
Open Journal of Optimization, 2015, 4, 141-155
Published Online December 2015 in SciRes. http://www.scirp.org/journal/ojop
http://dx.doi.org/10.4236/ojop.2015.44014

How to cite this paper: Hickman, R. and Easton, T. (2015) On Merging Cover Inequalities for Multiple Knapsack Problems.
Open Journal of Optimization, 4, 141-155. http://dx.doi.org/10.4236/ojop.2015.44014

On Merging Cover Inequalities for Multiple
Knapsack Problems
Randal Hickman1, Todd Easton2
1Department of Mathematical Sciences, United States Military Academy, West Point, USA
2Industrial and Manufacturing Systems Engineering Department, Kansas State University, Manhattan, USA

Received 27 August 2015; accepted 21 December 2015; published 25 December 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper describes methods to merge two cover inequalities and also simultaneously merge
multiple cover inequalities in a multiple knapsack instance. Theoretical results provide conditions
under which merged cover inequalities are valid. Polynomial time algorithms are created to find
merged cover inequalities. A computational study demonstrates that merged inequalities improve
the solution times for benchmark multiple knapsack instances by about 9% on average over
CPLEX with default settings.

Keywords
Multiple Knapsack Problem, Cutting Plane, Cover Inequality, Inequality Merging, Pseudocost,
Integer Programming

1. Introduction to Inequality Merging
An integer program (IP) is a common type of optimization problem, defined as maximize Tc x subject to
Ax b≤ and nx +∈ where m nA ×∈ , mb∈ , and nc∈ where m and n are integers both greater than or

equal to 1. Define { }1, ,N n=  as the set of indices of an IP.

One frequently studied IP is the 0 - 1 knapsack problem (KP), defined as maximize 1
n

i ii c x
=∑ subject to

1
n

i ii a x b
=

≤∑ , and { }0,1 n
ix ∈ where c and na +∈ , b +∈ . The multiple knapsack (MK) problem has

multiple knapsack constraints and is defined as maximize Tc x subject to Ax b≤ and nx +∈ where
m nA ×
+∈ , mb +∈ , and nc∈ .

Solutions to KP and MK problems support a wide variety of real-world applications, including examples in
Ahuja and Cunha [1], Chang and Lee [2], Dawande et al. [3], Dizdar et al. [4], Kellerer and Strusevich [5],

http://www.scirp.org/journal/ojop
http://dx.doi.org/10.4236/ojop.2015.44014
http://dx.doi.org/10.4236/ojop.2015.44014
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/

R. Hickman, T. Easton

142

Martello and Toth [6], Shachnai and Tamir [7], and Szeto and Lo [8]. This paper focuses on MK problems.

A half space is { }1: nn
i iix a x b

=
∈ ≤∑ , and a polyhedron is defined as the intersection of finitely many half

spaces. A set nS ⊆  is convex if and only if 1x and 2x S∈ implies ()1 21x x Sλ λ+ − ∈ for every
[]0,1λ∈ . A polyhedron is convex, and the convex hull of S, ()conv S , is the intersection of all convex sets that

contain S.
Let P be the set of feasible points of an integer program, where { }:nP x Ax b+= ∈ ≤ . Define

{ }{ }10,1 :n nKP
i iiP x a x b

=
= ∈ ≤∑ and { }{ }0,1 :nMKP x Ax b= ∈ ≤ as the feasible regions of the knapsack and

multiple knapsack problems, respectively where na +∈ and m nA ×
+∈ .

A well-known technique to improve solution times for IP problems is the generation of valid inequalities. An

inequality 1
n

i ii xα β
=

≤∑ is a valid inequality for ()MKconv P if every MKx P∈ satisfies the inequality. If the

valid inequality separates the linear relaxation solution from the convex hull of the IP, then it is called a cutting
plane. The linear relaxation is the IP with the integrality restriction eliminated. The theoretically best cutting
planes define facets of ()MKconv P , but any cutting plane that separates the linear relaxation from ()MKconv P
may be computationally useful. A thorough explanation of such results is in Nemhauser and Wolsey [9].

For a MK problem, a cover cut may be generated in one or more of the m constraints. A set C N⊆ is a
cover for row { }1, ,i m∈  if ,i j ij Ca b

∈
>∑ . The corresponding cover inequality is valid for ()MKconv P and

takes the form 1jj Cx C
∈

≤ −∑ . Cover cuts have been studied extensively by Balas and Zemel [10], De Farias

et al. [11], Louveaux and Weismantel [12], Nemhauser and Vance [13], and Park [14]. Knowledge of cover cuts
is critical to this research.

Many such covers may exist and pseudo-costing strategies provide a prioritized variable ordering. Pseudo-
costing strategies for integer programming problems were studied by Benichou, et al. in [15] and Gauthier and
Ribiere in [16]. Refalo used pseudo-cost strategies to improve constraint programming in [17], and Achterberg,
et al. developed reliability branching rules for IPs as an extension of pseudo-costing in [18].

In some instances, cover inequalities may be strengthened through lifting. Gomory introduced the technique
in [19], taking a valid inequality of a restricted space and tilting it to become a valid inequality of a higher
dimensional space. Substantial bodies of research have extended lifting to several categories such as exact
up-lifting (Cho et al. [20], Gutierrez [21], Hammer et al. [22], and Wolsey [23]), exact simultaneous up-lifting
(Easton and Hooker [24], Kubik [25], and Zemel [26]), exact sequential down and middle lifting by Wolsey [23],
sequence dependent lifting (Atamtürk [27], Gu et al. [28]-[30], and Shebalov and Klabjan [31]), and other
approximate lifting methods (Balas [32] and Weismantel [33]).

Theoretical foundations for inequality merging were first introduced by Hickman and Easton in [34].
Although merging appears similar to lifting, it yields new cutting planes that are not attainable through straight-
forward applications of known lifting techniques. Their paper creates a single cutting plane by merging two
inequalities. This merged inequality can be theoretically stronger than the original inequalities, and it may
induce a facet under certain conditions.

This paper extends the idea of inequality merging by focusing on cover inequalities in MK problems.
Information from two or more cover inequalities in an MK instance may be merged into a single cutting plane.
In some instances, simultaneous merging of cover inequalities may occur across multiple rows at the same time.

The next section describes the process of cover inequality merging for MK instances and provides theoretical
results and examples. The third section offers the results of a computational study that highlights the computa-
tional benefits of employing merged cover inequalities in test MK problems. The final section offers some
directions for future research.

2. Theory and Examples of Merging Cover Inequalities
It is straightforward to find cover inequalities in MK instances and merging requires two covers, called host and
donor. Let hostC N⊆ be a cover in row r and donorC N⊆ be a cover in row s for some { }, 1, ,r s m∈  . Thus,
the cover inequalities 1host

host
ii C x C

∈
≤ −∑ and 1donor

donor
ii C x C

∈
≤ −∑ are valid inequalities of ()MKconv P .

Merging the host and donor cover inequalities occurs on binary variable px where { } host donorp C C=  or if

R. Hickman, T. Easton

143

host donorC C =∅ , then hostp C∈ . Since px is bounded by 1 and 1 1
1

donor ii C donor
x

C∈
≤

−
∑ , it follows that

px could be replaced in host cover inequality with the donorC indices with coefficients 1
1donorC −

. Thus, a

merged cover inequality has the form { }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
+ ≤ −

−
∑ ∑ .

If the merged inequality is valid, then this inequality includes more nonzero coefficients than either hostC or
donorC . The question remains as to whether or not the merged inequality is valid. The following theorem

provides conditions for its validity.
Theorem 1. Let hostC be a cover from row r and donorC be a cover from some row s in a MK instance such

that 1host donorC C ≤ . Define index hostp C∈ as the merging index with the restriction that if
1host donorC C = , then { } host donorp C C=  . If { } { }\hostC p i is a cover in at least one row of the MK

instance for each donori C∈ , then the merged cover inequality, { }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
+ ≤ −

−
∑ ∑ ,

is valid for ()MKconv P .
Proof. Let x′ be any point in MKP . Define { }\host ii C pq x

∈
′= ∑ . If 1hostq C= − , then 0donor ii C x

∈
′ =∑ because

{ } { }\hostC p i is a cover in some constraint for each donori C∈ . Thus,

{ }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ . If 2hostq C≤ − , then 1 1

1
donor ii C donor

x
C∈

′ ≤
−

∑ since donorC

is a cover. Thus, { }\

1 1
1

host donor
host

i ii C p i C donor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ and the result follows. 

Theorem 1 describes which indices can be used to create a donor cover. These candidate indices can be easily
found based upon a ψ threshold, which is associated with the host cover inequality and the merging variable.
Given a host cover hostC in row r and a designated merging variable hostp C∈ , then

(), , 1hostp r r i r pi Cb a aψ
∈

= − − +∑ . The purpose of pψ is to rapidly identify indices that can be used to create a

donor cover from any row s. Define these potential donor indices as { }{ },: \ ,
p

host
r i pN i N i C p aψ ψ= ∈ ∈ ≥/ . If

donorC is a cover and
p

donorC Nψ⊆ , then merging the host and donor cover on px results in a valid merged

inequality as shown in the following theorem.
Theorem 2. Given a multiple knapsack instance, a host cover hostC from row r and a merging variable px

with hostp C∈ . Let donorC be a cover in some row s such that ,r i pa ψ≥ for all donori C∈ , then

{ }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
+ ≤ −

−
∑ ∑ is a valid inequality of ()MKconv P .

Proof. Assume MKx P′∈ , hostC is a cover in row r, donorC is a cover in some row s and
p

donorC Nψ⊆ . Define

{ }\host ii C pq x
∈

′= ∑ . Since hostC is a cover, 1hostq C≤ − . The proof divides into two cases, 1hostq C= − and

2hostq C≤ − .
First, assume 1hostq C= − . Thus, 1ix = for all { }\hosti C p∈ . Since MKx P′∈ ,

{ } { }, ,\ \host hostr i r i i ii C p i C pa a x b
∈ ∉

′+ ≤∑ ∑ . Thus, { } { }, ,\ \ 1host hostr i i i r i pi C p i C pa x b a ψ
∉ ∈

′ ≤ − = −∑ ∑ . Every donori C∈ has the

property that ,r i pa ψ≥ and so 0ix′ = for all donori C∈ . Consequently,

{ }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ .

Second, assume 2hostq C≤ − . Since Cdonor is a cover in row s, 1donor
donor

ii C x C
∈

′ ≤ −∑ . Thus, 1
1

donor ii C
donor

x

C
∈

′
≤

−
∑ .

R. Hickman, T. Easton

144

Consequently, { }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ .

These two cases are exhaustive. Therefore every MKx P′∈ satisfies

{ }\

1 1
1

host donor
host

i ii C p i Cdonor
x x C

C∈ ∈
′ ′+ ≤ −

−
∑ ∑ and this merged inequality is valid for ()MKconv P . 

To identify valid merged cover inequalities, the user must identify a host cover, hostC and a merged index
hostp C∈ . Some selections for hostC and a merged variable px may not allow a candidate donor inequality to

exist. The Reducing pψ Algorithm changes hostC to increase the likelihood of the existence of an appropriate
donor cover.

The input to the Reducing pψ Algorithm is a multiple knapsack instance, a valid host cover from row r and
a merging variable px with hostp C∈ . In addition, a threshold []0,1τ ∈ is provided. The output of this
algorithm is a new host cover inequality and a new merging variable. These are denoted by hostC′ and px ′ ,
respectively.

Reducing pψ Algorithm

If the Reducing pψ Algorithm terminates successfully, then hostC′ is a cover because it satisfies the

condition that ,host r i ri C a b′∈
>∑ . When this happens, the last index q added to hostC′ becomes the newly deter-

mined overlapped variable px ′ , and (), , 1hostp r r i r pi Cb a aψ ′ ′′∈
= − − +∑ . Since p pψ ψ′ < , smaller ,r ia coef-

ficients may identify acceptable additional variables for use in donorC . This increases the likelihood of achieving
a valid donorC , thus increasing the opportunity for construction of a merged cutting plane inequality.

In some instances, the Reducing pψ Algorithm terminates successfully with a new cover hostC′ and a new
value pψ ′ , but it may not have a sufficient number indices in

p
Nψ ′

 to construct donorC . If this happens, the
Reducing pψ Algorithm may be used iteratively until a suitable donorC is attained.

Observe that the Reducing pψ Algorithm also requires a careful selection of τ to achieve stronger results
in many instances. A small value of τ tends to allow indices with small a coefficients to enter hostC′ . When
this happens, the size of hostC′ may become undesirably large or fail to generate a cover. Including too many
variables in the host cover results in fewer candidate indices in

p
Nψ .

High values of τ may allow few (or zero) new candidate indices for inclusion in
p

Nψ . In such instances, it
is more likely that the reducing pψ algorithm fails to return a new hostC′ and/or fails to reduce the value of

pψ . Even if the algorithm succeeds, higher values of τ tend to result in relatively smaller reductions in pψ ,
possibly requiring multiple calls to this procedure when a valid merged inequality is not yet attainable. Given

R. Hickman, T. Easton

145

this sensitivity to τ , a careful selection of τ is required. For practical purposes, it is recommended to consider
values of τ between 0.3 and 0.7.

The Reducing pψ Algorithm is a linear algorithm for each specified τ value. The initialization requires

()hostO C . The main step could search through all other indices, so it performs in ()\ hostO N C effort. Thus,

the algorithm runs in ()O N , which is linear for a fixed τ .

2.1. Merging over Multiple Donor Covers Simultaneously
This section presents a method to strengthen the previous results by merging on multiple donor covers at the
same time. Conditions are provided to create valid inequalities from merging over three or more cover inequa-
lities simultaneously. Another algorithm is presented to search for the strongest merging coefficients among
multiple potential donor rows in the MK instance.

Simultaneous merging over multiple donor covers begins with a hostC cover from a MK constraint with
hostp C∈ and its associated pψ and set

p
Nψ . The inequality { }\ 1host

p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
+ ≤ −∑ ∑ is likely

to be valid for any 1
1j

jC
α ≤

−
 where

pjC Nψ⊆ is any cover from any constraint of the MK instance with

jj C∈ . Thus, the strongest such inequality would select 1
1j

jC
α =

−
 where

pjC Nψ⊆ and jj C∈ is the

maximum cardinality cover from any row.
The check of validity must assure that there does not exist a feasible point which violates this new inequality.

Prior to this result, define
{ } { }min ,\ ,

min host
q

r ii QQ C p Q q
c a

∈⊂ =
= ∑ , { }min min : 1

p

q host
D N ii DD C q

ψ
α α⊆ ∈

= > − −∑

and { }
min

min ,:
min q

p

q
r ii DD N D

a a
ψ α ′∈′ ′⊆ =

= ∑ .

Theorem 3. Let hostC be a cover from a MK constraint with hostp C∈ , corresponding value pψ and

associated set
p

Nψ . Then the inequality { }\ 1host
p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
+ ≤ −∑ ∑ is valid for ()MKconv P for

any 1
1j

jC
α ≤

−
 where

pjj C Nψ∈ ⊆ is any cover from any constraint of the MK instance as long as one of

the following conditions holds
1) 1

p
ii Nψ

α
∈

≤∑

2) min min
q q

rc a b+ > for all integer { }1,2, , 1hostq C∈ − .

Proof. Let MKx P′∈ . Since
p

i Nψ∈ , then { } { }\hosti C p is a cover in row r. If { }\ 1host
host

ii C p x C
∈

′ = −∑ ,

then 0
p

ii N x
ψ∈

′ =∑ . Thus, { }\ 1host
p

host
i i ii C p i Nx x C

ψ
α

∈ ∈
′ ′+ ≤ −∑ ∑ for every value of iα .

Assume 1) is true. If { }\ 2host
host

ii C p x C
∈

′ ≤ −∑ , then 1
p

i ii N x
ψ
α

∈
≤∑ because 1) is true and ix′ is bounded by

1. Consequently, { }\ 1host
p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
′ ′+ ≤ −∑ ∑ .

Assume 2) is true. Let { }\host ii C pq x
∈

′= ∑ . Thus { } min\host
q

i ii C p a x a
∈

′ ≥∑ . By 2) min min
q qa c b+ > and thus

min
p

q
j jj N x q

ψ
α α

∈
′ < ≤∑ . Thus, { }\ 1host

p

host
i j ji C p j Nx x C

ψ
α

∈ ∈
′ ′+ ≤ −∑ ∑ . 

An immediate result of Theorem 3 is an algorithm to merge over multiple donor covers simultaneously. This
algorithm explores all rows to determine the smallest eligible covers of each merging variable in

p
Nψ . This

translates into the stronger coefficients for each merging variable. The input to the Donor Coefficient Streng-
thening Algorithm (DCSA) is a MK instance, a host cover hostC from row r and an index hostp C∈ .

R. Hickman, T. Easton

146

Donor Coeffcient Strengthening Algorithm

DCSA identifies the smallest donor covers possible for each index in
p

Nψ from each row in the MK

instance using the indices sorted in each row by the a values. Observe that DCSA does not guarantee a valid
inequality, but it does identify the strongest possible merged inequality. If the reported merged inequality
satisfies a condition of Theorem 3, then it is a valid inequality.

DCSA’s computational effort required for the initialization is ()()log
p p

hostO C m N Nψ ψ+ . The main step

requires
2

p
O m Nψ
 
 
 

. Thus DCSA’s effort is ()2| | | |host
p

O C m Nψ+ . Although this is a cubic run time,

DCSA performs quickly in practice.

2.2. Inequality Merging Example
The following example demonstrates the theoretical concepts discussed earlier. Consider multiple knapsack
constraints of the form Ax b≤ with 14n = and 2m = where

20 18 16 16 15 12 11 10 10 8 6 5 5 3
14 19 13 6 6 20 5 12 11 20 14 14 6 12

A  
=  
 

and

79
.

75
b  
=  
 

R. Hickman, T. Easton

147

Designate the first constraint as the host constraint, 1r = and let the host cover be { }1,2,3,4,5hostC = . If the
merging index is 5p = , then () ()5 1,1 1,2 1,3 1,4 1 79 70 1 10b a a a aψ = − + + + + = − + = . Because 1,5 1,6 1,7 1,8, , ,a a a a
and 1,9a are all greater than or equal to 10, the candidate indices for the donor cover are restricted to

{ }
5

5,6,7,8,9Nψ = .
No subset of

5
Nψ is a cover. The Reducing pψ Algorithm is used to change the host cover to create a

smaller ψ . Let 1
2

τ = , then the Reducing pψ Algorithm seeks a host cover with a ψ value that is less than

or equal to 5. In this case {5} is eliminated from the host cover, and the host cover adds an index with a
coefficient between 5 and 9. Indices 10, 11, 12, and 13 are all suitable and index 11 is added to hostC′ . However,

{ }1,2,3,4,11hostC′ = is not a cover. Including either index 12 or 13 would create a host cover and
{ }1,2,3,4,11,12hostC′ = . The new value for 12ψ is reduced exactly by the coefficient of the first added index,

1,11a . Thus 12 4ψ = , and the candidate indices for the donor cover are { }
12

5,6,7,8,9,10,12,13Nψ′ = . There exist
several covers in constraint two from this candidate set. One such cover is { }6,8,9,10,12donorC = . Since a
donor cover now exists, hostC′ becomes hostC .

The algorithm has now determined a host and donor cover that can be merged. Merging the host with the
donor on 12x yields (1), a valid inequality according to Theorem 2.

1 2 3 4 6 8 9 10 11 12
1 1 1 1 1 5.
4 4 4 4 4

x x x x x x x x x x+ + + + + + + + + ≤ (1)

The following arguments demonstrate Theorems 1 and 2 in practice. Verifying the validity of (1) requires that
{ } { }\ 12hostC i is a cover for some constraint for every donori C∈ . The sum of the { } 1,\ 12host

iC a coeffi-
cients is 76. Clearly { } { }\ 12hostC i is a cover in the first knapsack as long as 1, 4ia ≥ and { }\ 12hosti C∉ .
Since all candidate donor indices have 1, 124ia ψ≥ = , (1) is verified as a valid inequality of ()MKconv P .

Observe that numerous other minimal donor covers exist when 12p = . Two other examples are
{ }5,6,7,9,10,12 and { }5,6,7,8,9,10,13 . Accordingly, we could merge each of these cover inequalities with
the host cover inequality yielding the following valid merged inequalities

1 2 3 4 5 6 7 9 10 11 12
1 1 1 1 1 1 5
5 5 5 5 5 5

x x x x x x x x x x x+ + + + + + + + + + ≤ (2)

1 2 3 4 5 6 7 8 9 10 11 13
1 1 1 1 1 1 1 5.
6 6 6 6 6 6 6

x x x x x x x x x x x x+ + + + + + + + + + + ≤ (3)

Each of these merged inequalities remove linear relaxation points and are thus cutting planes. For instance,

the point (1,1,1,1,0,0,0,0,0, 1
4

,1,0,0,0) is eliminated by each of these merged inequalities. Additionally, it is

simple to find points that are satisfied by two of the three merged inequalities, but eliminated by the other
inequality. Thus, each merged inequality is eliminating distinct regions of the linear relaxation space.

Returning to the original host cover, it is also possible to generate new families of merged inequalities if
merging on 11p = instead of 12p = . By changing the index selected for merging, ()11 5 79 75 1ψ = = − +
with corresponding candidate donor indices { }5,6,7,8,9,10,11,13 . Similar to the examples shown previously,
many possible new donor covers now exist. For instance, { }6,8,9,10,11donorC = yields

1 2 3 4 6 8 9 10 11 12
1 1 1 1 1 5.
4 4 4 4 4

x x x x x x x x x x+ + + + + + + + + ≤ (4)

The idea of ψ guarantees validity, but it is not necessary to merge covers. Consider { }1,2,3,4,6hostC =
with 4p = . In the first constraint, { }1,2,3,5,6 is a cover and so {5} is a candidate index. The second con-
straint has several relevant covers: { }1,2,3,6,9 , { }1,2,3,6,10 , { }1,2,3,6,11 , { }1,2,3,6,12 and { }1,2,3,6,14 .
Thus, the candidate indices are now { }4,5,9,10,11,12,14 . One such cover in the second constraint is
{ }4,9,10,11,12,14 , which results in the following merged constraint

1 2 3 4 6 9 10 11 12 14
1 1 1 1 1 1 4.
5 5 5 5 5 5

x x x x x x x x x x+ + + + + + + + + ≤ (5)

R. Hickman, T. Easton

148

The authors believe that such constraints may be more useful computationally since they are incorporating

covers from multiple constraints to obtain validity. For instance, the linear relaxation point (1,1,1, 1
3

,0,1,0,0, 1
4

,

0,0,0,0, 1
3

) is eliminated by this inequality.

To demonstrate Theorem 3, an additional row is added to this example. Now consider the following multiple
knapsack instance

20 18 16 16 15 12 11 10 10 8 6 5 5 3
14 19 13 6 6 20 5 12 11 20 14 14 6 12
4 6 7 6 18 3 17 15 19 4 16 8 9 14

A
 
 =  
  

and
79
75 .
73

b
 
 =  
  

Again, consider { }1,2,3,4,11,12hostC = with 12 4ψ = and { }
12

5,6,7,8,9,10,12,13Nψ = . For each index in

12
Nψ , DCSA forces this index as the first element in a cover and then adds other indices according to the sorted
order for each row. Observe that { }5,6,7,8,9,10,12,13 is not a cover in row 1, so only rows 2 and 3 are
considered.

For index 5, the smallest covers are { }5,6,10,12,8,9 and { }5,9,7,8,13 in rows 2 and 3, respectively.
Continuing this logic for each of the other indices results in Table 1. The smallest covers are listed in the order
in which DCSA adds indices to the cover.

Thus the simultaneous merged inequality is

1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 1 1 1 1 1 5.
4 4 4 4 4 4 4 4

x x x x x x x x x x x x x+ + + + + + + + + + + + ≤ (6)

Observe that this new inequality dominates all of the previous inequalities. Furthermore, to achieve this
inequality all rows are necessary. For instance, the smallest cover in row 3 containing index 6 has 6 indices and
thus row two is necessary. Similarly, the smallest cover in row 2 containing index 7 has 6 indices and thus row 3
is necessary.

Table 1. Applying DCSA to find strongest coefficients.

Index Smallest Cover Row α

5 { }5,9,7,8,13 3 1
4

6 { }6,10,12,8,9 2 1
4

7 { }7,9,5,8,13 3 1
4

8 { }8,9,5,7,13 3 1
4

9 { }9,5,7,8,13 3 1
4

10 { }10,6,12,8,9 2 1
4

12 { }12,6,10,8,9 2 1
4

13 { }13,9,5,7,8 3 1
4

R. Hickman, T. Easton

149

To argue validity of (6), consider Theorem 3. Since
12

2ii Nψ
α

∈
=∑ , 1) is not satisfied. For 2), observe that

1
min 1,11 6c a= = and 2

min 1,11 1,4 22c a a= + = . Continuing this process yields 3
min 38c = , 4

min 56c = , and 5
min 76c = .

Determining the values for minα yield that 1
minα , 2

minα , and 3
minα do not exist as

12
2ji Nψ

α
∈

=∑ . However,
4
min 5α = because it requires five variables with coefficients in

12
Nψ to be set to one to arrive at a value strictly

larger than 1 4 1hostC= − − . Since 5 1 0hostC − − = , 5
min 1α = .

Since 1
minα , 2

minα , and 3
minα do not exist, only 4

mina and 5
mina are determined. The value of

4
min 1,13 1,12 1,10 1,9 1,8 38a a a a a a= + + + + = . Similarly, 5

min 1,13 5a a= = . Condition 2) of Theorem 3 checks
4 4
min min 56 38 94 79c a+ = + = > and 5 5

min min 76 5 81 79c a+ = + = > . Thus, (6) meets condition 2) of Theorem 3
and it is valid. As a note, observe that checking 1hostq C= − is always true by the definition of

p
Nψ .

The final benefit of this example demonstrates that merging cover inequalities are not an immediate extension
of known methods. There are similarities between inequality merging and some categories of lifting. Any type of
sequential lifting has integer coefficients [35], and sequence independent lifting would require all non-cover coeffi-
cients in this example to be 0 [30]. Thus neither of these methods generate (6). While simultaneous lifting could
theoretically generate (6) [21], it would require starting with the trivial cutting plane 1 2 3 4 11 5x x x x x+ + + + ≤
and furthermore have a perfect guess of proper weights. Consequently, inequality merging yields inequalities
similar to (6), which are extremely unlikely to be produced by lifting techniques.

The general inequality merging presented by Hickman and Easton in [34] did not merge multiple donor
covers simultaneously, and it could not obtain (6). Inequality merging is also fundamentally different from other
popular cutting plane generation techniques such as C-G cuts (Chvátal [36] and Gomory [37]), disjunctive cuts
(Balas and Perregaard [38]), Gomory cuts (Gomory [37]), or superadditive cuts (Gomory and Johnson [39] and
Wolsey [40]). Theoretically, these methods could generate (6), but they would require numerous iterative
applications to find this cutting plane. Such a result is unlikely to occur without the consultation of an oracle to
select initial inequalities, weights or other necessary input.

A single call to DCSA creates (6) and requires ()2O nm effort. Thus, merging over cover inequalities is a
new method to obtain previously unknown inequalities. Given the large size of most multiple knapsack
problems, the flexibility of the construction algorithms are usually capable of finding strong candidate hostC
and donorC inequalities. The next section provides the results of a computational study, demonstrating the
practical effectiveness of inequality merging on benchmark multiple knapsack problems.

3. Computational Study
This computational study compares solution times for multiple knapsack problems both with and without the use
of merged inequalities. The instances chosen for this study are the MK instances from the OR-Library [41],
developed by Chu and Beasley in 1998 [42]. The majority of these instances are either trivially solved or too
computationally intensive for an optimal solution. Thus, this study focuses on medium sized instances contained
in files mknapcb2 (5m = and 250n =) and mknapcb5 (10m = and 250n =).

Each file contains 30 instances divided into groups of 10 based upon a tightness ratio, which is equal to

,1

i
i n

i jj

bs
a

=

=
∑

. The tightness ratio is approximately equal for all constraints and is 0.25 for the first 10 instan-

ces, 0.5 for the second ten instances, and 0.75 for the final ten instances. For this computational study, the first
ten instances are only considered. When the tightness ratio is 0.5 or higher, hostC tends to include too many
variables. Since the variables in hostC are prohibited from being in

p
Nψ , higher tightness ratios reduce the size

of
p

Nψ , which decreases the likelihood of finding a suitable donor cover in any row.
The study considers a variety of implementation strategies including the number of merged inequalities added,

the possibility of overlapping rows when multiple cuts are added, the option to use the Donor Coefficient
Strengthening Algorithm when constructing merged inequalities, and different pseudocosting techniques. The
psuedocosting techniques provide an order for selecting indices for cover inequalities. Three options are con-
sidered: sorting on the reduced costs, sorting on the a coefficient values, and sorting on equal weights for both
reduced costs and a coefficient values. More details of these methods and computational results are described in
[43].

The experimentation compares computational effort to solve the MK instances with and without the inclusion

R. Hickman, T. Easton

150

of merged cover inequalities. CPLEX 12.5 [44] solves all of the instances at default settings, but writing node
files out to memory is used for the larger instances. All results are obtained using a PC with an i7-4770
processor at 3.4 GHz with 8 GB of RAM.

3.1. Computational Results
The computational study considered the variations of each implementation strategy by testing both small and
large instances. Solving all 10 smaller instances required from 10 to 15 minutes. Solving all 10 larger instances
typically needed 1 to 2 days. Instead of reporting the time in seconds, the data below compares computational
ticks in CPLEX, as this is more accurate. It should be noted that the time in seconds was highly correlated to
ticks. The overall improvement in time was plus or minus two percent of the percent improvement in ticks.

Ticks provide a more accurate comparison between the experimental runs because the computational time in
seconds is subject to variability on different computers. Fischetti, et al. argue the benefit of using ticks in [45].
Ju, et al. use a similar process to report their computational results [46]. Since the two categories of MK test
problems included 10 multiple knapsack subordinate instances, most of the tables compare the aggregate total
ticks required to solve all 10 problems using the baseline CPLEX 12.5 and the inequality merging technique.

3.1.1. Computation Results for Smaller Problems
Problems from the smaller MK instances (file mknapcb2) offered an excellent opportunity for extensive
experimentation with each of the implementation strategies. Table 2 and Table 3 show the best known results

Table 2. Changing implementation strategies for smaller MK problems, 1 - 3 Cuts.

Merged Overlap Pseudo-Costing Strategy Total Ticks Percent

Cuts Rows Red. Costs Balanced a Values (10 probs.) Improv.

Baseline Baseline 0 0 0 81,497 Baseline

1 N/A 1 0 0 70,895 13.0%

1 N/A 0 0 1 69,669 14.5%

1 N/A 0 1 0 75,868 6.9%

2 Yes 2 0 0 72,376 11.2%

2 Yes 0 0 2 78,840 3.3%

2 Yes 0 2 0 71,668 12.1%

2 Yes 1 0 1 71,305 12.5%
2 Yes 0 1 1 67,634 17.0%
2 Yes 1 1 0 76,272 6.4%
2 No 2 0 0 81,022 0.6%

2 No 0 0 2 76,956 5.6%

2 No 0 2 0 77,947 4.4%

2 No 1 0 1 64,417 21.0%

2 No 0 1 1 72,356 11.2%

2 No 1 1 0 79,088 3.0%

3 Yes 3 0 0 74,985 8.0%
3 Yes 0 0 3 72,123 11.5%
3 Yes 0 3 0 67,794 16.8%

3 Yes 1 1 1 72,593 10.9%

3 No 3 0 0 80,178 1.6%

3 No 0 0 3 75,445 7.4%

3 No 0 3 0 77,490 4.9%

3 No 1 1 1 77,448 5.0%

Merged Average 74,099 9.1%

R. Hickman, T. Easton

151

Table 3. Changing implementation strategies for smaller MK problems, 4 - 5 Cuts.

Merged Overlap Pseudo-Costing Strategy Total Ticks Percent

Cuts Rows Red. Costs Balanced a Values (10 probs.) Improv.

Baseline Baseline 0 0 0 81,497 Baseline

4 Yes 4 0 0 80,230 1.6%

4 Yes 0 0 4 79,756 2.1%

4 Yes 0 4 0 80,494 1.2%

4 Yes 1 2 1 73,751 9.5%

4 No 4 0 0 80,606 1.1%

4 No 0 0 4 81,981 −0.6%

4 No 0 4 0 72,744 10.7%

4 No 1 2 1 74,820 8.2%

5 Yes 5 0 0 82,279 −1.0%

5 Yes 0 0 5 72,882 10.6%

5 Yes 0 5 0 82,423 −1.1%

5 Yes 1 3 1 76,820 5.7%

5 No 5 0 0 77,944 4.4%

5 No 0 0 5 78,817 3.3%

5 No 0 5 0 83,201 −2.1%

5 No 1 3 1 75,256 7.7%

Merged Average 78,375 3.8%

from these experiments on the smaller MK instances. Since there are 5 rows in the smaller test problems, each
implementation strategy was tested with the inclusion of 1 - 5 merged inequalities. Table 2 shows the results for
iterations with 1, 2, or 3 merged inequalities added. Table 3 shows the results with 4 or 5 merged inequalities
added.

Observe that inequality merging outperformed the baseline CPLEX computational ticks for all strategies in
Table 2 with 1, 2, or 3 added inequalities, and inequality merging also outperformed the baseline CPLEX by
about 9% on average. The 4 and 5 cut strategies from Table 3 outperformed baseline CPLEX by about 4%. This
demonstrates that adding more merged inequalities creates diminishing returns because of additional com-
putational requirements as the A matrix and basis grow in size. Preferred implementation strategies should focus
on including 1, 2, or 3 merged cutting planes.

Table 4 aggregates results from Table 2 and Table 3, and it reports the average results based upon different
pseudo-costing strategies. Observe that many of the experimental runs in Table 2 and Table 3 included a pure
strategy (all reduced costs, all a values, or all balanced cuts). However, some of the experimental runs include a
mixture of strategies such as the 3 cut scenario with 1 cut of each pseudo-costing strategy. Experiments of this
type are listed under “Mixture of Strategies” in Table 4. Notice that each of the three pure strategies performed
well, at about the same level of improvement. However, there may be some additional benefit to mixing pseudo-
cost strategies if multiple merged inequalities are generated.

Merged inequalities almost always improved the computational time, regardless of the overlapping strategy. It
appears that deliberate overlapping of rows provides even stronger results if multiple cutting planes are added.
This is consistent with the theory motivating Theorem 3. Overlapping allows the algorithm to search in rows
that had previously been used to generate a host cover inequality for an earlier merged cut. If DCSA is
employed, the algorithm may also search all candidate rows including those that had previously generated a host
inequality. Thus, all future experimentation overlaps rows.

3.1.2. Computational Results for Larger Problems
As the problems increased in size, the computational time quickly increased. The same implementation
strategies tended to yield the strongest results with larger problems, as shown in this section. Solving all 10 MK

R. Hickman, T. Easton

152

instances required from 1 to 2 days to solve. Table 5 shows the best known results for the large MK problems
when the recommended implementation strategies are followed.

Table 5 shows that inequality merging continues to provide an average improvement of about 9% over the
baseline CPLEX computational effort even on challenging instances. This is roughly the same level of average
improvement observed in the smaller MK instances. Notice that following the recommended implementation
strategies always improved the solution times. This provides strong evidence that inequality merging is a
beneficial technique for MK problems, and the reduction of computational ticks correlates to hours of time
savings for large problems.

Clearly a focus on reduced costs had the best impact for this particular grouping of larger MK instances, but
that may not be the case in general. Previous analysis from Table 4 suggested that different pseudo-costing
techniques may be preferred for particular problems, but focusing on reduced costs was actually the least
preferred in that grouping of smaller MK instances. Identifying the reason that certain methods dominate other
pseudo-costing techniques in particular problems is an excellent area for future research.

Table 6 shows the best solution times for each of the 10 MK instances in the larger files. In addition, the table
also describes the implementation strategy that yields the best result for each problem. Merging improved the
solution times for each of the 10 problems, with an average reduction of computational requirements by 25.8%.
However, the best single result for each sub-problem came from a wide variety of implementation strategies.
These include instances that search all donor rows with DCSA and other instances that consider only specified
randomly-selected donor inequalities that define single overlaps. The two best results include both overlapping
strategies and DCSA facilitated the single best percentage improvement in problem 1. It is clear that each
strategy yields strong results in specific instances, and neither overlapping strategy dominates the other.

Table 4. Average ticks of pseudo-costing strategies from Table 2 and Table 3.

Pseudo-Costing Strategy

All Reduced Costs All Balanced All a Values Mixture of Strategies

Average Ticks 77,835 76,625 76,274 73,569

% Improvement 4.5% 6.0% 6.4% 9.8%

Table 5. Changing implementation strategies for larger MK problems, 1 - 3 Cuts.

Merged Pseudo-Costing Strategy Total Ticks Percent

Cuts Added Red. Costs Balanced a Values (10 problems) Improvement

Baseline 0 0 0 30,994,459 Baseline

1 1 0 0 29,949,459 3.4%

1 0 0 1 30,268,076 2.3%

1 0 1 0 29,614,573 4.5%

2 2 0 0 20,166,265 34.9%

2 0 0 2 29,347,409 5.3%

2 0 2 0 30,881,549 0.4%

2 1 0 1 28,518,016 8.0%

2 0 1 1 29,975,494 3.3%

2 1 1 0 29,718,811 4.1%

3 3 0 0 20,412,908 34.1%

3 0 0 3 29,362,710 5.3%

3 0 3 0 30,908,925 0.3%

3 1 1 1 29,903,185 3.5%

Merged Average 28,260,350 8.8%

R. Hickman, T. Easton

153

Table 6. Best merging performance by problem for 10m = and 250n = .

Problem Baseline Merging Percent Implementation Strategy

Ticks Ticks Improv. Cuts Pseudo-cost Donor Rows

1 1,955,055 128,467 93.4% 3 cuts Reduced Costs All

2 203,122 160,209 21.1% 1 cuts Balanced Specified

3 316,729 265,573 16.2% 3 cuts a Values Specified

4 1,964,804 1,710,877 12.9% 2 cuts Red. Cost & a Val. Specified

5 6,735,442 6,300,815 6.4% 2 cuts Red. Cost & a Val. Specified

6 331,058 288,987 12.7% 1 cut a Values Specified

7 224,004 208,500 6.9% 1 cut a Values All

8 17,630,931 5,993,211 66.0% 5 cuts Reduced Costs Specified

9 651,113 563,288 13.5% 2 cuts Red. Cost & a Val. All

10 982,201 895,267 8.8% 3 cuts a Values Specified

Average 25.8%

These larger problems are excellent representatives of difficult, real-world problems. Thus, the observed

reductions in computational requirements validated the theoretical advancements in this research as effective
methods to help decrease computational effort for modern MK problems.

4. Conclusion and Future Work
This paper provides the theoretical foundations needed to build merged cover inequalities in MK instances. The
theorems generate conditions for validity, using the pψ term to identify candidate merging indices and
simultaneously merging on all rows. Two algorithms support the newly-discovered theory, including an algorithm
to reduce the size of pψ and a second algorithm to find the strongest coefficients for each candidate index
during simultaneous merging.

The computational study validates inequality merging as an effective technique that reduces computational
time for multiple knapsack problems. Preferred implementation strategies should generate 1, 2, or 3 cuts and
overlap the rows. These strategies provide the strongest results, yielding an average reduction of computational
effort by about 9%. The computational study provides strong evidence that inequality merging yields productive
cutting planes for MK problems, and it is likely that similar computational improvements will be achieved for
other IPs.

Three ideas present themselves as excellent candidates for future research extensions. In this paper, inequality
merging occurs on a single variable. The theory may be extended to merge on multiple variables. Since this
paper focuses on cover inequalities and MK instances, another theoretical extension may merge other classes of
cutting planes in general IPs.

All of the computational analysis in this research was performed on the first 10 problems of each file provided
by Chu and Beasley [42] with a tightness ratio of 0.25. Other test problems exist in the same files with different
tightness ratios, and future research should consider if varying tightness ratios tend to motivate different levels
of computational improvement when merged cover inequalities are added to the MK instance.

References
[1] Ahuja, R. and Cunha, C. (2005) Very Large-Scale Neighborhood Search for the K-Constraint Multiple Knapsack

Problem. Journal of Heuristics, Special Issue: Supply Chain and Distribution Management, 11, 465-481.
http://dx.doi.org/10.1007/s10732-005-2634-9

[2] Chang, P. and Lee, J. (2012) A Fuzzy DEA and Knapsack Formulation Integrated Model for Project Selection. Com-
puters and Operations Research, 39, 112-125. http://dx.doi.org/10.1016/j.cor.2010.10.021

[3] Dawande, M., Kalagnanam, J., Keskinocak, P., Ravi, R. and Salman, F.S. (2000) Approximation Algorithms for the
Multiple Knapsack Problem with Assignment Restrictions. Journal of Combinatorial Optimization, 4, 171-186.

http://dx.doi.org/10.1007/s10732-005-2634-9
http://dx.doi.org/10.1016/j.cor.2010.10.021

R. Hickman, T. Easton

154

http://dx.doi.org/10.1023/A:1009894503716
[4] Dizdar, D., Gershkov, A. and Moldovanu, B. (2011) Revenue Maximization in the Dynamic Knapsack Problem.

Theoretical Economics, 6, 157-184. http://dx.doi.org/10.3982/TE700
[5] Kellerer, H. and Strusevich, V.A. (2010) Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knap-

sack Problem and its Scheduling Applications. Algorithmica, 57, 769-795.
http://dx.doi.org/10.1007/s00453-008-9248-1

[6] Martello, S. and Toth, P. (1987) Algorithms for Knapsack Problems. Annals of Discrete Mathematics, 31, 213-257.
http://dx.doi.org/10.1016/s0304-0208(08)73237-7

[7] Shachnai, H. and Tamir, T. (2001) On Two Class-Constrained Versions of the Multiple Knapsack Problem. Algorith-
mica, 29, 442-467. http://dx.doi.org/10.1007/s004530010057

[8] Szeto, K.Y. and Lo, M.H. (2004) An Application of Adaptive Genetic Algorithm in Financial Knapsack Problem. In:
Innovations in Applied Artificial Intelligence, Lecture Notes in Computer Science, Springer, Berlin/Heidelberg, 1220-
1228. http://dx.doi.org/10.1007/978-3-540-24677-0_125

[9] Nemhauser, G. and Wolsey, L. (1988) Integer and Combinatorial Optimization. John Wiley and Sons, New York.
http://dx.doi.org/10.1002/9781118627372

[10] Balas, E and Zemel, E. (1978) Facets of the Knapsack Polytope from Minimal Covers. SIAM Journal of Applied Ma-
thematics, 34, 119-148. http://dx.doi.org/10.1137/0134010

[11] De Farias Jr., I., Johnson, E. and Nemhauser, G. (2002) Facets of the Complementarity Knapsack Polytope. Mathe-
matics of Operations Research, 27, 210-227. http://dx.doi.org/10.1287/moor.27.1.210.335

[12] Louveaux, Q. and Weismantel, R. (2010) Polyhedral Properties for the Intersection of Two Knapsacks. Mathematical
Programming Series A, 113, 15-37. http://dx.doi.org/10.1007/s10107-006-0045-9

[13] Nemhauser, G. and Vance, P. (1994) Lifted Cover Facets of the 0-1 Knapsack Polytope with GUB Constraints. Opera-
tions Research Letters, 16, 255-263. http://dx.doi.org/10.1016/0167-6377(94)90038-8

[14] Park, K. (1997) Lifting Cover Inequalities for the Precedence-Constrained Knapsack Problem. Discrete Applied Ma-
thematics, 72, 219-241. http://dx.doi.org/10.1016/0166-218X(95)00113-6

[15] Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G. and Vincent. O. (1971) Experiments in Mixed-In-
teger Linear Programming. Mathematical Programming, 1, 76-94. http://dx.doi.org/10.1007/BF01584074

[16] Gauthier, J.M. and Ribiere, G. (1977) Experiments in Mixed-Integer Linear Programming Using Pseudo-Costs. Ma-
thematical Programming, 12, 26-47. http://dx.doi.org/10.1007/BF01593767

[17] Refalo, P. (2004) Impact-Based Search Strategies for Constraint Programming. In: Wallace, M., Ed., Principles and
Practice of Constraint Programming—CP 2004, Lecture Notes in Computer Science, Vol. 3258, Springer, Berlin,
557-571. http://dx.doi.org/10.1007/978-3-540-30201-8_41

[18] Achterberg, T., Koch, T. and Martin, A. (2005) Branching Rules Revisited. Operations Research Letters, 33, 42-54.
http://dx.doi.org/10.1016/j.orl.2004.04.002

[19] Gomory, R. (1969) Some Polyhedra Related to Combinatorial Problems. Linear Algebra and Its Applications, 2,
451-558. http://dx.doi.org/10.1016/0024-3795(69)90017-2

[20] Cho, C., Padberg, D. and Rao, M. (1983) On the Uncapacitated Plant Location Problem. II. Facets and Lifting Theo-
rems. Mathematics of Operations Research, 8, 590-612. http://dx.doi.org/10.1287/moor.8.4.590

[21] Easton, T. and Gutierrez, T. (2015) Sequential Lifting of General Integer Variables. Industrial Engineering and Man-
agement, 4, 158.

[22] Hammer, P.L., Johnson, E.L. and Peled, U.N. (1975) Facets of Regular 0-1 Polytopes. Mathematical Programming, 8,
179-206. http://dx.doi.org/10.1007/BF01580442

[23] Wolsey, L. (1975) Faces for a Linear Inequality in 0-1 Variables. Mathematical Programming, 8, 165-178.
http://dx.doi.org/10.1007/BF01580441

[24] Easton, T. and Hooker, K. (2008) Simultaneously Lifting Sets of Binary Variables into Cover Inequalities for Knap-
sack Polytopes. Discrete Optimization, 5, 254-261. http://dx.doi.org/10.1016/j.disopt.2007.05.003

[25] Kubik, L. (2009) Simultaneously Lifting Multiple Sets in Binary Knapsack Integer Programs. MS Thesis, Department
of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan.

[26] Zemel, E. (1978) Lifting the Facets of 0-1 Polytopes. Mathematical Programming, 15, 268-277.
http://dx.doi.org/10.1007/BF01609032

[27] Atamtürk, A. (2003) On the Facets of the Mixed-Integer Knapsack Polyhedron. Mathematical Programming, 98, 145-
175. http://dx.doi.org/10.1007/s10107-003-0400-z

http://dx.doi.org/10.1023/A:1009894503716
http://dx.doi.org/10.3982/TE700
http://dx.doi.org/10.1007/s00453-008-9248-1
http://dx.doi.org/10.1016/s0304-0208(08)73237-7
http://dx.doi.org/10.1007/s004530010057
http://dx.doi.org/10.1007/978-3-540-24677-0_125
http://dx.doi.org/10.1002/9781118627372
http://dx.doi.org/10.1137/0134010
http://dx.doi.org/10.1287/moor.27.1.210.335
http://dx.doi.org/10.1007/s10107-006-0045-9
http://dx.doi.org/10.1016/0167-6377(94)90038-8
http://dx.doi.org/10.1016/0166-218X(95)00113-6
http://dx.doi.org/10.1007/BF01584074
http://dx.doi.org/10.1007/BF01593767
http://dx.doi.org/10.1007/978-3-540-30201-8_41
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1016/0024-3795(69)90017-2
http://dx.doi.org/10.1287/moor.8.4.590
http://dx.doi.org/10.1007/BF01580442
http://dx.doi.org/10.1007/BF01580441
http://dx.doi.org/10.1016/j.disopt.2007.05.003
http://dx.doi.org/10.1007/BF01609032
http://dx.doi.org/10.1007/s10107-003-0400-z

R. Hickman, T. Easton

155

[28] Gu, Z., Nemhauser, G. and Savelsbergh, M. (1998) Lifted Cover Inequalities for 0-1 Integer Programs: Computation.
INFORMS Journal on Computing, 10, 427-437. http://dx.doi.org/10.1287/ijoc.10.4.427

[29] Gu, Z., Nemhauser, G. and Savelsbergh, M. (1999) Lifted Cover Inequalities for 0-1 Integer Programs: Complexity.
INFORMS Journal on Computing, 11, 117-123. http://dx.doi.org/10.1287/ijoc.11.1.117

[30] Gu, Z., Nemhauser, G. and Savelsbergh, M. (2000) Sequence Independent Lifting in Mixed Integer Programming.
Journal of Combinatorial Optimization, 4, 109-129. http://dx.doi.org/10.1023/A:1009841107478

[31] Shebalov, S. and Klabjan, D. (2006) Sequence Independent Lifting for Mixed Integer Programs with Variable Upper
Bounds. Mathematical Programming, 105, 523-561. http://dx.doi.org/10.1007/s10107-005-0664-6

[32] Balas, E. (1975) Facets of the Knapsack Polytope. Mathematical Programming, 8, 146-164.
http://dx.doi.org/10.1007/BF01580440

[33] Weismantel, R. (1997) On the 0/1 Knapsack Polytope. Mathematical Programming, 77, 49-68.
http://dx.doi.org/10.1007/BF02614517

[34] Hickman, R. and Easton, T. (2015) Merging Valid Inequalities over the Multiple Knapsack Polyhedron. International
Journal of Operations Research, 24, 214-227. http://dx.doi.org/10.1504/IJOR.2015.071495

[35] Wolsey, L. (1976) Facets and Strong Valid Inequalities for Integer Programs. Operations Research, 24, 367-372.
http://dx.doi.org/10.1287/opre.24.2.367

[36] Chvátal, V. (1973) Edmonds Polytopes and a Hierarchy of Combinatorial Problems. Discrete Mathematics, 4, 305-337.
http://dx.doi.org/10.1016/0012-365X(73)90167-2

[37] Gomory, R. (1958) Outline of an Algorithm for Integer Solutions to Linear Programs. Bulletin of the American Ma-
thematical Society, 64, 275-278. http://dx.doi.org/10.1090/S0002-9904-1958-10224-4

[38] Balas, E. and Perregaard, M. (2003) A Precise Correspondence Between Lift-and-Project Cuts, Simple Disjunctive
Cuts, and Mixed Integer Gomory Cuts for 0-1 Programming. Mathematical Programming, 94, 221-245.
http://dx.doi.org/10.1007/s10107-002-0317-y

[39] Gomory, R. and Johnson, E.L. (1972) Some Continuous Functions Related to Corner Polyhedra 1. Mathematical Pro-
gramming, 3, 23-85. http://dx.doi.org/10.1007/BF01584976

[40] Wolsey, L. (1977) Valid Inequalities and Superadditivity of 0/1 Integer Programs. Mathematics of Operations Re-
search, 2, 66-77. http://dx.doi.org/10.1287/moor.2.1.66

[41] OR Library Webpage (2013). http://people.brunel.ac.uk/~mastjjb/jeb/info.html
[42] Chu, P.C. and Beasley, J.E. (1998) A Genetic Algorithm for the Multidimensional Knapsack Problem. Journal of Heu-

ristics, 4, 63-86. http://dx.doi.org/10.1023/A:1009642405419
[43] Hickman, R. (2014) Generating Cutting Planes through Inequality Merging for Integer Programming Problems. PhD

Dissertation, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan.
[44] IBM (2013) ILOG CPLEX Optimizer, Version 12.5.1. http://www-01.ibm.com/software/info/ilog/
[45] Fischetti, M., Lodi, A., Monaci, M., Salvagnin, D. and Tramontani, A. (2013) Tree Search Stabilization by Random

Sampling. Technical Report OR/13/5, DEI, University of Bologna, Bologna.
[46] Ju, L., Huynh, B.K., Chakraborty, S. and Roychoudhury, A. (2009) Context-Sensitive Timing Analysis of Esterel Pro-

grams. Proceedings of the 46th Annual Design Automation Conference, San Francisco, 26-31 July 2009, 870-873.
http://dx.doi.org/10.1145/1629911.1630132

http://dx.doi.org/10.1287/ijoc.10.4.427
http://dx.doi.org/10.1287/ijoc.11.1.117
http://dx.doi.org/10.1023/A:1009841107478
http://dx.doi.org/10.1007/s10107-005-0664-6
http://dx.doi.org/10.1007/BF01580440
http://dx.doi.org/10.1007/BF02614517
http://dx.doi.org/10.1504/IJOR.2015.071495
http://dx.doi.org/10.1287/opre.24.2.367
http://dx.doi.org/10.1016/0012-365X(73)90167-2
http://dx.doi.org/10.1090/S0002-9904-1958-10224-4
http://dx.doi.org/10.1007/s10107-002-0317-y
http://dx.doi.org/10.1007/BF01584976
http://dx.doi.org/10.1287/moor.2.1.66
http://people.brunel.ac.uk/%7Emastjjb/jeb/info.html
http://dx.doi.org/10.1023/A:1009642405419
http://www-01.ibm.com/software/info/ilog/
http://dx.doi.org/10.1145/1629911.1630132

	On Merging Cover Inequalities for Multiple Knapsack Problems
	Abstract
	Keywords
	1. Introduction to Inequality Merging
	2. Theory and Examples of Merging Cover Inequalities
	2.1. Merging over Multiple Donor Covers Simultaneously
	2.2. Inequality Merging Example

	3. Computational Study
	3.1. Computational Results
	3.1.1. Computation Results for Smaller Problems
	3.1.2. Computational Results for Larger Problems

	4. Conclusion and Future Work
	References

