ( ) ( ) ( )

,
B H K

H K B H K
⊗

⊗ ⊗   . Let { }|Pλ λ ∈Λ  be 

as in Section 2.1, and let { }eλ λ∈Λ
 be a complete orthonormal system in a Hilbert space K. Define the predual 

Markov operator ( ) ( )* :Tr H Tr H KΨ → ⊗  by, for any u H∈ ,  

( ) ( ) ( )* u u P u e P u eλ λ λ λ
λ λ∈Λ ∈Λ

Ψ = ⊗ ⊗∑ ∑                         (6) 

or  

( )* u u P u e P u eλ λ λ λ
λ∈Λ

Ψ = ⊗ ⊗∑                            (7) 

Thus the Markov operator ( ) ( ): B H K B HΨ ⊗ →  ( in Axiom 2) is defined by ( )**Ψ = Ψ .  
Define the observable ( )O ,2 ,G GΛ= Λ  in ( )B K  such that  

{ }( ) ( )G e eλ λλ λ= ∈Λ  

Let ( )O , ,F X F=   be arbitrary observable in ( )B H . Thus, we have the tensor observable  

( )O O , 2 ,F G X F GΛ⊗ = ×Λ ⊗   in ( )B H K⊗ , where 2Λ   is the product σ -field.  

Fix a pure state u uρ =  ( ), 1Hu H u∈ = . Consider the measurement ( ) ( ) [ ]( )M O O ,F GB H S ρΨ ⊗ . Then, 
we see that  

(F) the probability that a measured value ( ),x λ  obtained by the measurement ( ) ( ) [ ]( )M O O ,F GB H S ρΨ ⊗  

belongs to { }0λΞ×  is given by  

( ) ( ) { }( )( ) ( )
( ) { }( )( )( )

( )

( ) ( ) ( ) { }( )( ) ( )
( )( ) ( ) { }( )( )

( ) ( ) ( )( )
( ) ( )

0 0

0 0

0 0

* 0 * 0

Tr ,

, Tr

Tr

,

H Tr H

H KTr H K

H K

B H

B H K

u u F G u u F G

u u F G u u F G

P u e P u e F e e

P u F P u

λ λ λ λ λ λ
λ λ

λ λ

λ λ

λ λ
⊗⊗

⊗

⊗

∈Λ ∈Λ

 Ψ Ξ ⊗ = Ψ Ξ ⊗ 

 = Ψ Ξ ⊗ = Ψ Ξ ⊗ 

  
= ⊗ ⊗ Ξ ⊗  

  

= Ξ ∀Ξ∈

∑ ∑


 

(In a similar way, the same result is easily obtained in the case of (7)).  
Thus, we see the following.  
(G1) if XΞ = , then  

( ) ( ) { }( )( ) 0 0 0

2

0Tr ,
H

u u F X G P u P u P uλ λ λλ Ψ ⊗ = =                     (8) 

(G2) in case that a measured value ( ),x λ  belongs to { }0X λ× , the conditional probability such that x∈Ξ  
is given by  

( )
( ) ( )0 0 0 0

0 00

2

,
,

P u F P u P u P u
F

P u P uP u

λ λ λ λ

λ λλ

 Ξ
 = Ξ ∀Ξ∈
 
 

                     (9) 

where it should be recalled that OF  is arbitrary. Also note that the above (i.e., the projection postulate (G)) is a 
consequence of Axioms 1 and 2.  
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Considering the correspondence: (D) ⇔ (G), that is,  

( ) [ ]( ) ( ) [ ]( )( ) ( ) ( ) [ ]( )M O , or, meaningless M O , M O O , ,P F P F GB H B H B HS O S Sρ ρ ρ× ⇔ Ψ ⊗  

namely,  

( ) ( ) ( ) ( )4 8 , 5 9⇔ ⇔  

there is a reason to assume that the true meaning of the (D) is just the (G). Also, note the taboo phrase “post- mea-
surement state” is not used in (G2) but in (D2). Hence, we obtain the answer of Problem 1 (i.e., ( )O OF GΨ ⊗ ).  

Remark 1. So called Copenhagen interpretation may admit the post-measurement state (cf. [5]). Thus, in this 

case, some may think that the post-measurement state 0 0

0

2

P u u P

P u

λ λ

λ

 is obtained by the formula (9). However,  

this idea would not generally be approved. That is because, if the post-measurement state is admitted, a series of 
problems occur, that is, “When is a measurement taken?”, or “When does the wave function collapse happen?”, 
which is beyond Axioms 1 and 2. Readers should remember Wittgenstein’s famous word: “The limits of my 
language mean the limits of my world”, or “What we cannot speak about we must pass over in silence”. 

3. Conclusions 
As mentioned in Section 1.3 (C), the wave function collapse (or more generally, the post-measurement state) is 
prohibited in the linguistic interpretation. Hence, some asked me “How about the projection postulate?”. In this 
paper I answer this question as follows:  

(H) The von Neumann-Lüders projection postulate (D2) concerning the measurement ( ) [ ]( )M O ,PB H S ρ  does 

not hold (i.e., (D2) is wrong). However, in the linguistic interpretation (i.e., without the phrase: “post-measure- 

ment state”), the similar result (G2) concerning ( ) ( ) [ ]( )M O O ,F GB H S ρΨ ⊗  holds.  

As mentioned in Remark 1, the projection postulate (i.e., wave function collapse) is not completely estab-
lished in so called Copenhagen interpretation, and thus, it is usually regarded as “postulate”. However, in the 
linguistic interpretation, the projection postulate is completely clarified, and hence, it should be regarded as a 
theorem. I hope that confusion on the wave function collapse will be calming. 
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