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Abstract 
This paper presents a nonparametric method for computing the Value at Risk (VaR) based on 
efficient density estimators with Fejér-type kernel functions and empirical bandwidths obtained 
from Fourier analysis techniques. The kernel-type estimator with a Fejér-type kernel was recently 
found to dominate all other known density estimators under the p -risk, p1 ≤ < ∞ . This theo- 
retical finding is supported via simulations by comparing the quality of the density estimator in 
question with other fixed kernel estimators using the common 2 -risk. Two data-driven band- 
width selection methods, cross-validation and the one based on the Fourier analysis of a kernel 
density estimator, are used and compared to the theoretical bandwidth. The proposed nonpara- 
metric method for computing the VaR is applied to two fictitious portfolios. The performance of 
the new VaR computation method is compared to the commonly used Gaussian and historical 
simulation methods using a standard back-test procedure. The obtained results show that the 
proposed VaR model provides more reliable estimates than the standard VaR models. 
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1. Introduction 
Financial institutions monitor their portfolios of assets using the Value at Risk (VaR) to mitigate their market 
risk exposure. The VaR was made popular in the early nineties by U.S. investment bank, J.P. Morgan, in 
response to the infamous financial disasters at the time and has since been implemented in the financial sector 
worldwide by the Basel Committee on Banking Supervision. By definition, the VaR is a risk measure of the 
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worst expected loss of a portfolio over a defined holding period at a given probability. The time horizon and the 
loss probability parameters are specified by the financial managers depending on the purpose at hand. Typically, 
the VaR is computed at short time horizons of one hour, two hours, one day, or a few days, while the loss 
probability can range from 0.001 to 0.1 depending on the risk averseness of the investors. Financial institutions 
then use the results of the VaR to determine the necessary capital and cash reserves to put aside for coverage 
against potential losses in the event of severe or prolonged adverse market movements. 

Formally, the Value at Risk of a portfolio, ( )VaR t p , is the p-th quantile of the distribution of portfolio 
returns over a given time horizon h that satisfies the following expression:  

( )( ) ( )( ) ( ) ( )VaR
VaR ; VaR ; d ,t p

t t h tF p h P X p f x h x p+ −∞
= ≤ = =∫  

where t hX +  is the portfolio return between time t  and t h+  and ( ; )f x h  is the probability density function 
(pdf) of returns. Equivalently,  

( ) ( )1VaR ; ,t p F p h−=  

where ( )1 ;F h− ⋅  is the inverse of the distribution function ( );F h⋅  that is continuous from the right. The time 
horizon h and loss probability ( )0,1p∈  are specified parameters. In our analysis, we use a time horizon of one 
day and probability levels ranging from 0.005 to 0.05. For a more in depth discussion on the origins of the VaR 
and its many uses see [1]. 

In practice, there exists a variety of computational methods for the VaR. The two most commonly used 
approaches are the parametric normal and the nonparametric historical simulation summarized below. The 
following models rely on the assumption of independent and identically distributed (iid) daily portfolio returns. 

1. Normal method. For normally distributed returns, with µ  as the expected return on a portfolio and 2σ  
as the variance of portfolio returns, the VaR is the p-th quantile of the normal distribution function given by  

( ) ( ) ( )1 1VaR ,t p F p pσ µ− −= = Φ +  

where ( )1 p−Φ  is the quantile function of the standard normal distribution, for any 0 1p< < . For estimators  

1
n

n jjX X n
=

= ∑  and ( ) ( )2

1 1n
n j njs X X n

=
= − −∑  of µ  and σ  based on ( )2

1, , ~ ,
iid

nX X N µ σ , a  

natural VaR estimator is  
 ( ) ( )1

1,VaR .n n np s p X−= Φ +                                (1) 

The normal method for estimating the VaR is widely used among financial institutions due to its familiar 
properties. It is not realistic, however, to assume that the portfolio returns are normally distributed since high 
frequency financial data have heavier tails than can be explained by the normal distribution. As a result, this 
method generally underestimates the true VaR. 

2. Historical simulation. Let ( ) ( ) ( )1 2 nX X X≤ ≤ ≤  denote the corresponding order statistics of the sample 
1, , nX X  of portfolio returns. For a given probability level ( )0,1p∈ , the VaR estimator is the p-th sample 

quantile of portfolio returns:  
 ( ) ( )2, 1VaR ,n npp X +  

=                                  (2) 

where x    denotes the greatest integer strictly less than the real number x. 
The main strengths of the historical simulation method are its simplicity and that it does not require any 

distributional assumptions on the portfolio returns as the VaR is determined by the actual price level movements. 
One has to be careful when selecting the data so as not to remove relevant or include irrelevant data. For 
instance, large samples of historical financial data can be disadvantageous. The portfolio composition is based 
on current circumstances; therefore, it may not be meaningful to evaluate the portfolio using data from the 
distant past since the distribution of past returns is not always a good approximation of expected future returns. 
Also, if new market risks are added, then there is not enough historical data to compute the VaR, which may 
underestimate it. Another drawback is that the discrete approximation of the true distribution at the extreme tails 
can cause biased results. 

A more generalized and sophisticated nonparametric method for estimating the pdf of daily portfolio returns 
is kernel density estimation. Let 1 2, ,X X   be a sequence of iid real-valued random variables from an 
absolutely continuous distribution with an unknown density f on  , where f belongs to a suitable family   
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of densities. Density estimation then consists of constructing an estimator ( )1; , ,n nf x X X  of the true func- 
tion ( )f x  that would produce a good estimate ( )1; , ,n nf x x x , based on some performance criterion, of the 
underlying density ( )f x  for the data 1, , nx x . The kernel density estimator contains a kernel function K and 
a smoothing parameter h. In most studies and applications, K is a fixed function and nh h=  is a sample size 
dependent parameter. If K depends on n, then the corresponding estimator is called the kernel-type density 
estimator. In [2], a new kernel-type estimator of densities belonging to a class of infinitely smooth functions is 
shown to dominate in ( )p  , 1 p≤ < ∞ , all other estimators in the literature, in a strong locally asym- 
ptotically minimax sense. Moreover, it does the best under the 2 -risk. The estimator in [2] uses the Fejér-type 
kernel function and the common theoretical bandwidth, which is used by many authors in the case of estimating 
infinitely smooth density functions. 

In this paper, we introduce a nonparametric approach for computing the VaR based on quantile estimation 
with the Fejér-type kernel and a nearly optimal bandwidth obtained from the Fourier analysis techniques. To do 
so, we first conduct a simulation study to support the theoretical finding that the kernel-type density estimator in 
hand has the best performance with respect to the 2 -risk. We then compare the new estimation technique for 
computing the VaR to the common Gaussian and historical simulation methods. Portfolio compositions can be 
rather complex therefore, for the purpose of empirically evaluating the VaR computation methods under 
consideration, we restrict ourselves to a portfolio consisting of only one stock. The VaR models are applied to 
two fictitious portfolios each consisting of a single stock represented by the stock market indices, the Dow Jones 
Industrial Average (DJIA) and the S&P/TSX Composite Index. The adequacy of each VaR model is then 
evaluated using a standard back-test procedure based on a likelihood ratio test. The kernel quantile estimation 
approach appears preferable to the two VaR computation methods mentioned above as no restrictive assump- 
tions need to be made about the underlying distribution of returns, like in the case of the normal method. Also, 
smoothing the estimated quantile function using kernel density estimators can improve the precision of the VaR 
estimates. 

The paper is organized as follows. Section 2 provides some background on assessing the goodness of a 
nonparametric estimator. Section 3 gives a brief overview of kernel density estimation and demonstrates how to 
obtain the empirically selected bandwidths. The density estimator with the Fejér-type kernel is presented in 
Section 4 along with its properties. Section 5 presents a simulation study comparing the kernel-type density 
estimator in question with other fixed kernel estimators in the literature. The proposed VaR compuation method 
is introduced in Section 6. In Section 7, we use the new VaR model to estimate the VaR for two fictitious 
portfolios and compare the results to those of the commonly used VaR models by means of a back-test. Section 
8 concludes the paper with a discussion and analysis of the results. 

The following notation are used throughout the paper. We use the symbol ( )A  for the indicator of a set A. 
The space of p-th power integrable functions on   is denoted by ( )p  , for 1 p≤ < ∞ . Convergence almost  
surely is indicated by . .a s→ . The expression ~n na b  means lim 1n n na b→∞ = ; whereas n na b  means  
that there exist constants 0 c C< < < ∞  and a number *n  such that n nc a b C< <  for all *n n≥ .  

2. Common Approaches to Measuring the Quality of Density Estimators  
Let 1 2, ,X X   be a sequence of iid real-valued random variables with a common density f on   that is unknown 
and is assumed to belong to a suitable family   of smooth functions. For any function g that belongs to  

( )p  , 1 p≤ < ∞ , we denote its p -norm by ( )( )1d
pp

pg g x x= ∫ . Let ( ) ( )1; , ,n n nf x f x X X=   be an  

arbitrary estimator of ( )f x  at point x∈ . One problem of interest is to construct an efficient estimator nf  
of f in ( )p  , 1 p≤ < ∞ . 

The performance of a density estimator can be evaluated through a risk function that measures the expected 
loss of choosing nf  as an estimator of f. For a given loss function ( ), nL f f , define the risk of nf  by  

( ) ( ), : , .n nR f f L f f=   

When ( ) ( )pL x l x= , for some function [ ): 0,l ∞ →  from a general class of loss functions  , then we  
speak of the p -risk given by  

( ) ( ), : , 1 .p n n pR f f l f f p= − ≤ < ∞                            (3) 

The p -risk with 2p =  is the measure used in this paper to judge the quality of a density estimator. 
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The quality of a density estimator is often measured by a minimax criterion. The idea is to protect statisticians 
from the worst that can happen. The minimax risk is given by  

( ) ( ): inf sup , ,
n

n nf f
R f f

∈
=


   

where the infimum is taken over all estimators nf  based on the random sample 1, , nX X  and the supremum 
is over a given class   of smooth density functions. In the nonparametric context, an asymptotic approach to 
minimax estimation is often used since exact minimaxity is rarely achievable. Asymptotic minimaxity, rate 
optimality, and local asymptotic minimaxity are three common criteria used in the statistical literature for 
measuring the asymptotic efficiency of a density estimator. 

An estimator *
nf  is called asymptotically minimax if  

( ) ( )*sup , ~ .n n
f

R f f
∈

   

That is, for large sample sizes, the maximum risk of *
nf  over the class   of estimated density functions is 

nearly equal to the minimax risk. Constructing asymptotically minimax estimators of f from some functional 
class   is a difficult problem; instead, a large portion of the literature focuses on constructing rate optimal 
estimators. An estimator *

nf  is called rate optimal if as n →∞   

( ) ( )*sup , .n n
f

R f f
∈

    

In nonparametric regression analysis, work on asymptotically minimax estimators of smooth regression curves 
with respect to the p -risk, 1 p≤ < ∞ , can be found in [3]-[5]. In connection with nonparametric density 
estimation, this is a more difficult problem and currently only solved for the 2 -risk (see Theorem 2 in [6]). 

A more precise approach for finding efficient estimators is local asymptotic minimaxity (for a more detailed 
description on the origins of this method, see [7]). An estimator *

nf  of a density 0f ∈  is called locally 
asymptotically minimax (LAM) if as n →∞ ,  

( ) ( )
0 0

*
0 0sup , ~ inf sup , ,

n
n nff f

R f f R f f
∈ ∈ 

 

where   is a sufficiently small vicinity of 0f  with an appropriate distance defined on  . Some examples 
of functions that admit LAM estimators can be found in [4] [8]. LAM estimators are preferred to asymptotically 
minimax ones since they are guaranteed to be globally efficient. 

In kernel density estimation, the LAM ideology differs significantly from both the asymptotically minimax 
and rate optimality approaches. When constructing LAM estimators of f, one has to pay close attention to the 
choice of both the bandwidth h and the kernel K. Indeed, the usual bias-variance tradeoff approach, when the 
variance and the bias terms of an optimal estimator are to be balanced by a good choice of h, is no longer 
appropriate. In several papers, it is shown that with a careful choice of kernel the bias of *

nf  in the variance- 
bias decomposition becomes asymptotically negligible to its variance (see, for example, [2] [4]). Therefore, 
efficiency becomes achievable only with a careful choice of the kernel function. 

In a recent paper of Stepanova [2], a kernel-type estimator for densities belonging to a class of infinitely 
smooth functions is shown to have the p -risk coinciding with the minimax p -risk as conjectured in 
Remark 5 of [5]. Moreover, following from Theorem 2 of [6], the estimator suggested in [2] cannot be improved 
with respect to the 2 -risk. The parameters used in the estimator in [2] are the Fejér-type kernel and the 
common theoretical bandwidth used for estimating infinitely smooth density functions. In this paper, we conduct 
a simulation study to show that the kernel-type density estimator in question cannot be improved with respect to 
the 2 -risk. We then show how to apply this efficient estimator to compute the VaR of portfolio returns.  

3. Kernel Density Estimation  
Let 1 2, ,X X   be a sequence of iid real-valued random variables drawn from an absolutely continuous cumu-  

lative distribution function (cdf) ( ) ( ) ( )dx
F x P X x f t t

−∞
= ≤ = ∫  in which the density function ( )f x  is un-  

known. A kernel density estimator of ( )f x  is defined by  
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( ) ( )1
1

1; , , , ,
n

j
n n n

j

X x
f x f x X X K x

nh h=

− 
= = ∈ 

 
∑   

where the parameter 0h >  is the bandwidth, the function K is the kernel, and ( ) ( )1 1
hK u h K h u− −=  is the 

scaled kernel. The bandwidth nh h= , that typically depends on n, determines the smoothness of the estimator 
and satisfies  

0 and as .n nh nh n→ →∞ →∞  

Under certain nonrestrictive conditions on K, the above assumptions on h imply the consistency of ( )nf x  as an 
estimator of ( )f x . The kernel is often a real-valued integrable function satisfying the following properties:  

( ) ( ) ( )
( ) ( ) ( )2

d 1, ,

max 0 , and d .
u

K u u K u K u

K u K K u u
∈

= = −

= < ∞

∫
∫





                        (4) 

A more general class of density estimators includes the kernel-type estimators whose kernel functions, nK , 
may depend on the sample size. 

Some classical examples of kernels together with their Fourier transforms (see formula (6)) are listed in Table 
1 and presented graphically in Figure 1. These kernel functions are the most commonly applied in practice, 
most likely due to their additional nonnegative property as their corresponding estimators result in density 
functions. The group of kernels listed in Table 2 and presented in Figure 2, along with their Fourier transforms, 
are well known in statistical theory and generally more asymptotically efficient than the standard kernels in 
Table 1 since they were shown to achieve better rates of convergence in the works of [2] [9]. These kernel 
functions alternate between positive and negative values, except for the Fejér kernel. For these kernels, the 
positive part estimator  

( ) ( ){ }: max 0,n nf x f x+ =  

can be used to maintain the positivity of a density estimator. Throughout our analysis, we shall be using the 
positive part of all the kernel density estimators under study. 

The most popular approach for judging the quality of an estimator in the literature and in practice is the Mean  
 

 
Figure 1. Some standard kernel functions and their Fourier transforms.                                                           

 

 
Figure 2. Some efficient kernel functions and their Fourier transforms.                                                           
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Table 1. Some standard kernel functions and their Fourier transforms.                                                           

Kernel ( )K u  ( ) ( )ˆ e dituK t K u u= ∫


 

uniform ( )1 1
2

u ≤  
( )sin

if 0,

1 if 0

t
t

t
t


≠


 =

 

Epanechnikov ( ) ( )23 1 1
4

u u− ≤  
( ) ( )( )3

3 sin cos if 0,

1 if 0

t t t t
t

t

 − ≠

 =

 

Gaussian 
2 21 e

2π
u−  2 2e t−  

 
Table 2. Some efficient kernel functions and their Fourier transforms.                                                           

Kernel ( )K u  ( ) ( )ˆ e dituK t K u u= ∫


 

sinc 

( )sin
if 0,

π
1 if 0
π

u
u

u

u


≠


 =

 ( )1t ≤  

de la Vallée Poussin 

( ) ( )( )
2

2 cos 2 cos
if 0,

π
3 if 0

4π

u u
u

u

u

 −
≠


 =

 ( )1 12 1 1
2 2

t t t   ≤ + − < <   
   
   

Fejér 

( )2

2

2sin 2
if 0,

π
1 if 0
2π

u
u

u

u


≠


 =

 ( ) ( )1 1t t− ≤  

 
Integrated Squared Error (MISE). Observe that the 2 -risk, as in (3), with ( ) 2l x x=  is simply the MISE 
defined as  

( ) ( ) ( ) ( )( )22

2
MISE , : d .n n nf f l f f f x f x x = − = −  ∫                    (5) 

By the Fubini theorem, the right-hand side (RHS) of (5) can be further expanded to represent the variance- bias 
decomposition of the density estimator:  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

22 2

2 2

MISE , d d

: d d .

n n n n

n n

f f f x f x x f x f x x

x x b x xσ

 = − + −       

= +

∫ ∫
∫ ∫
 

 

  
 

Notice also that the MISE of the positive part estimator nf
+  satisfies  

( ) ( )MISE , MISE , .n nf f f f+ ≤  

3.1. Fourier Analysis of Kernel Density Estimators  
In nonparametric estimation, the use of Fourier analysis makes it often easier to study statistical properties of 
estimators. It can be noted from Figure 1 and Figure 2 that the Fourier transforms of the efficient kernels have a 
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simpler form than those of the standard kernels. This simplifies the analysis of density estimators under certain 
settings when using efficient kernel functions. We begin by providing a few basic definitions and properties 
related to the Fourier transform (see, for example, Chapter 9 of [10]). 

The Fourier transform ĝ  of a function ( )1g∈   is defined by  

( ) ( )ˆ : e d , ,itxg t g x x t= ∈∫                                   (6) 

where = 1i − . The Plancherel theorem allows us to extend the definition of the Fourier transform to functions 
in ( )2  . Moreover, for any ( )2g∈  , the Parseval formula holds true:  

( ) ( )2 21 ˆd d .
2π

g x x g t t=∫ ∫ 
                                (7) 

Using also the notation ( ) ( )g t⋅  for the Fourier transform of ( )2g∈   at t, for any 0h >  and x∈   


( ) ( ) ( ) ( ) ( )1 ˆ ˆ, e , .itxg t g ht g x t g t t
h h

⋅  = − ⋅ = − ∈ 
 

                      (8) 

The Fourier transform of a density is known to be the characteristic function defined by  

( ) ( ) ( ): e d e d , .itx itxt f x x F x tϕ = = ∈∫ ∫
 

  

The corresponding empirical characteristic function is  

( ) ( ) ( )1
1

1: ; , , e d e , ,
n iX titx j

n n n n
j

t t X X F x t
n

ϕ ϕ
=

= = = ∈∑∫


   

where ( ) ( )1
1

n
n jjF x n X x−

=
= ≤∑  , and has the following properties that follow one after the other:  

( ) ( )

( ) ( )

( ) ( ) ( )( )

2 2

2 2

,

1 11 ,

1 1 ,

n

n

n

t t

t t
n n

t t t
n

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

=  
   = − +     

 − = −  







                            (9) 

for all t∈ . Given the properties in (8) and the symmetry of K, the Fourier transform n̂f  of the density 
estimator nf  can be expressed as follows:  

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1ˆ ˆ ˆe .j
n n

itX
n h j n

j j
f t K X t K ht t K ht

n n
ϕ

= =

= − ⋅ = =∑ ∑                   (10) 

In 2 -theory, the MISE can also be expressed using the Fourier analysis of kernel density estimators. Indeed 
according to (7), assuming that f and K are both in ( )2   and that K is symmetric, the MISE satisfies  

( ) ( ) ( )( ) ( ) ( )
22 1 ˆ ˆMISE , d d .

2πn n nf f f x f x x f t f t t  = − = −      ∫ ∫ 
   

Continuing from (10) and relations (9), the MISE of the kernel estimator nf  of density f takes the form (see 
Theorem 1.4 of [11])  

( ) ( ) ( ) ( )

( ) ( ) ( )

2 22

22

1 1ˆ ˆMISE , 1 d d
2π

1 ˆ d : , , ,
2π

n

n

f f K ht t t K ht t
n

t K ht t J K h
n

ϕ

ϕ ϕ

 = − +  

− =

∫ ∫

∫

 



                (11) 

where ( )2,f K ∈  , 1n ≥ , and 0h > . 
Formula (11) provides a more suitable method for expressing the MISE than some classical approaches that 

derive upper bounds on the integrated squared risk (see [12], Section 2.1.1). Unlike the classical approaches, the 
assumptions required to obtain formula (11) are not very restrictive, which allows for the derivation of more 
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optimal kernels. Indeed, most of the general properties of a kernel in (4), such as K integrating to one or being 
an integrable function, do not need to be true. Also, the expression for ( ), ,nJ K h ϕ  in (11) makes it possible to 
easily determine inadmissible kernel functions in ( )2   for any fixed n. Recall that a kernel is called 
inadmissible if there exist other kernels in ( )2   that can improve ( ), ,nJ K h ϕ  for all characteristic func- 
tions in ( )2  . A simple method for detecting inadmissible kernels was presented by Cline [13]: if  

( ) [ ]( )ˆLeb : 0,1 0,t K t ∉ >                                  (12) 

where Leb(A) denotes the Lebesgue measure of a set A, then K is inadmissible. As seen from Figure 1, the  
Epanechnikov and uniform kernel functions are inadmissible since the set ( ) [ ]{ }ˆ: 0,1t K t ∉  has a positive  
Lebesgue measure. This is another argument as to why the efficient kernels listed in Table 2 as well as the 
family of Fejér-type kernels in (20) are preferred.  

3.2. Bandwidth Selection Based on Unbiased Risk Estimation and Fourier Analysis  
Techniques  

Selecting an appropriate bandwidth nh h= , that is dependent on the sample size, is very important as it 
determines the smoothness of the kernel density estimator. A small bandwidth produces a peaky-like estimator 
indicative of high variability caused by under-smoothing. On the other hand, a large bandwidth increases the 
bias of the estimator and the important features of the distribution may be lost due to over-smoothing. The aim is 
to choose a bandwidth that minimizes the bias and the variance of an estimator to avoid over- or under- 
smoothing, a dilemma known as the bias-variance tradeoff. 

In theory, an optimal bandwidth can be obtained by minimizing the MISE with respect to h:  

( )
0

arg min MISE .opt h
h h

>
=                                  (13) 

In practice, the RHS of (13) cannot be computed as the MISE depends on the unknown density f. Instead, an 
approximately unbiased estimator of the ( )MISE h  computed from the random sample 1, , nX X  is mini- 
mized. The idea is to consider the expansion of the MISE in (5) in the following way  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2MISE d 2 d d : d .n n nh f x x f x f x x f x x h f x x = − + = + ∫ ∫ ∫ ∫   
   

As we are only concerned with minimizing the MISE with respect to h, the term ( )2 df x x∫  may be 
disregarded. The estimator  

( ) ( ) ( )2
,

1

2CV : d ,
n

n n j j
j

h f x x f X
n −

=

= − ∑∫  

where  

( ) ( ),
1:
1

k
n j

k j

X xf x K
n h h−

≠

− =  −  
∑  

is the leave-one-out estimator of ( )f x , is an unbiased estimator of ( )n h . The function ( )CV ⋅  is called the 
unbiased cross-validation criterion, which can by further expanded to (see [14], p. 55)  

( ) ( ) ( )

( )( ) ( )

( )

2
1 1 1

2
1 1

1 1

1 2CV
1

1 20

4 ,
1

n n n n
j k j k

j k j k j

k n
j k

j k j

k n
j k

j k j

X X X X
h K K K

h n n h hn h

X X
K K K K

nh hn h

X X
K

nh n h

= = = ≠

= = +

= = +

− −   
= ∗ −   −   

− 
= ∗ + ∗  

 
− 

−  −  

∑∑ ∑∑

∑ ∑

∑∑

            (14) 

where ∗ denotes the convolution. It follows that ( ) ( )2CV dh f x x+ ∫  is an unbiased estimator of the MISE,  

where 2f  is independent of h, implying that ( )CV h    and ( )MISE h  would both obtain the same 
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minimums for the values of opth . In practice, it is expected that, for a random sample 1, , nX X , the minimizer 
of ( )CV h  is close to the minimizer of ( )CV h   . The cross-validation bandwidth is therefore given by  

( )CV 10
: arg min CV ; , , ,nh

h h X X
>

=                              (15) 

yielding  

( ),CV
1CV CV

1:
n

j
n

j

X x
f x K

nh h=

− 
=  

 
∑  

as the kernel estimator of ( )f x  specified by CVh . Selecting bandwidths using the unbiased cross-validation 
criterion of the form above was first introduced by Rudemo in [15]. 

Cross-validation is perhaps the most common approach based on unbiased risk estimation for selecting h; 
however, many authors have noted that is has a slow rate of convergence towards opth  in (13) (see [16], 
Theorem 4.1). Another parallel method is to minimize an unbiased estimator of the MISE based on the Fourier 
analysis of kernel density estimators over h. The latter method for selecting a bandwidth is due to Golubev [17] 
and is shown to provide more reliable results in our simulation study in Section 5 than the cross-validation 
approach. For this reason, we shall use this method to select our bandwidth in the VaR computation model 
proposed in Section 6. 

The MISE of interest is given in (11) and denoted by ( ), ,nJ K h ϕ . Golubev [17] found an approximately 
unbiased estimator of ( ), ,nJ K h ϕ  given by  

( ) ( ) ( ) ( ) ( )22 1 2ˆ ˆ ˆ: 2 1 d d ,n nJ h K ht K ht t t K ht t
n n

ϕ
  = − + − +  

  
∫ ∫

 
               (16) 

where 0h > . Indeed, from relations (9) we get that, up to scaling and shifting, ( )nJ h  is an unbiased estimator 
of ( ), ,nJ K h ϕ :  

( ) ( ) ( )212π 1 , , d .n nJ h J K h f x x
n

ϕ     = − −      ∫


  

Hence, minimizing ( )nJ h  
  is equivalent to minimizing ( ), ,nJ K h ϕ  over h. In practice, an approximate 

minimizer of ( ), ,nJ K h ϕ  is obtained by using the random sample 1, , nX X  to compute ( )nJ h  and then 
minimized with respect to h:  

( )F 10
: arg min ; , , .n nh

h J h X X
>

= 

                               (17) 

The corresponding kernel density estimator with the bandwidth Fh  is then  

( ),F
1F F

1: .
n

j
n

j

X x
f x K

nh h=

− 
=  

 
∑  

Under appropriate conditions, Fh  and CVh  are asymptotically optimal as they are asymptotically equivalent 
to opth  in (13). In other words, the MISE of the kernel density estimators ,Fnf  and ,CVnf  is asymptotically 
equivalent to that of the estimator with the optimal bandwidth opth  (see Section 1.4 of [11]). 

4. Density Estimators with Fejér-Type Kernel Functions  
Suppose that 1 2, ,X X   is a sequence of iid random variables on   with a common density function f from 
some functional class  . Consider the functional class ( ), Lγ γ=   of functions f in ( )2   such that each  
f γ∈  admits an analytic continuation to the strip { }:S x iy yγ γ= + ≤  with 0γ >  such that ( )f x iy+  is  

analytic on the interior of Sγ , bounded on Sγ , and for some 0L >   

( )
2

.f i Lγ⋅ ± ≤  

We have for any f γ∈   

( ) ( )
221 ˆcosh d .

2π
t f t t Lγ ≤∫                               (18) 
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The functional class γ  is well known in approximation theory (see, for example, [18], Section 94) and widely 
used in nonparametric estimation (see [2]-[5] [19] [20]). For certain values of γ , the class γ   contains 
probability densities such as the normal, Student’s t, and Cauchy as well as their analytic transformations and 
mixtures. The inequality in (18) is used in [12] to determine how large the values of γ  can be chosen so that 
these probability densities belong to γ . The normal, Student’s t with odd degrees of freedom ν , and stand- 
ard Cauchy density function are in the analytical class γ  with 0γ > , 0 γ ν< < , and 0 1γ< < , respec- 
tively. For other examples of functions belonging to γ  we refer to Section 2.3 of [21]. 

The kernel-type estimator of f γ∈  considered in this work has the form  

( ) ( )1
1

1; : ; , , , ; , ,
n

j
n n n n n n n

jn n

X x
f x f x X X K x

nh h
θ θ θ

=

− 
= = ∈ 

 
∑                 (19) 

where nK  is the Fejér-type kernel given by  

( )

( ) ( )
( ) 2

cos cos
if 0,

π 1; :
1

if 0,
2π

n

n
n n

n

u u
u

uK u

u

θ
θθ

θ

 −
≠ −= 

+ =

                         (20) 

with  

1 log, 1 , .
2

n
n n

nh M
M M
θ

θ
γ

= = − =                            (21) 

It is easy to see that the Fejér-type kernel as in (20) satisfies the properties in (4). The parameters in (21) are 
chosen to have  

0 and as ,n nh nh n→ →∞ →∞  

ensuring the consistency of ( );n nf x θ  in (19) as an estimator of ( )f x . Moreover, the kernel-type density 
estimator as in (20) with the bandwidth nh  satisfying (21) is known to have very small p -risk, 1 p≤ < ∞  
(see Theorem 1 of [2]). For some choices of 0 1nθ≤ < , Table 3 shows how the Fejér-type kernel coincides with 
the well-known efficient kernels listed in Table 2. The sinc kernel is the limiting case of the Fejér-type kernel 
when 1nθ → ; in other words, when n approaches infinity. Additionally, choosing 1 2nθ =  and 0nθ =  leads 
to the de le Vallée Poussin and Fejér kernels, respectively. 

The Fourier transform of the Fejér-type kernel is given by (see [18], p. 202)  

( ) ( ) ( ) ( )1ˆ ; e ; d 1 .
1

itu
n n n n n n

n

t
K t K u u t tθ θ θ θ

θ
 − 

= = ≤ + ≤ ≤ 
− 

∫    

The Fejér-type kernel nK  and its Fourier transform ˆ
nK  are presented graphically in Figure 3. Observe the 

simple form of ˆ
nK , which makes it very useful in studying analytically the properties of the estimator in (19). 

Also, ˆ
nK  is nonnegative and bounded by one making the Fejér-type kernel admissible according to the Cline 

criterion as in (12).  
To apply the data-driven bandwidths given in (15) and (17), the unbiased estimators as in (14) and (16), 

denoted by ( )CV h  and ( )nJ h , need to be evaluated for the Fejér-type kernel. The unbiased cross-validation 
criterion ( )CV h  includes the convolution of the kernel with itself. The self-convolution of the Fejér-type 
kernel is given by (see p. 44 of [12] for details)  

 
Table 3. Cases of the Fejér-type kernel.                                                                                                                     

Kernel nθ  

sinc 1 

de la Vallée Poussin 1/2 

Fejér 0 
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Figure 3. The Fejér-type kernel function and its Fourier transform.                                                                                                                     
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where 0 1nθ≤ <  for 1n > . It can be shown (see [12], p. 48) that the unbiased risk estimator based on the 
Fourier analysis of a density estimator with the Fejér-type kernel is given by:  

( )
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for 1n > , 0h > , 0 1nθ≤ < , and j kX X≠ , 1 j k n≤ ≠ ≤ . Note that in the case of sampling from a continuous 
distribution ( ) 1,1j kP X X j k n≠ = ≤ ≠ ≤ . 

In the following section, we demonstrate numerically that the positive part of the kernel-type estimator in (19) 
with the Fejér-type kernel in (20) works well with respect to the 2 -risk for both theoretical and empirical 
bandwidth selectors.  

5. Simulation Study: Comparison of Kernel Density Estimators  
A simulation study is carried out to assess the quality of the positive part of the density estimator in (19) with the 
Fejér-type kernel in (20) using the MISE criterion. The finite-sample performance of (19) is compared to other 
density estimators that use the sinc, de la Vallée Poussin, and Gaussian kernels. These kernel functions were 
chosen since the sinc and de la Vallée Poussin are efficient kernels that are specific cases of the Fejér-type, 
while the Gaussian kernel is the most commonly used in practice. Three bandwidth selectors are applied to the 
kernel density estimators in hand. The bandwidth selection methods include the empirical approaches from 
cross-validation and Fourier analysis and the theoretical smoothing parameter ( )2 logn nh nγθ= , which is used 
for density estimators with efficient kernels. From here on, we shall refer to the bandwidth Fh  in (17) as the 
Fourier bandwidth. 

We generated 200 random samples, of a wide range of sample sizes, from the following four distributions: 
standard normal ( )0,1N , Student’s 15t  with 15 degrees of freedom, chi-square 2

4χ  with 4 degrees of 
freedom, and normal mixture ( ) ( )20.4 0,1 0.6 1,0.4N N+ . These distributions were chosen as their density func- 
tions cover different shapes and characteristics such as: symmetry, skewness, unimodality, and bimodality. The 
chi-square is the only one out of these distributions whose density function f is not in the functional class γ  
defined in Section 2; nonetheless, we are interested in observing the behaviour of ( );n nf x θ  in (19) when 
estimating such densities. For each simulated dataset, density estimates are computed for every kernel function 
and bandwidth selection method under consideration. An appropriate smoothing parameter γ  was manually 
selected for the Fejér-type kernel and the theoretical bandwidth. For further details on the methodology used to 
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conduct the experiments refer to Section 4.1 of [12]. 
Let us first assess the bandwidth selection methods under consideration. Figure 4 and Figure 5 capture the 

performance of each bandwidth selection method for each kernel density estimate under study by plotting the 
MISE estimates against samples of size 25 to 100 and 200 to 1000, respectively. The following can be observed 
from the figures. For a good choice of γ , the estimates of f γ∈  with efficient kernel functions and theo- 
retical bandwidths complement the results of Theorem 1 in [2] and Theorem 2 in [6] by outperforming the 
estimates with empirical bandwidths. The theoretical estimates do not perform as well, though, when estimating  
 

 
Figure 4. MISE estimates for the cross-validation, Fourier, and theoretical bandwidth selectors with Fejér-type, sinc, dlVP, 
and Gaussian kernels that estimate the standard normal, Student’s 15t , chi-square 2

4χ , and normal mixture, for small sample 
sizes. The MISE estimates are averaged over 200 replications. The symbol * denotes the manually-selected γ  that provided 
good results.                                                                                                                     
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Figure 5. MISE estimates for the cross-validation, Fourier, and theoretical bandwidth selectors with Fejér-type, sinc, dlVP, 
and Gaussian kernels that estimate the standard normal, Student’s 15t , chi-square 2

4χ , and normal mixture, for large sample 

sizes. The MISE estimates are averaged over 200 replications. The symbol ∗  denotes the manually-selected γ  that pro- 
vided good results.                                                                                                                     
 
the chi-square density, which is not in γ , particularly for smaller sample sizes. Generally speaking, it can also 
be seen that, when estimating the unimodal densities, the bandwidth based on the Fourier analysis techniques is 
better than, or equal to, the cross-validation bandwidth. The difference in estimation error is especially notice- 
able for smaller sample sizes. 

Now, we assess the quality of the Fejér-type kernel estimator when using empirical bandwidths. Figure 6 and 
Figure 7 capture the performance of the kernel functions for each density estimate under a specified empirical 
bandwidth by plotting the MISE estimates against samples of size 25 to 100 and 200 to 1000, respectively. For  
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Figure 6. MISE estimates for the Fejér-type, sinc, dlVP, and Gaussian kernels with cross-validation and Fourier bandwidth 
selectors that estimate a standard normal, Student’s 15t , chi-square 2

4χ , and normal mixture, for small sample sizes. The 
MISE estimates are averaged over 200 replications.                                                                                                                     
 
estimation of the unimodal densities with data-dependent bandwidth methods, the Fejér-type kernel slightly 
improves the other fixed efficient kernels and performs much better than the common Gaussian kernel for larger 
sample sizes. Also, we observe that, when estimating the bimodal density, the Fejér-type kernel performs much 
better than all of the competing kernels, especially for large sample sizes. 

In summary, for an appropriate choice of γ , the estimates of f γ∈  with efficient kernel functions and 
theoretical bandwidths outperform the estimates with empirical bandwidths. Between the data-dependent 
bandwidth selection methods, the method based on Fourier analysis techniques provided more accurate results 
than that of the cross-validation, regardless of the kernel function used. Moreover, the method based on Fourier 
analysis is easier to implement, more accurate for small sample sizes, and less time-consuming for large samples. 
The positive part of the kernel-type estimator of f as in (19) compares favourably, in terms of the estimated  
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Figure 7. MISE estimates for the Fejér-type, sinc, dlVP, and Gaussian kernels with cross-validation and Fourier bandwidth 
selectors that estimate a standard normal, Student’s 15t , chi-square 2

4χ , and normal mixture, for large sample sizes. The 
MISE estimates are averaged over 200 replications.                                                                                                                     
 
MISE, with competing kernel estimators, especially when estimating normal mixtures. The simulation results 
attest that, for a good choice of γ , the estimator with the Fejér-type kernel performs very well when using both 
empirical and theoretical bandwidths to estimate densities in γ  and therefore is reliable in application. 

6. VaR Model with Fejér-Type Kernel Functions  
Suppose that 1, , nX X  is a random sample of iid portfolio returns with an absolutely continuous cdf F on  , 
and let  

( ) ( ) ( )1 2 nX X X≤ ≤ ≤  
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denote the corresponding order statistics. Recall that VaR models are concerned with evaluating a quantile 
function ( )Q p , 0 1p< < , defined as  

( ) ( ) ( ){ }1: inf :Q p F p x F x p−= = ≥  

for a general cdf ( )F x  that is continuous from the right. We are interested in estimating a quantile function 
using the Fejér-type kernel function in (20). 

Let ( )nF x  be the empirical distribution function given by  

( ) ( )
1

1: , .
n

n j
j

F x X x x
n =

= ≤ ∈∑   

By Kolmogorov’s strong law of large numbers, the empirical distribution function is a strongly consistent 
estimator of the true distribution for any x∈ , that is,  

( ) ( ). . , .a s
n nF x F x x→∞→ ∈  

Moreover, by the Glivenko-Cantelli theorem,  

( ) ( ) . .sup 0.a s
n n

x
F x F x →∞

∈
− →

  
A common definition for the empirical quantile function is  

( ) ( ) ( )
1:n n jQ p F p X−= =  

for ( )1j n p j n− < ≤ , 1, ,j n=  . In 1979, Parzen (see [22], p. 113) introduced the kernel quantile estimator  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1
0 0 1

1
d d : d ,

n j n
n h n h n h jj n

j
KQ p K t p Q t t K t p F t t K t p t X−

−
=

 = − = − = −  ∑∫ ∫ ∫       (22) 

where 0 1p< <  and for a suitable kernel function K, ( ) ( )1 1
hK x h K h x− −= . Naturally, ( )nKQ p  puts most 

weight on the order statistic ( )jX , for which j n  is close to p. Sheather and Marron [23] showed that the 
following approximation to ( )nKQ p  as in (22) can be used in practice:  

 ( )
( )

1

1

1 2

.
1 2

n

h j
j

n n

h
j

jK p X
n

KQ p
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=

− − 
 =

− − 
 

∑

∑
 

Therefore, for a probability level ( )0,1p∈ , we suggest that the VaR estimator can be computed as  

 ( )
( )F

F

1
3,

1

1 2 ;
VaR ,

1 2 ;

n

h n j
j

n n

h n
j

jK p X
n

p
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n

θ

θ

=

=

− − 
 =

− − 
 

∑

∑
                        (23) 

where 
FhK  is the scaled Fejér-type kernel function based on (20) and Fh  is the bandwidth in (17), referred to 

as the Fourier bandwidth. The bandwidth obtained from Fourier analysis methods was chosen as it provided 
good results in the simulation studies in Section 5.  

7. Application to Value at Risk  
We assess the proposed nonparametric VaR computation method given by formula (23) and compare it to the 
common normal and historical simulation approaches as in (1) and (2). Each VaR computation method is 
evaluated by means of a statistical back-test procedure based on a likelihood ratio test. 

7.1. Evaluation of VaR Computation Methods  
To evaluate the adequacy of each VaR computation method, we perform a statistical test that systematically 
compares the actual returns to the corresponding VaR estimates. The number of observations that exceed the 
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VaR of the portfolio should fall within a specified confidence level; otherwise, the model is rejected as it is not 
considered adequate for predicting the VaR of a portfolio. A back-test of this form was first used by Kupiec in 
1995 (see [1], Chapter 6). 

Let 1 2, ,X X   be a sequence of iid random portfolio returns with a common density f on 1 2, ,X X  . In our 
analysis, we consider two different samples; an estimation sample of size n for computing the VaR and an 
evaluation sample of size m for comparing the estimated VaR returns with the actual returns. Let 1, , mY Y  be 
iid random variables that indicate whether or not the realized return is worse than the predicted VaR measure, 
that is,  

( )
( )

1
1

1

1 if VaR ,
, 0, , 1,

0 if VaR ,
t t

t
t t

X p
Y t m

X p
+

+
+

 ≤= = − >
  

where ( )( )1 VaRt tP X p p+ ≤ = . Then, 1
m

iiN Y
=

= ∑  is the number of estimated VaR violations of a portfolio  
out of an evaluation sample of m observations and follows the binomial distribution ( ),Bin m p  with pro- 
bability mass function (pmf)  

( ) ( ); 1 ,m yym
P N y p p p

y
− 

= = − 
 

 

for 0,1, ,y m=  . Suppose the probability level for the VaR is chosen to be 0p . The ratio N m  represents 
the failure rate of the VaR model, which under the null hypothesis specified below converges to 0p . The 
relevant null and alternative hypotheses for determining the fit of the VaR model are given by  

0 0 1 0: vs. : .H p p H p p= ≠  

A likelihood ratio test is carried out to determine whether or not to reject the null hypothesis that the model is 
adequate. The likelihood function for p given the observed values 1, , my y  of 1, , mY Y  is  

( ) ( ) ( ) ( )1
1

1 1
| , , ; 1 ,ii

m m
y m yy y

m i i
i i

L p y y P Y y p p i p p p− −

= =

= = = − = −∏ ∏               (24) 

where 1
m

iiy y
=

= ∑ . Following from (24), the appropriate likelihood ratio test statistic is given by  

( ) ( ) ( )
( )

( ) ( )
0 00 1
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p pL p y yp p y y
L y m y y y m y m

−

−

−
Λ = Λ = =
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where 1, , my y  are the observed values of 1, , mY Y , and 1
m

iiy y
=

= ∑  is the outcome of 1
m

iiN Y
=

= ∑ . Under  
mild regularity conditions, the asymptotic distribution of the log-likelihood ratio statistic ( )( )02 log p− Λ =  

( )( )0 12 log | , , mp Y Y− Λ   under 0H  is ( )2
1 1χ α−  as m approaches infinity (see [24], Chapter 13, Theorem 6). 

Thus, if  

( )( ) ( )2
0 12 log 1 ,p χ α− Λ > −  

we would reject 0H  that the failure rate of the model is reasonable at level α . Typically, the α  is set at 0.05. 
Therefore, we reject the null hypothesis if  

( )( ) ( )2
0 12 log 0.95 3.841459.p χ− Λ > ≈  

In this study, we evaluate the test statistic ( )( )02 log p− Λ  for the 0.05, 0.025, 0.01, and 0.005 probability 
levels and evaluation samples of size 250, 500, 750, and 1000. The acceptable number of failures in a VaR 
model are displayed in Table 4. The VaR model can be rejected when the number of failures is both high and 
low. If there are too many exceptions, the model underestimates the VaR. On the other hand, if there are too few 
exceptions, then the model is too conservative and can harm profit opportunities. 

7.2. Comparative Study of VaR Computation Methods  
We apply the normal, historical simulation, and newly proposed VaR computation methods defined in (1), (2), 
and (23), respectively, to estimate 1000 daily VaR forecasts from two portfolios. Probability levels of 0.05, 
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0.025, 0.01, and 0.005 are considered. Each VaR model is estimated using samples of 252, 504, and 1000 
trading days. A back-test is then performed to evaluate the adequacy of each VaR model under consideration 
over an evaluation sample of 1000 trading days. 

We have two imaginary investment portfolios each consisting of a single well-known stock index, the Dow 
Jones Industrial Average (DJIA) and the S&P/TSX Composite Index. These indices were chosen to be in our 
fictitious portfolios as they have abundant publicly available historical data. Here, they are used as repre- 
sentative stocks since, in reality, an index cannot be invested directly being that it is a mathematical construct. 
The raw values of the daily DJIA and S&P/TSX Composite indices are displayed in Figure 8 from June 28, 
2007 to March 11, 2015. The effect of the 2008 financial crisis is indicated by both indices, where the DJIA can 
be seen to have a large decrease in points with a low level of approximately 6500 in the early months of 2009. 
This is followed by an increase in the level of both indices in the recent years, particularly for the DJIA. 

The index values are used to evaluate the daily logarithmic returns as follows. If 1tP+  and tP  are the index 
values at time 1t +  and t, respectively, then the return 1tX +  at time 1t +  is given by  

 
Table 4. 95% nonrejection confidence regions for the likelihood ratio test under different VaR confidence levels and 
evaluation sample sizes.                                                                                                                     

Probability Level 

0p  
VaR  

Confidence Level 

Nonrejection Region for Number of Failures N 

250m =  days 500m =  days 750m =  days 1000m =  days 

0.05 95.0% 7 19N≤ ≤  17 35N≤ ≤  27 49N≤ ≤  38 64N≤ ≤  

0.025 97.5% 3 11N≤ ≤  7 19N≤ ≤  12 17N≤ ≤  16 35N≤ ≤  

0.01 99.0% 1 6N≤ ≤  2 9N≤ ≤  3 13N≤ ≤  5 16N≤ ≤  

0.005 99.5% 0 5N≤ ≤  1 6N≤ ≤  1 8N≤ ≤  2 9N≤ ≤  

 

 
Figure 8. Daily DJIA and S&P/TSX Composite indices from June 28, 2007 through March 11, 2015.                                                           
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( )1 1log .t t tX P P+ +=  

The autocorrelation of the daily log returns are plotted in Figure 9 for each index. We can observe that there are 
no significant autocorrelations as almost all of them fall within the 95% confidence limits. A few lags slightly 
outside of the limits do not necessarily indicate non-randomness as this can be expected due to random 
fluctuations. In addition, there is absence of a pattern. Therefore, both portfolios may be considered random, and 
thus all the VaR computation methods in hand may be applied. 

The daily log returns and VaR estimates for every model under consideration are displayed in Figure 10 and 
Figure 11 for each stock index over a time period of one thousand trading days. Each row of plots corresponds 
to the VaR confidence level, while each column provides the results of the estimation sample used. Table 5 
displays the back-test results of all the VaR models in question for each stock market index. The outcome of 
each test, that is whether or not to reject the model given the observed number of VaR violations, is reported for 
every VaR model. These outcomes are determined by the 95% nonrejection regions indicated in Table 4 when 
the evaluation sample size is 1000 days. 

 
Table 5. Back-test results of all the VaR models under consideration applied to each stock index over an evaluation sample 
of 1000 days and 95% confidence regions.                                                                                                                     

Probability 
Level 

No. Exceptions/No. Obs. Test Outcome 

normal historical Fejér-type normal historical Fejér-type 

 DJIA Portfolio 

0.005 20/252 8/252 5/252 Reject - - 

0.01 26/252 10/252 10/252 Reject - - 

0.025 40/252 30/252 29/252 Reject - - 

0.05 57/252 57/252 57/252 - - - 

0.005 14/504 3/504 3/504 Reject - - 

0.01 23/504 11/504 10/504 Reject - - 

0.025 35/504 24/504 25/504 - - - 

0.05 47/504 49/504 47/504 - - - 

0.005 3/1000 0/1000 0/1000 - Reject Reject 

0.01 4/1000 1/1000 1/1000 Reject Reject Reject 

0.025 14/1000 6/1000 6/1000 Reject Reject Reject 

0.05 24/1000 23/1000 23/1000 Reject Reject Reject 

 S&P/TSX Composite Index Portfolio 

0.005 22/252 11/252 9/252 Reject Reject - 

0.01 29/252 15/252 15/252 Reject - - 

0.025 51/252 38/252 34/252 Reject Reject - 

0.05 63/252 59/252 59/252 - - - 

0.005 16/504 7/504 7/504 Reject - - 

0.01 22/504 12/504 12/504 Reject - - 

0.025 40/504 30/504 28/504 Reject - - 

0.05 59/504 51/504 51/504 - - - 

0.005 5/1000 0/1000 0/1000 - Reject Reject 

0.01 6/1000 3/1000 3/1000 - Reject Reject 

0.025 12/1000 6/1000 6/1000 Reject Reject Reject 

0.05 23/1000 21/1000 20/1000 Reject Reject Reject 
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Figure 9. Autocorrelation plots of the daily logarithmic returns for each stock market index.                                                           

 
The following can be observed from the aforementioned figures and tables. Overall, the empirical results of 

both stock indices are fairly similar. The back-test results in Table 5 show that the normal model has the poorest 
performance as it is not considered adequate in most cases. The observed number of VaR violations is quite high 
for smaller probability levels, meaning that the mass in the tails of the distribution is underestimated. The only 
case when the normal model is not consistently rejected is when the probability level is 0.05 for estimation 
samples of 252 and 504 observations. The historical simulation method generally performs well and shares 
similar results with the newly proposed VaR estimation method. It is, however, rejected for probability levels 
0.005 and 0.025 when the number of observations is 252 in the S&P/TSX Composite Index portfolio. Finally, 
the VaR model of interest based on the Fejér-type kernel quantile estimation is the most reliable as it has the 
least number of rejections for all the tests considered. 

Overall, it can be seen that none of the models perform well when the estimation sample is large, except for 
sometimes the normal method when probability levels are small. This is expected as financial data from four 
years ago may no longer be relevant to the current market situation. Moreover, the performance of all the VaR 
computation methods is similar at the 95% confidence level. 

For an illustration of the density of portfolio returns on a specific day see Figure 12 and Figure 13. The 
Fejér-type kernel density estimates with Fourier bandwidths are represented by the green curves while the 
normal densities have the red curves. The images are consistent with the assertion that the stock returns are 
heavy tailed. It can be clearly seen that the density estimates with Fejér-type kernels can account for heavy tails 
of the return distributions better than the normal densities. 

In summary, the proposed method for computing the VaR based on density estimation with Fejér-type kernel 
functions and Fourier analysis bandwidth selectors provides more reliable results than the commonly used VaR 
computation methods. Density estimates with Fejér-type kernel functions can account for the heavy tails of the 
return distributions, unlike the normal density. The normal method for computing the VaR tends to underesti- 
mate the risk, especially for higher confidence levels. For the nonparametric models, one has to be careful in 
choosing a relevant estimation period; otherwise, they tend to overestimate the risk for large estimation samples. 

8. Conclusion  
The paper introduces a nonparametric method of VaR computation on portfolio returns. The approach relies on 
the kernel quantile estimator introduced by Parzen [22]. The kernel functions employed are Fejér-type kernel 
functions. We use these functions because they are known to produce asymptotically efficient kernel density 
estimators with respect to the 2 -risk. A simulation study in support of this theoretical result is first conducted, 
and a new VaR estimator is then introduced. In the simulation study, several bandwidths are used, including the  



O. Kosta, N. Stepanova 
 

 
500 

 
Figure 10. Daily log returns and VaR estimates of the DJIA at 95%, 97.5%, 99%, and 99.5% confidence levels under 252, 
504, and 1000 observations over 1000 trading days for the VaR computation methods in consideration.                                                           
 
data-driven bandwidth obtained from the Fourier analysis of a kernel density estimator. The latter bandwidth is 
chosen for constructing the new VaR estimator,  ( )3,VaR n p , based on the analytical arguments and obtained  
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Figure 11. Daily log returns and VaR estimates of the S&P/TSX Composite Index at 95%, 97.5%, 99%, and 99.5% 
confidence levels under 252, 504, and 1000 observations over 1000 trading days for the VaR computation methods in 
consideration.                                                                                                                     
 
numerical results. The resulting estimator is compared numerically with the two standard VaR estimators, 
 ( )1,VaR n p  and  ( )2,VaR n p , and is found to be more reliable. The proposed method of VaR computation is  
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Figure 12. Normal, empirical, and positive part Fejér-type kernel densities of the DJIA daily returns based on 252, 504, and 
1000 observations for the days 29/06/2011, 25/06/2013, and 30/09/2014. The 97.5% VaR of each model is illustrated along 
with the actual daily return.                                                                                                                     
 
convenient for practitioners because it does not require restrictive assumptions on the underlying distribution, as  
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Figure 13. Normal, empirical, and positive part Fejér-type kernel densities of the S&P/TSX Composite daily returns based 
on 252, 504, and 1000 observations for the days 29/06/2011, 25/06/2013, and 30/09/2014. The 97.5% VaR of each model is 
illustrated along with the actual daily return.                                                                              
 
the normal method does. Our method also provides more accurate VaR estimates than the historical simulation 
method due to its smooth structure. 
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