
Applied Mathematics, 2015, 6, 2199-2210 
Published Online November 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.613193   

How to cite this paper: Zhang, J.P., Luo, L.L., Li, X.M. and Wang, X.Y. (2015) Lebesgues-Stieltjes Integrals of Fuzzy Stochastic 
Processes with Respect to Finite Variation Processes. Applied Mathematics, 6, 2199-2210.  
http://dx.doi.org/10.4236/am.2015.613193  

 
 

Lebesgues-Stieltjes Integrals of Fuzzy 
Stochastic Processes with Respect to Finite 
Variation Processes 
Jinping Zhang, Lingli Luo, Xingmei Li, Xiaoying Wang 
Department of Mathematics and Physics, North China Electric Power University, Beijing, China 

 
 
Received 28 September 2015; accepted 27 November 2015; published 30 November 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 

Let ( ) [ ]{ }tG G t T= ∈ω , 0,  be a fuzzy stochastic process and ( ) [ ]{ }tA t T∈ω , 0,  be a real valued fi-

nite variation process. We define the Lebesgue-Stieltjes integral denoted by ( ) ( )∫
t

s sG Aω ω
0

d  for 

each t > 0  by using the selection method, which is direct, nature and different from the indirect 
definition appearing in some references. We shall show that this kind of integral is also measura-
ble, continuous in time t and bounded a.s. under the Hausdorff metric. 
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1. Introduction 
Recently, the theory of fuzzy functions has been developed quickly due to the measurements of various uncer-
tainties arising not only from the randomness but also from the vagueness in some situations. For example, when 
considering wave height at time t denoted by tf , due to the influence of random factors and the limitations of 
the measurement tools and methods, we may not precisely know the height tf . It is reasonable to consider the 
wave height as a fuzzy random variable on a probability space ( ), , PΩ  . 

Since Puri and Ralescu [1] (1986) defined fuzzy random variable, there had been many further topics such as 
expectations of fuzzy random variables, fuzzy stochastic processes, integrals of fuzzy stochastic processes, 
fuzzy stochastic differential equations etc. In order to study a fuzzy function u, it is natural and equivalent to 
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study its α -level set [ ]u α  for any [ ]0,1α ∈ , where [ ]u α  is a set-valued function. Therefore, as usual, in 
order to explore the integrals of fuzzy stochastic processes, at first we can study the integrals of set-valued sto-
chastic processes. Kisielewicz (1997) [2] used all selections to define the integral of a set-valued process as a 
nonempty closed subset of ( )2 , , ; nL P RΩ  , but did not consider its measurability. Based on Kisielewicz’s 
work (1997) [2], Kim and Kim (1999) [3] studied some properties of this kind of integral. Jung and Kim (2003) 
[4] modified the definition in 1-dimensional Euclidean space R so that the integral became a set-valued random 
variable. After the work [4], there are some references on set-valued integrals and fuzzy integrals. One may refer 
to papers such as [5]-[13] etc. and references therein. Zhang and Qi [14] (2013) considered the set-valued 
integral with respect to a finite variation process directly instead of taking the decomposable closure appearing 
in [4] [6] and other references. As a further work of [14], here we shall explore the integrals of fuzzy stochastic 
processes with respect to finite variation processes and prove the measurability and boundedness of this kind of 
integral, the continuity with respect to t under the Hausdorff metric and its representation theorem. 

This paper is organized as follows: in Section 2, we present some notions on set-valued random variables and 
fuzzy set-valued random variables; in Section 3, we shall give the definition of integral of fuzzy set-valued sto-
chastic processes with respect to finite variation process and prove the measurability and 2L -boundedness 
which are necessary to our future work on fuzzy stochastic differential equations. 

2. Preliminaries 
We denote N the set of all natural numbers, R the set of all real numbers, dR  the d-dimensional Euclidean 
space with the usual norm ⋅ , R+  the set of all nonnegative numbers. Let ( ), , PΩ   be a complete proba-
bility space, [ ]{ }, 0,t t T∈  a σ -field filtration satisfying the usual conditions such that 0  includes all 
P-null sets in  . The filtration is non-decreasing and right continuous. Let ( )E  be a Borel field of a topo-
logical space E. 

Let ( ), , PΩ   be a complete probability space. ( ), , ;p dL P RΩ   (or brief ( );p dL RΩ ) ( )1p ≥  the set of 
all dR -valued Borel measurable functions : df RΩ→  such that the norm 

( ){ }
( )

1

d , if 1 ,

esssup , if

p p
pf f P p

f f pω

ω

ω

Ω

∈Ω∞

= ≤ < ∞

= = ∞

∫  

is finite. f is called pL -integrable if ( );p df L R∈ Ω . 
Let ( )dR  (resp. ( )d

k R , ( )d
kc R ) be the family of all nonempty, closed (resp. nonempty compact, 

nonempty compact convex) subsets of dR . For any dx R∈  and ( )dA R∈ , define the distance between x 
and A by ( ), inf y Ad x A x y∈= − . The Hausdorff metric Hd  on ( )dR  (cf. [15]) is defined by  

( ) ( ) ( ){ } ( ), max sup , ,sup , , .d
H

a A b B
d A B d a B d b A A B R

∈ ∈
∈   

Denote { }( )0 , sup .HK
a A

A d A a
∈

=
 

For ,d dA R x R∗⊂ ∈ , the support function of A is defined as follows:  

( ) { }, sup , : .S x A x x x A∗ ∗= ∈  

A set-valued function ( ): dF RΩ→  is said to be measurable if for any open set dO R⊂ , the inverse 
( ) ( ){ }1 : :F O F Oω ω− = ∈Ω ≠ ∅  belongs to  . Such a function F is called a set-valued random variable. 

Let ( )( ), , ; dP RΩ    (resp. ( )( ), , ; d
cP RΩ   ), ( )( ), , ; d

kcP RΩ   ) be the family of all mea-

surable ( )dR -valued (resp. ( )d
c R , ( )d

kc R -valued) functions, briefly by ( )( ), dRΩ   (resp. 

( )( ), , ; d
cP RΩ   , ( )( ), , ; d

kcP RΩ   . For ( )( ), dF K R∈ Ω , the family of all pL -integrable se-

lections is defined by 

( ) ( ) ( ) ( ){ }: , , ; : . . , 1p p d
FS f L P R f F a s pω ω= ∈ Ω ∈ ≥                      (1) 



J. P. Zhang et al. 
 

 
2201 

In the following, ( )p
FS   is denoted briefly by p

FS . 
A set-valued random variable F is said to be integrable if 1

FS  is nonempty. F is called ( )1pL p ≥
-integrably bounded if there exits ( ), , ;p dh L P R∈ Ω   s.t. for all ( )x F ω∈ , ( )x h ω≤  almost surely. 

An dR -valued stochastic process { }: 0tf f t= ≥  (or denoted by ( ){ }: 0f f t t= ≥ ) is defined as a func-
tion : df R R+ ×Ω→  with the  -measurable section tf , for 0t ≥ . We say f is measurable if f is 
( )R+ ⊗  -measurable. The process { }: 0tf f t= ≥  is called t -adapted if tf  is t -measurable for 

every 0t ≥ . Let ( ){ }0
: : t tt

Z R Z+≥
Σ = ∈ ⊗ ∈


   , where ( ){ }; ,tZ t Zω ω= ∈ . We know that Σ  is a σ
-algebra on R+ ×Ω . A function : df R R+ ×Ω→  is measurable and t -adapted if and only if it is Σ
-measurable ([9]). 

In a fashion similar to the dR -valued stochastic processes, a set-valued stochastic process { }: 0tF F t= ≥  
is defined as a set-valued function ( ): dF R R+ ×Ω→  with  -measurable section tF  for 0t ≥ . It is 
called measurable if it is + ⊗  -measurable, and t -adapted if for any fixed t, ( )tF ⋅  is t -measurable. 

{ }: 0tF F t= ≥  is measurable and t -adapted if and only if it is Σ -measurable. { }: 0tF F t= ≥  is called 
pL -integrable if every tF  is pL -integrable. 
Let ( )dF R  denote the family of all fuzzy sets [ ]: 0,1dv R →  which satisfy the following two conditions 

(cf. [3] [6]): 
1) The level set ( ){ }1 : 1dv x R v x= ∈ = ≠ ∅ ; 
2) Each v is upper semi-continuous function, i.e. for each ( ]0,1α ∈ , the level set [ ] ( ){ }:dv x R v xα α∈ ≥  

is a closed subset of dR . 
Let ( )d

kF R  denote the family of all fuzzy sets [ ]: 0,1dv R →  which satisfy the above conditions 1), 2), 
and 

3) The support set [ ] ( ){ }0 : 0dv cl x R v x∈ >  is a compact set. 
A fuzzy set v is convex if  

( )( ) ( ) ( ){ } [ ]1 min , for any , , 0,1 .dv x y v x v y x y Rλ λ λ+ − ≥ ∈ ∈  

It is know that v is convex if and only if, for any ( ]0,1α ∈ , the level set [ ]v α  is a convex subset of dR . Let 

( )d
cF R  denote the family of all convex fuzzy sets in ( )dF R , and ( )d

kcF R  be the subset of all convex fuzzy  

sets in ( )d
kF R . Define ( ) ( ) [ ): 0,d dd F R F R∞ × → ∞  (cf. [1]) by the expression  

( )
[ ]

[ ] [ ]( )
0,1

, : sup , .Hd u v d u vα α

α
∞

∈
=  

We know that d∞  is a metric in ( )dF R  and ( )( ),dF R d∞  a complete metric space (cf. [6] [3]). Moreo-
ver, for every ( ), , , ,du v w z F R Rλ∈ ∈ , we have  

( ) ( ), , ;d u w v w d u v∞ ∞+ + =  

( ) ( ) ( ), , , ;d u v w z d u w d v z∞ ∞ ∞+ + ≤ +  

( ) ( ), , .d u v d u vλ λ λ∞ ∞=  

Lemma 1. (cf. [16]) Let B be a set and [ ]{ }, 0,1Bα α ∈  be a family of subsets of B such that 
1) 0B B= ; 
2) α β≤  implies B Bβ α⊆ ; 
3) 1 2α α≤ ≤ , limn nα α→∞ =  implies 1 ii

B Bα α
∞

=
=


. 
Then the function [ ]: 0,1Bφ →  defined by ( ) [ ]{ }sup 0,1 :x x Bαφ α= ∈ ∈  has the property that  

( ){ }:x B x Bαφ α∈ ≥ =  for every [ ]0,1α ∈ .  
A mapping ( ): dG F RΩ→  is said to be measurable if ( ) ( ): dG R

α
ω Ω→     is an set-valued random 

variable for each ( ]0,1α ∈ . Such a mapping G is called a fuzzy random variable (cf. [17]). Let  
( )( ), , ; dP F RΩ   (briefly by ( )( ), dF RΩ ) denote the family of all  -measurable fuzzy random va-

riables. As a similar manner, we have the notations ( )( ), , ; d
kP F RΩ  , and ( )( ), , ; d

kcP F RΩ  , or 
briefly by ( )( ), d

kF RΩ  (resp. ( )( ), d
kcF RΩ ). 

( ) [ ] ( ), : 0, dG t T F Rω Ω× →  is called a fuzzy stochastic process if for any [ ]0,t T∈ , ( ),G t ω  is a fuzzy 
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random variable. A fuzzy stochastic process ( ),G t ω  is said to be t -adapted, if for every [ ]0,1α ∈ , the 

set-valued function ( ) ( ), : dG t R
α

ω Ω→     is t -measurable for all [ ]0,t T∈ . It is called measurable, if 

( ) ( ), : dG t R
α

ω Ω→     is a [ ]( )0,T ⊗  -measurable for all [ ]0,1α ∈ . 

A fuzzy stochastic process G is called pL -integrably bounded, if there exists a real-valued stochastic process 

[ ]( )0, ,p dh L T R∈ Ω× , for any [ ]0,1α ∈  such that ( ) ( ), ,
K

G t h t
α

ω ω≤    for any ( ) [ ], 0,t Tω ∈Ω× . It is 

equivalent to that [ ] [ ]( )0 0, ,p d

K
G L T R∈ Ω× . 

Let ( )( ), , ;p dL P F RΩ   denote the family of all measurable ( )dF R -valued 
pL -integrably bounded fuzzy 

functions. Write for brevity by ( )( ),p dL F RΩ , where we consider ( )( ), , , ;p dF G L P F R∈ Ω   as identical if 

[ ] [ ] [ ]( ), 0,1 1P F Gα α α= ∀ ∈ = . Let [ ] ( )( )0, ,p dL T F RΩ×  denote the family of all pL -integrably bounded 

( )dF R -valued t -adapted fuzzy stochastic processes. 

Let ( ): dG F RΩ→  be a fuzzy random variable and 1p ≥ , The following conditions are equivalent (cf. 
[15]): 

1) ( )( ), , ;p dG L P F R∈ Ω  ; 

2) [ ] ( )( )0 , , ;p dG L P R∈ Ω   ; 

3) [ ] ( )0 , , ;p

K
G L P R+∈ Ω  . 

We define ( )ˆ dF Rθ ∈  as { }0
ˆ Iθ = , where for dx R∈ , we have { } { } 1xI y =  if x y=  and { } { } 0xI y =  if 

x y≠ . 

3. Lebesgue-Stieltjes Integrals with Respect to Finite Variation Processes  
Let ( ), , PΩ   be a complete probability space equipped with the usual filtration [ ]{ }, 0,t t T∈ . Let 

{ }, 0tA A t= ≥  be a real valued t -adapted measurable process with finite variation and continuous sample 
trajectories a.s. from the origin. That is to say, for each compact interval [ ] [ ), 0,s t ⊂ ∞  and any partition 

{ }1 2, , , nt t t∆ =   of [ ],s t , the total variation  

[ ]( ) ( ) ( )
1

1
, sup

i i

n

A t t
i

V s t A Aω ω
−

∆ =

= −∑  

is finite and ( )0, 0A ⋅ =  as. Then for any 0T > , the process { }, 0tA A t= ≥  can generate a random measure 
denoted by Aµ  in the space [ ] [ ]( )( )0, , 0,T T . For any ( ] [ ], 0,s t T⊂ , let  

( ]( ) ( ) ( ), : , ,A s t A t A sµ ω ω= −  

where ( ) ( ) ( ), , ,A t A t A tω ω ω+ −= −  is the decomposition of A. A+  and A−  are non-negative and non-de- 
creasing processes. ( ) ( ) ( ), , ,A t A t A tω ω ω+ −= + . 

In the product space [ ]( )0, ,TΩ× Σ , Michta (2011) in [7] defined a measure as follows:  

( ) [ ] ( ) [ ]( ) ( ) ( )
0,

: , 0, d dA C A AT
C I t T t Pν ω µ µ ω

Ω
= ∫ ∫

 
For C∈Σ , where CI  is the index function. Then the set function v is a finite measure in the measurable 

space [ ]( )0, ,TΩ× Σ  if and only if [ ]( )( ) ( )
2

0, dA T Pµ ω
Ω

< ∞∫  (cf. [7]). In the following we always assume  

[ ]( )( ) ( )
2

0, dA T Pµ ω
Ω

< ∞∫ . 

For 1 p≤ < ∞ , let [ ]( )0, , , ;p d
AL T RνΩ× Σ  be the family of all Σ -measurable dR -valued stochastic 

processes f such that  
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[ ] ( )
0,

, d .
p

AT
f tω ν

Ω×
< ∞∫  

For any [ ]( )0, , , ;p d
Af L T Rν∈ Ω× Σ  and [ ] [ ], 0,s t T⊂ , the stochastic Lebesgue-Stieltjes integral  

[ ] ( )
,

d
s t

f Aττ∫  is defined by the Bochner integral 
[ ] ( ) ( )

,
dAs t

f τ µ τ∫  path-by-path. One can prove that the integral 

process 
[ ] ( ) [ ]{ }0,

d , 0,st
f s A t T∈∫  is Σ -measurable. 

Lemma 2. (cf. [8]) Let ( ), ,E µ  be a σ -finite measure space and X a separable Banach space. If   is 
separable with respect to µ , (i.e. there exists a countably generated sub-sigma algebra 0 ∈   such that for 
every A∈ , there is 0B∈  satisfying ( ) 0A Bµ ∆ = ), then space ( ) ( ); 1pL E X p ≥  is separable in norm. 

From now on, we always assume the sigma-field   is separable with respect to P such that the set-valued 
integral and fuzzy integral can be well defined. 

Let [ ] ( )( )0, , , ;p d
AM T RνΩ× Σ   be the family of all Σ -measurable ( )dR -valued stochastic processes F 

such that  

[ ] ( )
0,

, d ,
p

AKT
F tω ν

Ω×
< ∞∫  

where ( ) ( ),, sup x F tK
F t xωω ∈= . 

For any [ ] ( )( )0, , , ;p d
AF M T Rν∈ Ω× Σ  , set  

( ) [ ]( ) ( ) ( ){ }: 0, , , ; : , , , . .p p d
A AS F f M T R f t F t a eν ω ω ν= ∈ Ω× Σ ∈ −                (2) 

Definition 1. (cf. [7]) For a set-valued stochastic process [ ] ( )( )0, ;p d
kcF M T R∈ Ω×   the set-valued sto-

chastic Lebesgue-Stieltjes integral (over interval [ ],s t ) of F with respect to the finite variation continuous 
process A is the set  

[ ] ( ) [ ] ( ) ( ){ }, ,
d : d : .p

s t s t
F A f A f S Fτ ττ τ= ∈∫ ∫  

For some fuzzy stochastic process [ ] ( )( )0, , dG T F R∈ Ω× , it is natural to define the fuzzy integral of G 
with respect to the finite variation process level-wise. 

Let [ ] ( )( )0, , , ;p d
AM T F RνΩ× Σ  (or abbrev. as [ ] ( )( )0, ,p dM T F RΩ× ) be the family of all Σ -measu- 

rable ( )dF R -valued fuzzy stochastic processes G such that  

[ ] ( ) 0

0,
, d ,

p

AT K
G tω ν

Ω×
< ∞  ∫  

where ( ) ( ) 0
0

,, sup x G t
K

G t xωω ∈  
=   . 

For a fuzzy stochastic process [ ] ( )( )1 0, , dG M T F R∈ Ω× , according to Lemma 1 and the properties of 
set-valued stochastic integrals, the Lebesgue-Stieltjes integral of G (over interval [ ],s t ) can be defined lev-
el-wise. 

Set  

( ) ( ) ( ) ( ) ( ) ( ) [ ]{ }1, d : , d d ,
t t t

s s s G
G A G A g A g S α

α α
τ τ τ ττ ω ω τ ω ω ω ω  = = ∈    ∫ ∫ ∫            (3) 

for all [ ]0,1α ∈ . 
Definition 2. For a fuzzy stochastic process [ ] ( )( )1 0, , dG M T F R∈ Ω×  and any 0 s t T≤ < ≤ , the family  

( ) ( ) [ ], d , 0,1
t

s
G A

α

ττ ω ω α   ∈    
∫  defined by Equation (3) can determine an ( )dF R -valued function denoted  

by ( )
0

, d
t

sG s Aω∫ , such a fuzzy function is called the Lebesgue-Stieltjes integral (over interval [ ],s t ) of G with 
respect to finite variation process ( )A t .  
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Theorem 1. ([12]) For [ ] ( )( )1 0, , , ;d
kc AF M T R ν∈ Ω× Σ  , [ ] [ ], 0,s t T⊂  and ω∈Ω , the Lebesgue- 

Stieltjes integral ( ) ( )d
t

s
F Aτ τω ω∫  is a compact and convex subset of dR .  

Lemma 3. (cf. [18]) Let ( ), , PΩ   be a probability space, X a separable Banach space. For random va-
riables 1 2,F F , both the support function ( )( ) ( ),S x F x Xω∗ ∗ ∗∈  and the metric ( ) ( )( )1 2,Hd F Fω ω  are 
-measurable.  

Lemma 4. (cf. [14]) Let ( )tA ω  be an R-valued stochastic process with finite variation. For  

[ ] ( )( )2 0, , , ; d
A kcF L T Rν∈ Ω× Σ   and [ ] [ ], 0,s t T⊂ , we have  

1) [ ]d d , 0,1
t t

s s
F A F Aτ τ τ τα α α= ∈∫ ∫ ;  

2) ( ) ( ), d , d ,
t t d
s s

S x F A S x F A x Rτ τ τ τ
∗ ∗ ∗= ∈∫ ∫ .  

Lemma 5. (cf. [18]) Let ( ),Ω   be a measurable space, X a separable Banach space. Taking  
( ):F XΩ→  and for any x X∗ ∗∈ , assume ( ),S x F∗  is measurable. Then if one of the following condi-

tions is satisfied: 
1) X ∗  is separable; 
2) for any ( ) ( ), kcF Xω∈Ω Ω ∈ . 

We obtain that F is a set-valued random variable.  
From Lemma 3 and Lemma 5, when dX R= , taking ( ) ( )d

kcF Rω ∈ , then for any dx R∗ ∈ , ( )F ⋅  is 

measurable if and only if ( )( ),S x F∗ ⋅  is t -measurable. 
Lemma 6. (cf. [19]) Let ( ),Ω   be a measurable space, X a separable metrizable space, and Y a metrizable 

space. Then every Caratheodory function :f X YΩ× →  ( i.e. for each x X∈ , the function ( ), :f x Y⋅ Ω →  
is  -measurable and for each ω∈Ω , the function ( ), :f X Yω ⋅ →  is continuous) is ( )( )X⊗  -mea- 
surable.  

Theorem 2. Let [ ] ( )( )1 0, , , ; d
A kcG M T F Rν∈ Ω× Σ . Then for each [ ]0,t T∈ , the fuzzy stochastic integral 

( ) ( )
0

, d
t

sG s Aω ω∫  is t -measurable. Furthermore, the mapping ( ) ( ) ( )
0

, , d
t

st G s Aψ ω ω ω= ∫  is 

[ ]( )0,T ⊗  -measurable.  

Proof. Taking [ ] ( )( )1 0, , , ; d
A kcG M T F Rν∈ Ω× Σ , then for each [ ]0,1α ∈ , the mapping  

( ) [ ] ( ), : 0, dG t T R
α

ω Ω× →     is Σ -measurable. For any * dx R∈ , by Lemma 3, the support function  

( )( )* , ,S x G t
α

ω    is Σ -measurable too. By Lemma 4, we have  

( )( ) ( )( )0 0
, , d , , d

t t
s sS x G s A S x G s A

α α
ω ω∗ ∗=      ∫ ∫ . Since the real-valued Lebesgue-Stieltjes integral  

( )( )0
, , d

t
sS x G s A

α
ω∗   ∫  is a Carathedory function, then by Lemma 6, we obtain that ( )( )0

, , d
t

sS x G s A
α

ω∗   ∫  

is Σ -measurable. Therefore, by Lemma 5, for each [ ]0,1α ∈ , the mapping  

( ) ( ) [ ] ( )0
, d : 0,

t d
s kcG s A T R

α
ω ω Ω× →  ∫   is [ ]( )0,T ⊗  -measurable and t -adapted, which means the 

integral ( ) ( ) ( )
0

, , d
t

st G s Aψ ω ω ω= ∫  is [ ]( )0,T ⊗  -measurable and t -adapted.  

Theorem 3. Let [ ] ( )( )2 0, , d
kcG M T F R∈ Ω× . Then for any [ ]0,t T∈ , ( ) ( ) ( )( )2

0
, d ,

t d
sG s A L F Rω ω ∈ Ω∫ .  

Proof. By Theorem 2, for any [ ]0,t T∈ , ( ) ( )
0

, d
t

sG s Aω ω∫  is t -measurable. We will show that for any 

ω∈Ω , [ ]0,t T∈ , ( ) ( )
20

0
, d

t
s

K
E G s Aω ω  < ∞    

∫ . 

For any 
[ ]0
2
G

g S∈ ,  
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( ) ( ) [ ]( ) ( ) ( )

[ ]( ) ( ) ( )

2 2

0 0

20

0

, d 0, d

0, , d

t t
s A s s

t
A s

K

g s A T g A

T G s A

ω ω µ ω ω

µ ω ω

≤

≤   

∫ ∫

∫
.                    (4) 

Then  

[ ]

( ) ( ) [ ]( ) ( )
0

2 20

0 0
sup d 0, , d .

G

t t
s s A s

Kg S
g A T G s Aω ω µ ω

∈
≤   ∫ ∫  

Hence,  

( ) [ ]( ) ( )

[ ] ( )

2 20 0

0 0

20

0,

, d 0, , d

, d ,

t t
s A s

KK

AT K

E G s A E T G s A

G s

ω µ ω

ω ν
Ω×

   ≤           

≤ < ∞  

∫ ∫

∫
                  (5) 

which means ( ) ( ) ( )( )2
0

, d ,
t d

sG s A L F Rω ω ∈ Ω∫ .  

Theorem 4. Let [ ] ( )( )1 0, , d
kcG M T F R∈ Ω× . Then for any ω∈Ω , ( ) ( )

0
, d

t
sG s Aω ω∫  is continuous with 

respect to t under the metric d∞ .  
Proof. Let 0 r t T≤ < ≤ , for any ω∈Ω , we have  

( ) ( ) ( ) ( ) ( ) ( )
0 0

, d , d , d .
t r t

s s sr
G s A G s A G s Aω ω ω ω ω ω= +∫ ∫ ∫  

Then  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

[ ]
{ } ( ) ( )( )

[ ]
{ } ( )( ) ( )

[ ]
{ }

0 0

0 0

0 0

0,1

0,1 0,1

, d , , d

, d , , d , d

ˆ, d , , d , , d

ˆ, , d sup 0 , , d

sup 0 , , d sup 0 , ,

r t
s s

r r t
s s sr

r r t
s s sr

t t
s H sr r

t t
H s Hr r

d G s A G s A

d G s A G s A G s A

d G s A G s A d G s A

d G s A d G s A

d G s A d G s

α

α

α

α α

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω θ ω ω

θ ω ω ω ω

ω ω

∞

∞

∞ ∞

∞
∈

∈ ∈

= +

≤ +

= =   

≤ ≤  

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ( )( ) ( )

[ ]
( ) ( ) ( ) ( )0

0,1

d

sup , d , d .

s

t t
s sr rK K

A

G s A G s A

α

α

α

ω ω

ω ω ω ω
∈

  

≤ = < ∞      ∫ ∫

             (6) 

For any ω∈Ω , we have  

( ) ( )0
lim , d 0.

t
srr t K

G s Aω ω
→

=  ∫  

Then for all ω∈Ω , ( ) ( )
0

, d
t

sG s Aω ω∫  is left continuous for [ ]0,t T∈  under the metric d∞ . Similarly, we 
can prove that ( ) ( )

0
, d

t
sG s Aω ω∫  is a right continuous for [ ]0,t T∈ . Therefore it is continuous in t with respect 

to d∞ .  
Lemma 7. Let fuzzy stochastic process [ ] ( )( )1 0, , d

kcG L T F R∈ Ω× . Then for each [ ]0,1α ∈ , there exists a 
sequence { } [ ]

1:i
G

f i N S αα ∈ ⊂ , such that for every [ ]0,t T∈ ,  

[ ] { }1 : ,i
G

S cl f i Nα α= ∈
 

where the closure is taken in [ ]( )1 0, , ;d
AL T R νΩ× .  

Proof. Since   is separable with respect to probability measurable P, we have that [ ]( )0,T ⊗   is se-
parable with respect to product measure Pλ × . By Lemma 2, [ ]( )1 0, , ;dL T R PλΩ× ×  is separable. It can be 
obtained that [ ]( )1 0, , , ;d

AL T R νΩ× Σ  is separable under the norm Aν . So that for any [ ]0,1α ∈ , 
[ ]
1
G

S α  is 
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separable since it is a closed subset of [ ]( )1 0, , , ;d
AL T R νΩ× Σ . Then there exists a sequence  

{ } [ ]
1:i
G

f i N S αα ∈ ⊂ ,  

[ ] { }1 :i
G

S cl f i Nα α= ∈  

Theorem 5. For a fuzzy set-valued stochastic process [ ] ( )( )1 0, , d
kcG M T F R∈ Ω×  and any [ ]0,1α ∈ , 

there exists a sequence { } [ ]
1:i
G

f i N S αα ∈ ⊂  such that  

( ) ( ){ } ( ), , : . . ,iG t cl f t i N a e t
α

αω ω ω= ∈    

and for each t  

( ) ( ) ( ) ( ){ }0 0
, d , d : . .

t t i
s sG s A cl f s A i N a s

α
αω ω ω ω= ∈  ∫ ∫  

where “cl” denotes the closure in dR .  
Proof. For each [ ]0,1α ∈ , by Lemma 7, there exists a sequence { } [ ]( )1: 0, , , ;n d

Af n N L T Rα ν∈ ⊂ Ω× Σ  
such that  

[ ] { }1 : ,i
G

S cl f i Nα α= ∈  

where the closure is taken in [ ]( )1 0, , , ;d
AL T R νΩ× Σ . 

For each [ ]0,1α ∈ , by Castaing represent theorem (cf. [15] [20]), there exists a sequence  
{ } [ ]

1:j
G

g j N S αα ∈ ⊂  such that  

( ) ( ){ } ( ) [ ], , : for all , 0, .jG t cl g t j N t T
α

αω ω ω= ∈ ∈ ×Ω    
At first we will show that  

( ) ( ){ } ( ), , : . . , .iG t cl f t i N a e t
α

αω ω ω⊂ ∈    

In fact, taking 
[ ]
1j
G

g S αα ∈ , there exists a sequence { }kifα  such that  

[ ]( )1 0, , , ,
0,k

d
A

i j

L T R
f gα α νΩ× Σ

− →  

then there exists a subsequence { }k ji
fα  such that  

( ) ( ) ( ), , 0 . , .k j

d

i j

R
f t g t a e tα αω ω ω− →  

Therefore  

( ) ( ){ } ( ), , : . , .iG t cl f t i N a e t
α

αω ω ω⊂ ∈    
On the other hand  

( ){ } ( ) ( ), : , . . , ,icl f t i N G t a e t
α

α ω ω ω∈ ⊂     

since ( ),G t
α

ω    is closed and 
[ ]
1i
G

f S αα ∈ , which yields  

( ) ( ){ } ( ), , : . , .iG t cl f t i N a e t
α

αω ω ω= ∈    

Since  

( ) ( ) ( ) ( ) [ ]{ }1
0 0

, d , d :
t t

s s G
G s A g s A g S α

α
α αω ω ω ω= ∈  ∫ ∫  

is closed and 
[ ]
1i
G

f S αα ∈ , then for each t  

( ) ( ){ } ( ) ( )
0 0

, d : , d . .
t ti

s scl f s A i N G s A a s
α

α ω ω ω ω∈ ⊂   ∫ ∫                     (7) 
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For any 
[ ]
1
G

g S αα ∈ , there exists a sequence { } { }: :ki if k N f i Nα ∈ ⊂ ∈  such that  

[ ]( )1 0, , , ,
0.k

d
A

i

L T R
f gα α νΩ× ∑

− →  

Then for each t,  

( ) ( ){ }0 0
, d , d : . .

t t i
s sg s A cl f s A i N a sα αω ω∈ ∈∫ ∫  

which means  

( ) ( ) ( ) ( ){ }0 0
, d , d : . .

t t i
s sG s A cl f s A i N a s

α
αω ω ω ω⊂ ∈  ∫ ∫                     (8) 

(7) together with (8) yields  

( ) ( ){ } ( ) ( )
0 0

, d : , d . .
t ti

s scl f s A i N G s A a s
α

α ω ω ω ω∈ =   ∫ ∫  

Lemma 8. (cf. [15]) Let ( )( ), dF R∈ Ω  , [ ]: ,X Rφ Ω× → = −∞ +∞  satisfy: for fixed ,ω∈Ω  ( ),φ ω ⋅  

is continuous with respect to x, for fixed x X∈ , ( ), xφ ω  is measurable with respect to ω , then there exists 

an 0
p
Ff S∈  such that ( )( ), dfφ ω ω µ

Ω
< ∞∫ , then we have  

( )( )
( )

( )( )inf , d inf , d .
p
F

f Ff S
f f

ω
φ ω ω µ φ ω ω µ

Ω Ω ∈∈
=∫ ∫  

Theorem 6. Let [ ] ( )( )1, 0, , d
kcF G M T F R∈ Ω× . Then for any [ ]0,t T∈ ,  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0 0 0

, d , , d , , , d . .
t t t

s s sd F s A G s A d F s G s A a sω ω ω ω ω ω ω∞ ∞≤∫ ∫ ∫  

Proof. Let ( ) ( ) ( ) ( ) ( ) ( )
0 0

d , d
t t

t s s t s sF A G Aφ ω ω ω ψ ω ω ω= =∫ ∫ . By Theorem 5, we can obtain that for each 

[ ]0,1α ∈ , there exist sequences { } [ ]
1: 1i
F

f i S αα ≥ ⊆  and { } [ ]
1: 1j
G

g j S αα ≥ ⊆  such that  

( ) ( ){ } ( ), , : 1 . . ,iF t cl f t i a e t
α

αω ω ω= ≥   , ( ) ( ){ } ( ), , : 1 . . ,jG s cl g t j a e t
α

αω ω ω= ≥   . For each t,  

( ) ( ) ( ) ( ){ }0 0
, d , d : . .

t t i
s sF s A cl f s A i N a s

α
αω ω ω ω= ∈  ∫ ∫  

and  

( ) ( ) ( ) ( ){ }0 0
, d , d : . .

t t j
s sG s A cl g s A j N a s

α
αω ω ω ω= ∈  ∫ ∫  

Therefore  

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0
0, d

0 01

01

inf , d

inf , d , d

inf , , d . .

t
s

t i
s

y G s A

t ti j
s sj

t i j
sj

f s A y

f s A g s A

f s g s A a s

α α
ω ω

α α

α α

ω ω

ω ω ω ω

ω ω ω

∈   

≥

≥

∫
−

= −

≤ −

∫

∫ ∫

∫

                         (9) 

By Lemma 8, we have  

( ) ( ) ( ) ( ) ( ) ( )
0 01 1

inf , , d inf , , d . .
t ti j i j

s sj j
f s g s A f s g s A a sα α α αω ω ω ω ω ω

≥ ≥
− = −∫ ∫             (10) 

Then  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

0 1

0 11

0

0 [0,1]

0

inf , , d

supinf , , d . .

, , , d . .

sup , , , d . .

, , , d .

t i j
sj

t i j
sji

t
H s

t
H s

t
s

f s g s A

f s g s A a s

d F s G s A a s

d F s G s A a s

d F s G s A

α α

α α

α α

α α

α

ω ω ω

ω ω ω

ω ω ω

ω ω ω

ω ω ω

≥

≥≥

∈

∞

−

≤ −

≤       

≤       

=

∫

∫

∫

∫

∫

                      (11) 

Then  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0 0 011

supinf , d , d , , , d . .
t t ti j

s s sji
f s A g s A d F s G s A a sα αω ω ω ω ω ω ω∞≥≥

− ≤∫ ∫ ∫
 

Similarly, we have  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
0 0 011

supinf , d , d , , , d . .
t t tj i

s s sij
g s A f s A d F s G s A a sα αω ω ω ω ω ω ω∞≥≥

− ≤∫ ∫ ∫
 

Then for each [ ]0,1α ∈ ,  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0 0 0

, d , , d , , , d . .
t t t

H s s sd F s A G s A d F s G s A a s
α α

ω ω ω ω ω ω ω∞≤      ∫ ∫ ∫  
Therefore  

[ ]
( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )

0 0 00,1
sup , d , , d , , , d . .

t t t
H s s sd F s A G s A d F s G s A a s

α α

α
ω ω ω ω ω ω ω∞

∈
≤      ∫ ∫ ∫

 
Hence  

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )
0 0 0

, d , , d , , , d . .
t t t

s s sd F s A G s A d F s G s A a sω ω ω ω ω ω ω∞ ∞≤∫ ∫ ∫  

Theorem 7. Let [ ] ( )( )2, 0, , d
kcF G M T F R∈ Ω× . Then for each [ ]0, ,t T∈  we have  

( ) ( ) ( ) ( )( ) [ ]( ) ( ) ( )( ) ( )2 2
0 0 0

, d , , d 0, , , , d . .
t t t

s s A sd F s A G s A T d F s G s A a sω ω ω ω µ ω ω ω∞ ∞≤∫ ∫ ∫  
Proof. For any [ ]0,1α ∈ , we have  

( ) ( ) ( ) ( )

( ) ( ) ( ){ }
[ ]( ) ( ) ( ) ( ){ }

2

0 01

2

01

2

01

inf , d , d

inf , , d

inf 0, , , d . .

t ti j
s sj

t i j
sj

t i j
A sj

f s A g s A

f s g s A

T f s g s A a s

α α

α α

α α

ω ω ω ω

ω ω ω

µ ω ω ω

≥

≥

≥

−

≤ −

≤ −

∫ ∫

∫

∫

                    (12) 

by Lemma 8, we have  

[ ]( ) ( ) ( ) ( ){ }
[ ]( ) ( ) ( ) ( )

[ ]( ) ( ) ( ) ( )

2

01

2

01

2

0 1

inf 0, , , d

0, inf , , d . .

0, inf , , d . .

t i j
A sj

t i j
A sj

t i j
A sj

T f s g s A

T f s g s A a s

T f s g s A a s

α α

α α

α α

µ ω ω ω

µ ω ω ω

µ ω ω ω

≥

≥

≥

−

= −

= −

∫

∫

∫

                     (13) 

Then  
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[ ]( ) ( ) ( ) ( )

[ ]( ) ( ) ( ) ( )

[ ]( ) ( ) ( )( ) ( )

[ ]( ) ( ) ( )( ) ( )

2

0 1

2

0 11

2
0

2
0

0, inf , , d

0, supinf , , d

0, , , , d

0, , , , d . .

t i j
A sj

t i j
A sji

t
A H s

t
A s

T f s g s A

T f s g s A

T d F s G s A

T d F s G s A a s

α α

α α

α α

µ ω ω ω

µ ω ω ω

µ ω ω ω

µ ω ω ω

≥

≥≥

∞

−

≤ −

≤       

≤

∫

∫

∫

∫

                     (14) 

Then  

( ) ( ) ( ) ( ) [ ]( ) ( ) ( )( ) ( )
2

2
0 0 011

supinf , d , d 0, , , , d . .
t t ti j

s s A sji
f s A g s A T d F s G s A a sα αω ω ω ω µ ω ω ω∞≥≥

− ≤∫ ∫ ∫
 

Similarly, we have  

( ) ( ) ( ) ( ) [ ]( ) ( ) ( )( ) ( )
2

2
0 0 011

supinf , d , d 0, , , , d . .
t t tj i

s s A sij
g s A f s A T d F s G s A a sα αω ω ω ω µ ω ω ω∞≥≥

− ≤∫ ∫ ∫
 

Then for each [ ]0,1α ∈   

( ) ( ) ( ) ( )( ) [ ]( ) ( ) ( )( ) ( )2 2
0 0 0

, d , , d 0, , , , d . .
t t t

H s s A sd F s A G s A T d F s G s A a s
α α

ω ω ω ω µ ω ω ω∞≤      ∫ ∫ ∫  
Moreover  

[ ]
( ) ( ) ( ) ( )( ) [ ]( ) ( ) ( )( ) ( )2 2

0 0 00,1
sup , d , , d 0, , , , d . .

t t t
H s s A sd F s A G s A T d F s G s A a s

α α

α
ω ω ω ω µ ω ω ω∞

∈
≤      ∫ ∫ ∫

 
Hence  

( ) ( ) ( ) ( )( ) [ ]( ) ( ) ( )( ) ( )2 2
0 0 0

, d , , d 0, , , , d . .
t t t

s s A sd F s A G s A T d F s G s A a sω ω ω ω µ ω ω ω∞ ∞≤∫ ∫ ∫  
Remark 1. In Theorem 6 and Theorem 7, the inequalities hold too if we take the expectation on both sides.  

4. Conclusion 
In [21], the author studied the Lebesgue-Stieltjes integral of real stochastic processes with respect to fuzzy va-
lued stochastic processes. In some references such as [5] [6], the integrals of fuzzy stochastic processes with re-
spect to time t and Brownian motion were studied. In order to guarantee measurability of the integral, Kim 
(2005) Li and Ren (2007) defined the integral indirectly by taking the decomposable closure. Here, when the in-
tegrand taked value in compact and convex subsets of ( )dF R , we defined directly the integral of fuzzy sto-
chastic process with respect to real-valued finite variation processes by using selection method, which is differ-
ent from the above references. Then we proved the measurability (Theorem 2), which was key and guaranteed 
the reasonability of the definition. Attribute to the good property of finite variation of integrator, the integral was 
bounded as and 2L -bounded under the metric d∞  (Theorem 3, Theorem 6 and Theorem 7). This property 
was much well than the integral with respect to Brownian motion since the latter was of infinite variation. 
Thanks to the boundedness of the integral, it was possible to do the further work such as exploring solutions of 
fuzzy stochastic differential equations. 
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