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Abstract 
This paper describes methods to merge two cover inequalities and also simultaneously merge 
multiple cover inequalities in a multiple knapsack instance. Theoretical results provide conditions 
under which merged cover inequalities are valid. Polynomial time algorithms are created to find 
merged cover inequalities. A computational study demonstrates that merged inequalities improve 
the solution times for benchmark multiple knapsack instances by about 9% on average over 
CPLEX with default settings. 
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1. Introduction to Inequality Merging 
An integer program (IP) is a common type of optimization problem, defined as maximize Tc x  subject to 
Ax b≤  and nx +∈  where m nA ×∈ , mb∈ , and nc∈  where m and n are integers both greater than or 

equal to 1. Define { }1, ,N n=   as the set of indices of an IP. 

One frequently studied IP is the 0 - 1 knapsack problem (KP), defined as maximize 1
n

i ii c x
=∑  subject to 

1
n

i ii a x b
=

≤∑ , and { }0,1 n
ix ∈  where c and na +∈ , b +∈ . The multiple knapsack (MK) problem has  

multiple knapsack constraints and is defined as maximize Tc x  subject to Ax b≤  and nx +∈  where 
m nA ×
+∈ , mb +∈ , and nc∈ . 

Solutions to KP and MK problems support a wide variety of real-world applications, including examples in 
Ahuja and Cunha [1], Chang and Lee [2], Dawande et al. [3], Dizdar et al. [4], Kellerer and Strusevich [5], 
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Martello and Toth [6], Shachnai and Tamir [7], and Szeto and Lo [8]. This paper focuses on MK problems. 

A half space is { }1: nn
i iix a x b

=
∈ ≤∑ , and a polyhedron is defined as the intersection of finitely many half  

spaces. A set nS ⊆   is convex if and only if 1x  and 2x S∈  implies ( )1 21x x Sλ λ+ − ∈  for every 
[ ]0,1λ∈ . A polyhedron is convex, and the convex hull of S, ( )conv S , is the intersection of all convex sets that 

contain S. 
Let P be the set of feasible points of an integer program, where { }:nP x Ax b+= ∈ ≤ . Define  

{ }{ }10,1 :n nKP
i iiP x a x b

=
= ∈ ≤∑  and { }{ }0,1 :nMKP x Ax b= ∈ ≤  as the feasible regions of the knapsack and  

multiple knapsack problems, respectively where na +∈  and m nA ×
+∈ . 

A well-known technique to improve solution times for IP problems is the generation of valid inequalities. An  

inequality 1
n

i ii xα β
=

≤∑  is a valid inequality for ( )MKconv P  if every MKx P∈  satisfies the inequality. If the  

valid inequality separates the linear relaxation solution from the convex hull of the IP, then it is called a cutting 
plane. The linear relaxation is the IP with the integrality restriction eliminated. The theoretically best cutting 
planes define facets of ( )MKconv P , but any cutting plane that separates the linear relaxation from ( )MKconv P  
may be computationally useful. A thorough explanation of such results is in Nemhauser and Wolsey [9]. 

For a MK problem, a cover cut may be generated in one or more of the m constraints. A set C N⊆  is a  
cover for row { }1, ,i m∈   if ,i j ij Ca b

∈
>∑ . The corresponding cover inequality is valid for ( )MKconv P  and 

takes the form 1jj Cx C
∈

≤ −∑ . Cover cuts have been studied extensively by Balas and Zemel [10], De Farias  

et al. [11], Louveaux and Weismantel [12], Nemhauser and Vance [13], and Park [14]. Knowledge of cover cuts 
is critical to this research. 

Many such covers may exist and pseudo-costing strategies provide a prioritized variable ordering. Pseudo- 
costing strategies for integer programming problems were studied by Benichou, et al. in [15] and Gauthier and 
Ribiere in [16]. Refalo used pseudo-cost strategies to improve constraint programming in [17], and Achterberg, 
et al. developed reliability branching rules for IPs as an extension of pseudo-costing in [18]. 

In some instances, cover inequalities may be strengthened through lifting. Gomory introduced the technique 
in [19], taking a valid inequality of a restricted space and tilting it to become a valid inequality of a higher 
dimensional space. Substantial bodies of research have extended lifting to several categories such as exact 
up-lifting (Cho et al. [20], Gutierrez [21], Hammer et al. [22], and Wolsey [23]), exact simultaneous up-lifting 
(Easton and Hooker [24], Kubik [25], and Zemel [26]), exact sequential down and middle lifting by Wolsey [23], 
sequence dependent lifting (Atamtürk [27], Gu et al. [28]-[30], and Shebalov and Klabjan [31]), and other 
approximate lifting methods (Balas [32] and Weismantel [33]). 

Theoretical foundations for inequality merging were first introduced by Hickman and Easton in [34]. 
Although merging appears similar to lifting, it yields new cutting planes that are not attainable through straight- 
forward applications of known lifting techniques. Their paper creates a single cutting plane by merging two 
inequalities. This merged inequality can be theoretically stronger than the original inequalities, and it may 
induce a facet under certain conditions. 

This paper extends the idea of inequality merging by focusing on cover inequalities in MK problems. 
Information from two or more cover inequalities in an MK instance may be merged into a single cutting plane. 
In some instances, simultaneous merging of cover inequalities may occur across multiple rows at the same time. 

The next section describes the process of cover inequality merging for MK instances and provides theoretical 
results and examples. The third section offers the results of a computational study that highlights the computa- 
tional benefits of employing merged cover inequalities in test MK problems. The final section offers some 
directions for future research. 

2. Theory and Examples of Merging Cover Inequalities  
It is straightforward to find cover inequalities in MK instances and merging requires two covers, called host and 
donor. Let hostC N⊆  be a cover in row r and donorC N⊆  be a cover in row s for some { }, 1, ,r s m∈  . Thus,  
the cover inequalities 1host

host
ii C x C

∈
≤ −∑  and 1donor

donor
ii C x C

∈
≤ −∑  are valid inequalities of ( )MKconv P . 

Merging the host and donor cover inequalities occurs on binary variable px  where { } host donorp C C=   or if  
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host donorC C =∅ , then hostp C∈ . Since px  is bounded by 1 and 1 1
1

donor ii C donor
x

C∈
≤

−
∑ , it follows that 

px  could be replaced in host cover inequality with the donorC  indices with coefficients 1
1donorC −

. Thus, a 

merged cover inequality has the form { }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
+ ≤ −

−
∑ ∑ . 

If the merged inequality is valid, then this inequality includes more nonzero coefficients than either hostC  or 
donorC . The question remains as to whether or not the merged inequality is valid. The following theorem 

provides conditions for its validity. 
Theorem 1. Let hostC  be a cover from row r and donorC  be a cover from some row s in a MK instance such 

that 1host donorC C ≤ . Define index hostp C∈  as the merging index with the restriction that if 
1host donorC C = , then { } host donorp C C=  . If { } { }\hostC p i  is a cover in at least one row of the MK  

instance for each donori C∈ , then the merged cover inequality, { }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
+ ≤ −

−
∑ ∑ ,  

is valid for ( )MKconv P . 
Proof. Let x′  be any point in MKP . Define { }\host ii C pq x

∈
′= ∑ . If 1hostq C= − , then 0donor ii C x

∈
′ =∑  because  

{ } { }\hostC p i  is a cover in some constraint for each donori C∈ . Thus,  

{ }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ . If 2hostq C≤ − , then 1 1

1
donor ii C donor

x
C∈

′ ≤
−

∑  since donorC  

is a cover. Thus, { }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑  and the result follows.   

Theorem 1 describes which indices can be used to create a donor cover. These candidate indices can be easily 
found based upon a ψ  threshold, which is associated with the host cover inequality and the merging variable. 
Given a host cover hostC  in row r and a designated merging variable hostp C∈ , then  

( ), , 1hostp r r i r pi Cb a aψ
∈

= − − +∑ . The purpose of pψ  is to rapidly identify indices that can be used to create a 

donor cover from any row s. Define these potential donor indices as { }{ },: \ ,
p

host
r i pN i N i C p aψ ψ= ∈ ∈ ≥/ . If  

donorC  is a cover and 
p

donorC Nψ⊆ , then merging the host and donor cover on px  results in a valid merged  

inequality as shown in the following theorem. 
Theorem 2. Given a multiple knapsack instance, a host cover hostC  from row r and a merging variable px  

with hostp C∈ . Let donorC  be a cover in some row s such that ,r i pa ψ≥  for all donori C∈ , then  

{ }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
+ ≤ −

−
∑ ∑  is a valid inequality of ( )MKconv P .  

Proof. Assume MKx P′∈ , hostC  is a cover in row r, donorC  is a cover in some row s and 
p

donorC Nψ⊆ . Define  

{ }\host ii C pq x
∈

′= ∑ . Since hostC  is a cover, 1hostq C≤ − . The proof divides into two cases, 1hostq C= −  and  

2hostq C≤ − . 
First, assume 1hostq C= − . Thus, 1ix =  for all { }\hosti C p∈ . Since MKx P′∈ ,  

{ } { }, ,\ \host hostr i r i i ii C p i C pa a x b
∈ ∉

′+ ≤∑ ∑ . Thus, { } { }, ,\ \ 1host hostr i i i r i pi C p i C pa x b a ψ
∉ ∈

′ ≤ − = −∑ ∑ . Every donori C∈  has the  

property that ,r i pa ψ≥  and so 0ix′ =  for all donori C∈ . Consequently,  

{ }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ . 

Second, assume 2hostq C≤ − . Since Cdonor is a cover in row s, 1donor
donor

ii C x C
∈

′ ≤ −∑ . Thus, 1
1

donor ii C
donor

x

C
∈

′
≤

−
∑ .  
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Consequently, { }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ . 

These two cases are exhaustive. Therefore every MKx P′∈  satisfies  

{ }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑  and this merged inequality is valid for ( )MKconv P .   

To identify valid merged cover inequalities, the user must identify a host cover, hostC  and a merged index 
hostp C∈ . Some selections for hostC  and a merged variable px  may not allow a candidate donor inequality to 

exist. The Reducing pψ  Algorithm changes hostC  to increase the likelihood of the existence of an appropriate 
donor cover. 

The input to the Reducing pψ  Algorithm is a multiple knapsack instance, a valid host cover from row r and 
a merging variable px  with hostp C∈ . In addition, a threshold [ ]0,1τ ∈  is provided. The output of this 
algorithm is a new host cover inequality and a new merging variable. These are denoted by hostC′  and px ′ , 
respectively. 

Reducing pψ  Algorithm 

 
If the Reducing pψ  Algorithm terminates successfully, then hostC′  is a cover because it satisfies the  

condition that ,host r i ri C a b′∈
>∑ . When this happens, the last index q added to hostC′  becomes the newly deter-  

mined overlapped variable px ′ , and ( ), , 1hostp r r i r pi Cb a aψ ′ ′′∈
= − − +∑ . Since p pψ ψ′ < , smaller ,r ia  coef-  

ficients may identify acceptable additional variables for use in donorC . This increases the likelihood of achieving 
a valid donorC , thus increasing the opportunity for construction of a merged cutting plane inequality. 

In some instances, the Reducing pψ  Algorithm terminates successfully with a new cover hostC′  and a new 
value pψ ′ , but it may not have a sufficient number indices in 

p
Nψ ′

 to construct donorC . If this happens, the  
Reducing pψ  Algorithm may be used iteratively until a suitable donorC  is attained. 

Observe that the Reducing pψ  Algorithm also requires a careful selection of τ  to achieve stronger results 
in many instances. A small value of τ  tends to allow indices with small a coefficients to enter hostC′ . When 
this happens, the size of hostC′  may become undesirably large or fail to generate a cover. Including too many 
variables in the host cover results in fewer candidate indices in 

p
Nψ . 

High values of τ  may allow few (or zero) new candidate indices for inclusion in 
p

Nψ . In such instances, it 
is more likely that the reducing pψ  algorithm fails to return a new hostC′  and/or fails to reduce the value of 

pψ . Even if the algorithm succeeds, higher values of τ  tend to result in relatively smaller reductions in pψ , 
possibly requiring multiple calls to this procedure when a valid merged inequality is not yet attainable. Given 
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this sensitivity to τ , a careful selection of τ  is required. For practical purposes, it is recommended to consider 
values of τ  between 0.3 and 0.7. 

The Reducing pψ  Algorithm is a linear algorithm for each specified τ  value. The initialization requires  

( )hostO C . The main step could search through all other indices, so it performs in ( )\ hostO N C  effort. Thus,  

the algorithm runs in ( )O N , which is linear for a fixed τ . 

2.1. Merging over Multiple Donor Covers Simultaneously  
This section presents a method to strengthen the previous results by merging on multiple donor covers at the 
same time. Conditions are provided to create valid inequalities from merging over three or more cover inequa- 
lities simultaneously. Another algorithm is presented to search for the strongest merging coefficients among 
multiple potential donor rows in the MK instance. 

Simultaneous merging over multiple donor covers begins with a hostC  cover from a MK constraint with  
hostp C∈  and its associated pψ  and set 

p
Nψ . The inequality { }\ 1host

p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
+ ≤ −∑ ∑  is likely 

to be valid for any 1
1j

jC
α ≤

−
 where 

pjC Nψ⊆  is any cover from any constraint of the MK instance with 

jj C∈ . Thus, the strongest such inequality would select 1
1j

jC
α =

−
 where 

pjC Nψ⊆  and jj C∈  is the  

maximum cardinality cover from any row. 
The check of validity must assure that there does not exist a feasible point which violates this new inequality.  

Prior to this result, define 
{ } { }min ,\ ,

min host
q

r ii QQ C p Q q
c a

∈⊂ =
= ∑ , { }min min : 1

p

q host
D N ii DD C q

ψ
α α⊆ ∈

= > − −∑  

and { }
min

min ,:
min q

p

q
r ii DD N D

a a
ψ α ′∈′ ′⊆ =

= ∑ . 

Theorem 3. Let hostC  be a cover from a MK constraint with hostp C∈ , corresponding value pψ  and  

associated set 
p

Nψ . Then the inequality { }\ 1host
p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
+ ≤ −∑ ∑  is valid for ( )MKconv P  for 

any 1
1j

jC
α ≤

−
 where 

pjj C Nψ∈ ⊆  is any cover from any constraint of the MK instance as long as one of  

the following conditions holds 
1) 1

p
ii Nψ

α
∈

≤∑  

2) min min
q q

rc a b+ >  for all integer { }1,2, , 1hostq C∈ − . 

Proof. Let MKx P′∈ . Since 
p

i Nψ∈ , then { } { }\hosti C p  is a cover in row r. If { }\ 1host
host

ii C p x C
∈

′ = −∑ , 

then 0
p

ii N x
ψ∈

′ =∑ . Thus, { }\ 1host
p

host
i i ii C p i Nx x C

ψ
α

∈ ∈
′ ′+ ≤ −∑ ∑  for every value of iα . 

Assume 1) is true. If { }\ 2host
host

ii C p x C
∈

′ ≤ −∑ , then 1
p

i ii N x
ψ
α

∈
≤∑  because 1) is true and ix′  is bounded by 

1. Consequently, { }\ 1host
p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
′ ′+ ≤ −∑ ∑ . 

Assume 2) is true. Let { }\host ii C pq x
∈

′= ∑ . Thus { } min\host
q

i ii C p a x a
∈

′ ≥∑ . By 2) min min
q qa c b+ >  and thus  

min
p

q
j jj N x q

ψ
α α

∈
′ < ≤∑ . Thus, { }\ 1host

p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
′ ′+ ≤ −∑ ∑ .   

An immediate result of Theorem 3 is an algorithm to merge over multiple donor covers simultaneously. This 
algorithm explores all rows to determine the smallest eligible covers of each merging variable in 

p
Nψ . This 

translates into the stronger coefficients for each merging variable. The input to the Donor Coefficient Streng- 
thening Algorithm (DCSA) is a MK instance, a host cover hostC  from row r and an index hostp C∈ . 
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Donor Coeffcient Strengthening Algorithm 

 

DCSA identifies the smallest donor covers possible for each index in 
p

Nψ  from each row in the MK  

instance using the indices sorted in each row by the a values. Observe that DCSA does not guarantee a valid 
inequality, but it does identify the strongest possible merged inequality. If the reported merged inequality 
satisfies a condition of Theorem 3, then it is a valid inequality. 

DCSA’s computational effort required for the initialization is ( )( )log
p p

hostO C m N Nψ ψ+ . The main step 

requires 
2

p
O m Nψ
 
 
 

. Thus DCSA’s effort is ( )2| | | |host
p

O C m Nψ+ . Although this is a cubic run time, 

DCSA performs quickly in practice. 

2.2. Inequality Merging Example  
The following example demonstrates the theoretical concepts discussed earlier. Consider multiple knapsack 
constraints of the form Ax b≤  with 14n =  and 2m =  where  

20 18 16 16 15 12 11 10 10 8 6 5 5 3
14 19 13 6 6 20 5 12 11 20 14 14 6 12

A  
=  
 

 

and  

79
.

75
b  
=  
 
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Designate the first constraint as the host constraint, 1r =  and let the host cover be { }1,2,3,4,5hostC = . If the 
merging index is 5p = , then ( ) ( )5 1,1 1,2 1,3 1,4 1 79 70 1 10b a a a aψ = − + + + + = − + = . Because 1,5 1,6 1,7 1,8, , ,a a a a  
and 1,9a  are all greater than or equal to 10, the candidate indices for the donor cover are restricted to 

{ }
5

5,6,7,8,9Nψ = . 
No subset of 

5
Nψ  is a cover. The Reducing pψ  Algorithm is used to change the host cover to create a  

smaller ψ . Let 1
2

τ = , then the Reducing pψ  Algorithm seeks a host cover with a ψ  value that is less than  

or equal to 5. In this case {5} is eliminated from the host cover, and the host cover adds an index with a 
coefficient between 5 and 9. Indices 10, 11, 12, and 13 are all suitable and index 11 is added to hostC′ . However, 

{ }1,2,3,4,11hostC′ =  is not a cover. Including either index 12 or 13 would create a host cover and 
{ }1,2,3,4,11,12hostC′ = . The new value for 12ψ  is reduced exactly by the coefficient of the first added index, 

1,11a . Thus 12 4ψ = , and the candidate indices for the donor cover are { }
12

5,6,7,8,9,10,12,13Nψ′ = . There exist 
several covers in constraint two from this candidate set. One such cover is { }6,8,9,10,12donorC = . Since a 
donor cover now exists, hostC′  becomes hostC . 

The algorithm has now determined a host and donor cover that can be merged. Merging the host with the 
donor on 12x  yields (1), a valid inequality according to Theorem 2. 

1 2 3 4 6 8 9 10 11 12
1 1 1 1 1 5.
4 4 4 4 4

x x x x x x x x x x+ + + + + + + + + ≤                      (1) 

The following arguments demonstrate Theorems 1 and 2 in practice. Verifying the validity of (1) requires that 
{ } { }\ 12hostC i  is a cover for some constraint for every donori C∈ . The sum of the { } 1,\ 12host

iC a  coeffi- 
cients is 76. Clearly { } { }\ 12hostC i  is a cover in the first knapsack as long as 1, 4ia ≥  and { }\ 12hosti C∉ . 
Since all candidate donor indices have 1, 124ia ψ≥ = , (1) is verified as a valid inequality of ( )MKconv P . 

Observe that numerous other minimal donor covers exist when 12p = . Two other examples are  
{ }5,6,7,9,10,12  and { }5,6,7,8,9,10,13 . Accordingly, we could merge each of these cover inequalities with 
the host cover inequality yielding the following valid merged inequalities  

1 2 3 4 5 6 7 9 10 11 12
1 1 1 1 1 1 5
5 5 5 5 5 5

x x x x x x x x x x x+ + + + + + + + + + ≤                    (2) 

1 2 3 4 5 6 7 8 9 10 11 13
1 1 1 1 1 1 1 5.
6 6 6 6 6 6 6

x x x x x x x x x x x x+ + + + + + + + + + + ≤                 (3) 

Each of these merged inequalities remove linear relaxation points and are thus cutting planes. For instance,  

the point (1,1,1,1,0,0,0,0,0, 1
4

,1,0,0,0) is eliminated by each of these merged inequalities. Additionally, it is  

simple to find points that are satisfied by two of the three merged inequalities, but eliminated by the other 
inequality. Thus, each merged inequality is eliminating distinct regions of the linear relaxation space. 

Returning to the original host cover, it is also possible to generate new families of merged inequalities if 
merging on 11p =  instead of 12p = . By changing the index selected for merging, ( )11 5 79 75 1ψ = = − +  
with corresponding candidate donor indices { }5,6,7,8,9,10,11,13 . Similar to the examples shown previously, 
many possible new donor covers now exist. For instance, { }6,8,9,10,11donorC =  yields  

1 2 3 4 6 8 9 10 11 12
1 1 1 1 1 5.
4 4 4 4 4

x x x x x x x x x x+ + + + + + + + + ≤                      (4) 

The idea of ψ  guarantees validity, but it is not necessary to merge covers. Consider { }1,2,3,4,6hostC =  
with 4p = . In the first constraint, { }1,2,3,5,6  is a cover and so {5} is a candidate index. The second con- 
straint has several relevant covers: { }1,2,3,6,9 , { }1,2,3,6,10 , { }1,2,3,6,11 , { }1,2,3,6,12  and { }1,2,3,6,14 . 
Thus, the candidate indices are now { }4,5,9,10,11,12,14 . One such cover in the second constraint is 
{ }4,9,10,11,12,14 , which results in the following merged constraint  

1 2 3 4 6 9 10 11 12 14
1 1 1 1 1 1 4.
5 5 5 5 5 5

x x x x x x x x x x+ + + + + + + + + ≤                     (5) 
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The authors believe that such constraints may be more useful computationally since they are incorporating  

covers from multiple constraints to obtain validity. For instance, the linear relaxation point (1,1,1, 1
3

,0,1,0,0, 1
4

, 

0,0,0,0, 1
3

) is eliminated by this inequality. 

To demonstrate Theorem 3, an additional row is added to this example. Now consider the following multiple 
knapsack instance  

20 18 16 16 15 12 11 10 10 8 6 5 5 3
14 19 13 6 6 20 5 12 11 20 14 14 6 12
4 6 7 6 18 3 17 15 19 4 16 8 9 14

A
 
 =  
  

 

and  
79
75 .
73

b
 
 =  
  

 

Again, consider { }1,2,3,4,11,12hostC =  with 12 4ψ =  and { }
12

5,6,7,8,9,10,12,13Nψ = . For each index in 

12
Nψ , DCSA forces this index as the first element in a cover and then adds other indices according to the sorted 
order for each row. Observe that { }5,6,7,8,9,10,12,13  is not a cover in row 1, so only rows 2 and 3 are 
considered. 

For index 5, the smallest covers are { }5,6,10,12,8,9  and { }5,9,7,8,13  in rows 2 and 3, respectively. 
Continuing this logic for each of the other indices results in Table 1. The smallest covers are listed in the order 
in which DCSA adds indices to the cover. 

Thus the simultaneous merged inequality is  

1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 1 1 1 1 1 5.
4 4 4 4 4 4 4 4

x x x x x x x x x x x x x+ + + + + + + + + + + + ≤             (6) 

Observe that this new inequality dominates all of the previous inequalities. Furthermore, to achieve this 
inequality all rows are necessary. For instance, the smallest cover in row 3 containing index 6 has 6 indices and 
thus row two is necessary. Similarly, the smallest cover in row 2 containing index 7 has 6 indices and thus row 3 
is necessary. 
 
Table 1. Applying DCSA to find strongest coefficients.                                                                      

Index Smallest Cover Row α  

5 { }5,9,7,8,13  3 1
4

 

6 { }6,10,12,8,9  2 1
4

 

7 { }7,9,5,8,13  3 1
4

 

8 { }8,9,5,7,13  3 1
4

 

9 { }9,5,7,8,13  3 1
4

 

10 { }10,6,12,8,9  2 1
4

 

12 { }12,6,10,8,9  2 1
4

 

13 { }13,9,5,7,8  3 1
4
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To argue validity of (6), consider Theorem 3. Since 
12

2ii Nψ
α

∈
=∑ , 1) is not satisfied. For 2), observe that  

1
min 1,11 6c a= =  and 2

min 1,11 1,4 22c a a= + = . Continuing this process yields 3
min 38c = , 4

min 56c = , and 5
min 76c = .  

Determining the values for minα  yield that 1
minα , 2

minα , and 3
minα  do not exist as 

12
2ji Nψ

α
∈

=∑ . However,  
4
min 5α =  because it requires five variables with coefficients in 

12
Nψ  to be set to one to arrive at a value strictly 

larger than 1 4 1hostC= − − . Since 5 1 0hostC − − = , 5
min 1α = . 

Since 1
minα , 2

minα , and 3
minα  do not exist, only 4

mina  and 5
mina  are determined. The value of  

4
min 1,13 1,12 1,10 1,9 1,8 38a a a a a a= + + + + = . Similarly, 5

min 1,13 5a a= = . Condition 2) of Theorem 3 checks  
4 4
min min 56 38 94 79c a+ = + = >  and 5 5

min min 76 5 81 79c a+ = + = > . Thus, (6) meets condition 2) of Theorem 3 
and it is valid. As a note, observe that checking 1hostq C= −  is always true by the definition of 

p
Nψ . 

The final benefit of this example demonstrates that merging cover inequalities are not an immediate extension 
of known methods. There are similarities between inequality merging and some categories of lifting. Any type of 
sequential lifting has integer coefficients [35], and sequence independent lifting would require all non-cover coeffi- 
cients in this example to be 0 [30]. Thus neither of these methods generate (6). While simultaneous lifting could 
theoretically generate (6) [21], it would require starting with the trivial cutting plane 1 2 3 4 11 5x x x x x+ + + + ≤  
and furthermore have a perfect guess of proper weights. Consequently, inequality merging yields inequalities 
similar to (6), which are extremely unlikely to be produced by lifting techniques. 

The general inequality merging presented by Hickman and Easton in [34] did not merge multiple donor 
covers simultaneously, and it could not obtain (6). Inequality merging is also fundamentally different from other 
popular cutting plane generation techniques such as C-G cuts (Chvátal [36] and Gomory [37]), disjunctive cuts 
(Balas and Perregaard [38]), Gomory cuts (Gomory [37]), or superadditive cuts (Gomory and Johnson [39] and 
Wolsey [40]). Theoretically, these methods could generate (6), but they would require numerous iterative 
applications to find this cutting plane. Such a result is unlikely to occur without the consultation of an oracle to 
select initial inequalities, weights or other necessary input. 

A single call to DCSA creates (6) and requires ( )2O nm  effort. Thus, merging over cover inequalities is a 
new method to obtain previously unknown inequalities. Given the large size of most multiple knapsack 
problems, the flexibility of the construction algorithms are usually capable of finding strong candidate hostC  
and donorC  inequalities. The next section provides the results of a computational study, demonstrating the 
practical effectiveness of inequality merging on benchmark multiple knapsack problems. 

3. Computational Study  
This computational study compares solution times for multiple knapsack problems both with and without the use 
of merged inequalities. The instances chosen for this study are the MK instances from the OR-Library [41], 
developed by Chu and Beasley in 1998 [42]. The majority of these instances are either trivially solved or too 
computationally intensive for an optimal solution. Thus, this study focuses on medium sized instances contained 
in files mknapcb2 ( 5m =  and 250n = ) and mknapcb5 ( 10m =  and 250n = ). 

Each file contains 30 instances divided into groups of 10 based upon a tightness ratio, which is equal to  

,1

i
i n

i jj

bs
a

=

=
∑

. The tightness ratio is approximately equal for all constraints and is 0.25 for the first 10 instan-  

ces, 0.5 for the second ten instances, and 0.75 for the final ten instances. For this computational study, the first 
ten instances are only considered. When the tightness ratio is 0.5 or higher, hostC  tends to include too many 
variables. Since the variables in hostC  are prohibited from being in 

p
Nψ , higher tightness ratios reduce the size 

of 
p

Nψ , which decreases the likelihood of finding a suitable donor cover in any row. 
The study considers a variety of implementation strategies including the number of merged inequalities added, 

the possibility of overlapping rows when multiple cuts are added, the option to use the Donor Coefficient 
Strengthening Algorithm when constructing merged inequalities, and different pseudocosting techniques. The 
psuedocosting techniques provide an order for selecting indices for cover inequalities. Three options are con- 
sidered: sorting on the reduced costs, sorting on the a coefficient values, and sorting on equal weights for both 
reduced costs and a coefficient values. More details of these methods and computational results are described in 
[43]. 

The experimentation compares computational effort to solve the MK instances with and without the inclusion 
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of merged cover inequalities. CPLEX 12.5 [44] solves all of the instances at default settings, but writing node 
files out to memory is used for the larger instances. All results are obtained using a PC with an i7-4770 
processor at 3.4 GHz with 8 GB of RAM. 

3.1. Computational Results  
The computational study considered the variations of each implementation strategy by testing both small and 
large instances. Solving all 10 smaller instances required from 10 to 15 minutes. Solving all 10 larger instances 
typically needed 1 to 2 days. Instead of reporting the time in seconds, the data below compares computational 
ticks in CPLEX, as this is more accurate. It should be noted that the time in seconds was highly correlated to 
ticks. The overall improvement in time was plus or minus two percent of the percent improvement in ticks. 

Ticks provide a more accurate comparison between the experimental runs because the computational time in 
seconds is subject to variability on different computers. Fischetti, et al. argue the benefit of using ticks in [45]. 
Ju, et al. use a similar process to report their computational results [46]. Since the two categories of MK test 
problems included 10 multiple knapsack subordinate instances, most of the tables compare the aggregate total 
ticks required to solve all 10 problems using the baseline CPLEX 12.5 and the inequality merging technique. 

3.1.1. Computation Results for Smaller Problems 
Problems from the smaller MK instances (file mknapcb2) offered an excellent opportunity for extensive 
experimentation with each of the implementation strategies. Table 2 and Table 3 show the best known results  
 
Table 2. Changing implementation strategies for smaller MK problems, 1 - 3 Cuts.                                                                     

# Merged Overlap Pseudo-Costing Strategy Total Ticks Percent 

Cuts Rows Red. Costs Balanced a Values (10 probs.) Improv. 

Baseline Baseline 0 0 0 81,497 Baseline 

1 N/A 1 0 0 70,895 13.0% 

1 N/A 0 0 1 69,669 14.5% 

1 N/A 0 1 0 75,868 6.9% 

2 Yes 2 0 0 72,376 11.2% 

2 Yes 0 0 2 78,840 3.3% 

2 Yes 0 2 0 71,668 12.1% 

2 Yes 1 0 1 71,305 12.5% 
2 Yes 0 1 1 67,634 17.0% 
2 Yes 1 1 0 76,272 6.4% 
2 No 2 0 0 81,022 0.6% 

2 No 0 0 2 76,956 5.6% 

2 No 0 2 0 77,947 4.4% 

2 No 1 0 1 64,417 21.0% 

2 No 0 1 1 72,356 11.2% 

2 No 1 1 0 79,088 3.0% 

3 Yes 3 0 0 74,985 8.0% 
3 Yes 0 0 3 72,123 11.5% 
3 Yes 0 3 0 67,794 16.8% 

3 Yes 1 1 1 72,593 10.9% 

3 No 3 0 0 80,178 1.6% 

3 No 0 0 3 75,445 7.4% 

3 No 0 3 0 77,490 4.9% 

3 No 1 1 1 77,448 5.0% 

Merged Average     74,099 9.1% 
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Table 3. Changing implementation strategies for smaller MK problems, 4 - 5 Cuts.                                                                     

# Merged Overlap Pseudo-Costing Strategy Total Ticks Percent 

Cuts Rows Red. Costs Balanced a Values (10 probs.) Improv. 

Baseline Baseline 0 0 0 81,497 Baseline 

4 Yes 4 0 0 80,230 1.6% 

4 Yes 0 0 4 79,756 2.1% 

4 Yes 0 4 0 80,494 1.2% 

4 Yes 1 2 1 73,751 9.5% 

4 No 4 0 0 80,606 1.1% 

4 No 0 0 4 81,981 −0.6% 

4 No 0 4 0 72,744 10.7% 

4 No 1 2 1 74,820 8.2% 

5 Yes 5 0 0 82,279 −1.0% 

5 Yes 0 0 5 72,882 10.6% 

5 Yes 0 5 0 82,423 −1.1% 

5 Yes 1 3 1 76,820 5.7% 

5 No 5 0 0 77,944 4.4% 

5 No 0 0 5 78,817 3.3% 

5 No 0 5 0 83,201 −2.1% 

5 No 1 3 1 75,256 7.7% 

Merged Average     78,375 3.8% 

 
from these experiments on the smaller MK instances. Since there are 5 rows in the smaller test problems, each 
implementation strategy was tested with the inclusion of 1 - 5 merged inequalities. Table 2 shows the results for 
iterations with 1, 2, or 3 merged inequalities added. Table 3 shows the results with 4 or 5 merged inequalities 
added. 

Observe that inequality merging outperformed the baseline CPLEX computational ticks for all strategies in 
Table 2 with 1, 2, or 3 added inequalities, and inequality merging also outperformed the baseline CPLEX by 
about 9% on average. The 4 and 5 cut strategies from Table 3 outperformed baseline CPLEX by about 4%. This 
demonstrates that adding more merged inequalities creates diminishing returns because of additional com- 
putational requirements as the A matrix and basis grow in size. Preferred implementation strategies should focus 
on including 1, 2, or 3 merged cutting planes. 

Table 4 aggregates results from Table 2 and Table 3, and it reports the average results based upon different 
pseudo-costing strategies. Observe that many of the experimental runs in Table 2 and Table 3 included a pure 
strategy (all reduced costs, all a values, or all balanced cuts). However, some of the experimental runs include a 
mixture of strategies such as the 3 cut scenario with 1 cut of each pseudo-costing strategy. Experiments of this 
type are listed under “Mixture of Strategies” in Table 4. Notice that each of the three pure strategies performed 
well, at about the same level of improvement. However, there may be some additional benefit to mixing pseudo- 
cost strategies if multiple merged inequalities are generated. 

Merged inequalities almost always improved the computational time, regardless of the overlapping strategy. It 
appears that deliberate overlapping of rows provides even stronger results if multiple cutting planes are added. 
This is consistent with the theory motivating Theorem 3. Overlapping allows the algorithm to search in rows 
that had previously been used to generate a host cover inequality for an earlier merged cut. If DCSA is 
employed, the algorithm may also search all candidate rows including those that had previously generated a host 
inequality. Thus, all future experimentation overlaps rows. 

3.1.2. Computational Results for Larger Problems 
As the problems increased in size, the computational time quickly increased. The same implementation 
strategies tended to yield the strongest results with larger problems, as shown in this section. Solving all 10 MK 
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instances required from 1 to 2 days to solve. Table 5 shows the best known results for the large MK problems 
when the recommended implementation strategies are followed. 

Table 5 shows that inequality merging continues to provide an average improvement of about 9% over the 
baseline CPLEX computational effort even on challenging instances. This is roughly the same level of average 
improvement observed in the smaller MK instances. Notice that following the recommended implementation 
strategies always improved the solution times. This provides strong evidence that inequality merging is a 
beneficial technique for MK problems, and the reduction of computational ticks correlates to hours of time 
savings for large problems. 

Clearly a focus on reduced costs had the best impact for this particular grouping of larger MK instances, but 
that may not be the case in general. Previous analysis from Table 4 suggested that different pseudo-costing 
techniques may be preferred for particular problems, but focusing on reduced costs was actually the least 
preferred in that grouping of smaller MK instances. Identifying the reason that certain methods dominate other 
pseudo-costing techniques in particular problems is an excellent area for future research. 

Table 6 shows the best solution times for each of the 10 MK instances in the larger files. In addition, the table 
also describes the implementation strategy that yields the best result for each problem. Merging improved the 
solution times for each of the 10 problems, with an average reduction of computational requirements by 25.8%. 
However, the best single result for each sub-problem came from a wide variety of implementation strategies. 
These include instances that search all donor rows with DCSA and other instances that consider only specified 
randomly-selected donor inequalities that define single overlaps. The two best results include both overlapping 
strategies and DCSA facilitated the single best percentage improvement in problem 1. It is clear that each 
strategy yields strong results in specific instances, and neither overlapping strategy dominates the other. 

 
Table 4. Average ticks of pseudo-costing strategies from Table 2 and Table 3.                                                                     

 
Pseudo-Costing Strategy 

All Reduced Costs All Balanced All a Values Mixture of Strategies 

Average Ticks 77,835 76,625 76,274 73,569 

% Improvement 4.5% 6.0% 6.4% 9.8% 

 
Table 5. Changing implementation strategies for larger MK problems, 1 - 3 Cuts.                                                                     

# Merged Pseudo-Costing Strategy Total Ticks Percent 

Cuts Added Red. Costs Balanced a Values (10 problems) Improvement 

Baseline 0 0 0 30,994,459 Baseline 

1 1 0 0 29,949,459 3.4% 

1 0 0 1 30,268,076 2.3% 

1 0 1 0 29,614,573 4.5% 

2 2 0 0 20,166,265 34.9% 

2 0 0 2 29,347,409 5.3% 

2 0 2 0 30,881,549 0.4% 

2 1 0 1 28,518,016 8.0% 

2 0 1 1 29,975,494 3.3% 

2 1 1 0 29,718,811 4.1% 

3 3 0 0 20,412,908 34.1% 

3 0 0 3 29,362,710 5.3% 

3 0 3 0 30,908,925 0.3% 

3 1 1 1 29,903,185 3.5% 

Merged Average    28,260,350 8.8% 
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Table 6. Best merging performance by problem for 10m =  and 250n = .                                                    

Problem Baseline Merging Percent Implementation Strategy 

# Ticks Ticks Improv. Cuts Pseudo-cost Donor Rows 

1 1,955,055 128,467 93.4% 3 cuts Reduced Costs All 

2 203,122 160,209 21.1% 1 cuts Balanced Specified 

3 316,729 265,573 16.2% 3 cuts a Values Specified 

4 1,964,804 1,710,877 12.9% 2 cuts Red. Cost & a Val. Specified 

5 6,735,442 6,300,815 6.4% 2 cuts Red. Cost & a Val. Specified 

6 331,058 288,987 12.7% 1 cut a Values Specified 

7 224,004 208,500 6.9% 1 cut a Values All 

8 17,630,931 5,993,211 66.0% 5 cuts Reduced Costs Specified 

9 651,113 563,288 13.5% 2 cuts Red. Cost & a Val. All 

10 982,201 895,267 8.8% 3 cuts a Values Specified 

Average   25.8%    

 
These larger problems are excellent representatives of difficult, real-world problems. Thus, the observed 

reductions in computational requirements validated the theoretical advancements in this research as effective 
methods to help decrease computational effort for modern MK problems. 

4. Conclusion and Future Work  
This paper provides the theoretical foundations needed to build merged cover inequalities in MK instances. The 
theorems generate conditions for validity, using the pψ  term to identify candidate merging indices and 
simultaneously merging on all rows. Two algorithms support the newly-discovered theory, including an algorithm 
to reduce the size of pψ  and a second algorithm to find the strongest coefficients for each candidate index 
during simultaneous merging. 

The computational study validates inequality merging as an effective technique that reduces computational 
time for multiple knapsack problems. Preferred implementation strategies should generate 1, 2, or 3 cuts and 
overlap the rows. These strategies provide the strongest results, yielding an average reduction of computational 
effort by about 9%. The computational study provides strong evidence that inequality merging yields productive 
cutting planes for MK problems, and it is likely that similar computational improvements will be achieved for 
other IPs. 

Three ideas present themselves as excellent candidates for future research extensions. In this paper, inequality 
merging occurs on a single variable. The theory may be extended to merge on multiple variables. Since this 
paper focuses on cover inequalities and MK instances, another theoretical extension may merge other classes of 
cutting planes in general IPs. 

All of the computational analysis in this research was performed on the first 10 problems of each file provided 
by Chu and Beasley [42] with a tightness ratio of 0.25. Other test problems exist in the same files with different 
tightness ratios, and future research should consider if varying tightness ratios tend to motivate different levels 
of computational improvement when merged cover inequalities are added to the MK instance. 
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