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Abstract 
In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem 
and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show 
the existence and uniqueness of solutions for fractional differential equations with multiple de-
lays. Using the theorem, we discuss the fractional chaos neuron model. 
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1. Introduction 
The following was the famous fixed point theorem introduced by Banach in 1922. 
The Banach contraction principle ([1]). Let ( ),X d  be a complete metric space, let F be a nonempty 

closed subset of X and let A be a mapping from F into itself. Suppose that there exist [ )0,1β ∈  such that 

( ) ( ), ,d Au Av d u vβ≤  

for any ,u v F∈ . Then A has a unique fixed point in F. 
In 1999 Lou proved the following fixed point theorem. 
Lou’s fixed point theorem ([2]). Let [ ]0,I T= , let ( ), EE ⋅  be a Banach space, let ( ),C I E  be the Ba- 

nach space consisting of all continuous mappings from I into E with norm 

( ){ }max
E

u u t t I= ∈  
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for any ( ),u C I E∈ , let F be a nonempty closed subset of ( ),C I E  and let A be a mapping from F into itself. 
Suppose that there exist [ ), 0,1α β ∈  and [ )0,K ∈ ∞  such that 

( ) ( ) ( ) ( ) ( ) ( )
0

d
t

E E E

KAu t Av t u t v t u s v s s
tα

β− ≤ − + −∫  

for any ,u v F∈  and for any { }\ 0t I∈ . Then A has a unique fixed point in F. 
Moreover, in 2002 de Pascale and de Pascale proved the following fixed point theorem. 
De Pascale-de Pascale’s fixed point theorem ([3]). Let [ )1,I = ∞ , let ( ), EE ⋅  be a Banach space, let 
( ),BC I E  be the Banach space consisting of all bounded continuous mappings from I into E with norm 

( ){ }sup
E

u u t t I= ∈  

for any ( ),u BC I E∈ , let F be a nonempty closed subset of ( ),BC I E  and let A be a mapping from F into 
itself. Suppose that there exist ( )1,α ∈ ∞ , [ )0,1β ∈  and [ )0,K ∈ ∞  such that 

( ) ( ) ( ) ( ) ( ) ( )
1

d
t

E E E

KAu t Av t u t v t u s v s s
tα

β− ≤ − + −∫  

for any ,u v F∈  and for any t I∈ . Then A has a unique fixed point in F. 
In this paper, using the Banach contraction principle, we show a fixed point theorem which deduces to both of 

Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our results can be 
applied to show the existence and uniqueness of solutions for fractional differential equations with multiple de-
lays. Using the theorem, we discuss the fractional chaos neuron model [4]. 

2. Fixed Point Theorem 
In this section, we show a fixed point theorem. It deduces to Lou’s fixed point theorem [2] and de Pascale and 
de Pascale’s fixed point theorem [3]. 

Definition 1. Let I be an arbitrary finite or infinite interval, let J be an interval with I J⊂ , let ( ), EE ⋅  be a 
Banach space, let ( ),BC I E  be the Banach space consisting all bounded continuous mappings from I into E 
with norm 

( ){ }sup
E

u u t t I= ∈  

for any ( ),u BC I E∈ , let ( ),BC I E  be the Banach space consisting all bounded continuous mappings from J 
into E with norm 

( ){ }supJ E
u u t t J= ∈  

for any ( ),u BC I E∈ , let F be a nonempty closed subset of ( ),BC I E , and let φ  be a mapping from \J I  
into E. Define a mapping uφ  by 

on ,
on \

u I
u

J Iφ φ


= 


 

for any u F∈ . We say F satisfies (∗) for φ  if (∗) ( ),u BC J Eφ ∈  holds for any u F∈ . 
Theorem 1. Let I be an arbitrary finite or infinite interval, let 0 ,J J  be intervals with 0I J J⊂ ⊂ , let 

( ), EE ⋅  be a Banach space, let ( ),BC I E  be the Banach space consisting all bounded continuous mappings 
from I into E with norm 

( ){ }sup
E

u u t t I= ∈  

for any ( ),u BC I E∈ , and let F be a nonempty closed subset of ( ),BC I E . Suppose that there exists a mapping 
φ  from \J I  into E such that F satisfies (∗) for φ . Let A be a mapping from F into itself. Suppose that there 
exist [ )0,1β ∈ , a mapping G from 0I J×  into [ )0,∞  integrable with respect to the second variable for any 
the first variable, mappings ,γ δ  from I into 0J  with γ δ≤ , n∈ , and mappings ( )0 ,i C J Jη ∈  for any 
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1, ,i n=   such that 
(H1) for any ,u v F∈  and for any t I∈  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

1
, d ;

nt
i iE E t Ei

Au t Av t u t v t G t s u s v s s
δ

φ φγ
β η η

=

− ≤ − + −∑∫  

(H2) there exist [ )0,α ∈ ∞ , [ )0,K ∈ ∞ , ( ), 0,m M ∈ ∞  with m M≤  and [ ]( ), ,y BC J m M∈  such that 
1) [ )0,1nKβ α+ ∈ ; 
2) ( )( ) ( )iy t Ky tη ≤  for any 0t J∈  and for any 1, ,i n=  ; 
3) 

( )
( ) ( ) ( ) ( ), d
t

t
G t s y s s y t

δ

γ
α≤∫  for any t I∈ . 

Then A has a unique fixed point in F. 
Proof. By (H1) we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

1
, d

nt
i iE E t Ei

Au t Av t u t v t G t s u s v s s
δ

φ φγ
β η η

=

− ≤ − + −∑∫  

for any ,u v F∈  and for any t I∈ . By (H2) there exists [ ]( ), ,y BC J m M∈ , that is, ( )m y t M≤ ≤  for any 
t J∈ . Define a new norm y⋅  in ( ),BC I E  by 

( ) ( )1sup .y E
u u t t I

y t

  = ∈ 
  

 

Since 

1 1 ,yu u u
M m

≤ ≤  

y⋅  is equivalent of ⋅ . Define a metric d in F by 

( ) ( ) ( ) ( )1, sup .
E

d u v u t v t t J
y t φ φ

  = − ∈ 
  

 

Since ( ) ( ) ( )u t v t tφ φ φ= =  for any \t J I∈ , we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, sup sup yEE
d u v u t v t t J u t v t t J u v

y t y tφ φ

      = − ∈ = − ∈ = −   
      

 

and hence ( ),F d  is a complete metric space. We obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

1

1

1

1

1 , d

1, , , d
( )

,
, , d

,
, , d

,

E

nt
i iE t Ei

nt
it

i

nt

t
i

t

t

Au t Av t
y t

u t v t G t s u s v s s
y t y t

d u v G t s d u v y s s
y t
d u v

d u v G t s Ky s s
y t

nKd u v
d u v G t s y s s

y t

nK d u v

δ
φ φγ

δ

γ

δ

γ

δ

γ

β η η

β η

β

β

β α

=

=

=

−

≤ − + −

≤ +

≤ +

= +

≤ +

∑∫

∑∫

∑∫

∫

 

for any ,u v F∈  and for any t I∈ . Since ( ) ( ) ( ) ( ) ( )Au t Av t t
φ φ

φ= =  for any \t J I∈ , we obtain 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1, sup

1sup , ,

E

E

d Au Av Au t Av t t J
y t

Au t Av t t J nK d u v
y t

φ φ

β α

  = − ∈ 
  
  = − ∈ ≤ + 
  

 

that is, A is a contraction mapping. By the Banach contraction principle A has a unique fixed point in F. 
The following remarks show that our fixed point theorem derives Lou’s fixed point theorem [2] and de Pas-

cale and de Pascale’s fixed point theorem [3]. The proofs are owed to [5]. 
Remark 1. By Theorem 1 we can obtain Lou’s fixed point theorem [2]. Actually let [ ]0 0,I J J T= = = , let 

( ), EE ⋅  be a Banach space, let ( ),C I E  be the Banach space consisting of all continuous mappings from I 
into E with norm 

( ){ }max
E

u u t t I= ∈  

for any ( ),u C I E∈ , and let F be a nonempty closed subset of ( ),C I E . F satisfies (∗) for the null mapping. 
Note that, since I is a finite interval, ( ),C I E  is equivalent to ( ),BC I E . Let A be a mapping from F into itself. 
Suppose that there exist [ )0 , 0,1α β ∈  and [ )0 0,K ∈ ∞  such that 

( ) ( ) ( ) ( ) ( ) ( )
0

0
0

d
t

E E E

KAu t Av t u t v t u s v s s
tα

β− ≤ − + −∫  

for any ,u v F∈  and for any { }\ 0t I∈ . Note that A is continuous. Therefore by the l’Hopital theorem we 
obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0

0
00

0
10

0

0 0 0 0 lim d

0 0 lim

0 0

t

E E Et

E Et

E

KAu Av u v u s v s s
t

Ku v u t v t
t

u v

α

α

β

β
α

β

→+

−→+

− ≤ − + −

= − + −

= −

∫

 

for any ,u v F∈ . Put 

( ) 0

0 if 0 ,
,

0 if 0,

K t T
G t s t

t

α
 < ≤= 
 =

 

( ) 0tγ = , ( )t tδ = , 1n =  and ( )1 t tη = . Then we obtain 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

0

0
0

1

d if 0 ,

0 0 if 0

, d

E

t

E E

E

nt
i iE t Ei

Au t Av t

Ku t v t u s v s s t T
t

u v t

u t v t G t s u s v s s

α

δ

γ

β

β

β η η
=

−

 − + − < ≤≤ 
 − =

= − + −

∫

∑∫

 

for any ,u v F∈  and for any t I∈ , that is, (H1) holds. Take ( )0,τ ∈ ∞  satisfying 01
0 1K ατ β− < − . Put  

01
0K αα τ −= , 1K = , 1m = , 

1
e

T

M τ
−

=  and 

( ) 1

1 if 0 ,

e if .
t

t
y t

t Tτ

τ

τ
−

≤ ≤= 
 ≤ ≤

 

Then (1) and (2) of (H2) hold. Moreover, if 0 t τ≤ ≤ , then 
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( )
( ) ( ) ( ) ( )0

0

10
00

, d d ;
t t

t

KG t s y s s s K t y t
t

δ α
αγ

α−= = =∫ ∫  

if t Tτ ≤ ≤ , then 

( )
( ) ( ) ( ) ( )

0 0 0

1 10 0 0
0

, d d e d e ,
s t

t t

t

K K KG t s y s s s s y t
t t t

δ τ
τ τ

α α αγ τ

τ
α

− −
= + = ≤∫ ∫ ∫  

that is, (3) of (H2) holds. Therefore, by Theorem 1 A has a unique fixed point in F. 
Remark 2. By Theorem 1 we can obtain de Pascale and de Pascale’s fixed point theorem [3]. Actually let 

[ )0 1,I J J= = = ∞ , let ( ), EE ⋅  be a Banach space, let ( ),BC I E  be the Banach space consisting of all 
bounded continuous mappings from I into E with norm 

( ){ }sup
E

u u t t I= ∈  

for any ( ),u BC I E∈ , and let F be a nonempty closed subset of ( ),BC I E . F satisfies (∗) for the null mapping. 
Let A be a mapping from F into itself. Suppose that there exist ( )0 1,α ∈ ∞ , [ )0,1β ∈  and [ )0 0,K ∈ ∞  such 
that 

( ) ( ) ( ) ( ) ( ) ( )
0

0
1

d
t

E E E

KAu t Av t u t v t u s v s s
tα

β− ≤ − + −∫  

for any ,u v F∈  and for any t I∈ . Put 

( )
0

0, ,
KG t s
tα

=  

( ) 1tγ = , ( )t tδ = , 1n =  and ( )1 t tη = . Then we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

0
10

1

d

, d

t

E E E

nt
i iE t Ei

KAu t Av t u t v t u s v s s
t

u t v t G t s u s v s s

α

δ

γ

β

β η η
=

− ≤ − + −

= − + −

∫

∑∫
 

for any ,u v F∈  and for any t I∈ , that is, (H1) holds. Take ( )0,c∈ ∞  and ( )1,τ ∈ ∞  satisfying  
( )011

0 1K c ατ β−− + < − . Put ( )011
0K c αα τ −−= + , 1K = , ecm = , ecM τ=  and 

( ) e if 1 ,
e if .

ct

c

t
y t

tτ

τ
τ

 ≤ ≤
= 

≤
 

Then (1) and (2) of (H2) hold. Moreover, if 1 t τ≤ ≤ , then 

( )
( ) ( ) ( ) ( ) ( )

0 0

10 0
01

, d e d e e e ;
t t cs ct c ct

t

K KG t s y s s s K c y t
t ct

δ

α αγ
α−= = − ≤ ≤∫ ∫  

if tτ ≤ , then 

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
0 0 0 0

0

0 0 0 0
1

11
0

e
, d e d e d e e

e ,

c
t tcs c c c

t

c

K K K KG t s y s s s s t
t t ct t

K c y t

τ
δ τ τ τ

α α α αγ τ

α τ

τ

τ α−−

= + = − + −

≤ + =

∫ ∫ ∫  

that is, (3) of (H2) holds. Therefore, by Theorem 1 A has a unique fixed point in F. 

3. Fractional Differential Equations with Multiple Delays 
In this section, by using Theorem 1, we show the existence and uniqueness of solutions for fractional differen-
tial equations with multiple delays. Throughout this paper, the fractional derivative means the Caputo-Riesz de-
rivative c Dη  defined by 

( ) ( ) ( ) ( )1

0

1 d d
d

mt mc
mD u t t s u s s

m s
ηη

η
− −= −

Γ − ∫  
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for any ( )0,η∈ ∞  and for any function u, where Γ  is the gamma function and m is a natural number with 
1m mη− ≤ < ; for instance, see [6]. 

Theorem 2. Let ( ), EE ⋅  be a Banach space, let [ ]( )0, ,nC T E E×  be the space consisting of all continu-  
ous mappings from [ ]0, nT E×  into E and let [ ]( )0, ,nf C T E E∈ ×  satisfying 

(Hf) there exist [ ] ( )0, 1, ,iL T i n∈ =   such that 

( ) ( )1 1
1

, , , , , ,
n

n n i i i EE
i

f t x x f t y y L x y
=

− ≤ −∑   

for any [ ]0,t T∈  and for any ,i ix y E∈ . 
Let [ ]( )0, ,C T E  be the Banach space consisting of all continuous mappings from [ ]0,T  into E, let  
[ ] [ )( )0, , 0,C T ∞  be the space consisting of all continuous mappings from [ ]0,T  into [ )0,∞  and let  

( ]( ),0 ,C E−∞  be the space consisting of all continuous mappings from ( ],0−∞  into E. Then the following 
fractional differential equation with multiple delays 

( ) ( ) ( )( ) ( )( )( ) [ ]( )2, , , , 0, ,c
nD u t f t u t u t t u t t t Tη

φ φτ τ= − − ∈  

where ( ]0,1η∈ , c Dη  is the η -order Caputo-Riesz derivative, [ ] [ )( )0, , 0,i C Tτ ∈ ∞  and ( ]( ),0 ,C Eφ ∈ −∞ ,  
have a unique solution in [ ]( ) ( ) ( ){ }0, , and 0 0u u C T E u φ∈ = . 

Proof. Put [ ]0 0,I J T= = , ( ){ }inf , 2, ,it t t I i nτ τ= − ∈ =  , [ ]= ,J Tτ  and 

( ) ( ) ( ){ }, and 0 0 .F u u C I E u φ= ∈ =  

Then F is closed. Since [ )( ),0 ,C Eφ τ∈  and ( ) ( )0 0u φ=  for any u F∈ , we obtain ( ),u C J Eφ ∈  for 
any u F∈ . Therefore, F satisfies (∗) for φ . By direct computations, ( ),u C I E∈  is a solution of the equation 
above if and only if it is a solution of the following integral equation: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )( )1
20

10 , , , , d .
t

nu t t s f s u s u s s u s s sη
φ φφ τ τ

η
−= + − − −

Γ ∫   

Define a mapping A by 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )( )1
20

10 , , , , d
t

nAu t t s f s u s u s s u s s sη
φ φφ τ τ

η
−= + − − −

Γ ∫   

for any u F∈ . Since ( ) ( )0 0Au φ= , we obtain Au F∈ . We show that A has a unique fixed point. Indeed, we 
obtain 

( ) ( ) ( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

1

0
1

1

0
1

1

d ,

nt
i i iE Ei

nt
i i Ei

Au t Av t t s L u s s v s s

L t s u s v s s

η
φ φ

η
φ φ

τ τ
η

η η
η

−

=

−

=

− ≤ − − − −
Γ

≤ − −
Γ

∑∫

∑∫
 

where ( )1 0tτ = , { }1max , , nL L L=   and ( ) ( ) ( )1, ,i it t t i nη τ= − =  . Put 0β = , 

( ) ( ) ( ) 1 if 0 ,
,

0 if ,

L t s s t
G t s

t s

η

η
− − ≤ <Γ= 

 ≤

 

( ) 0tγ =  and ( )t tδ = . Then (H1) holds. Take α  with 0 1nα< <  and take c with 
Lcη
α

≥ . Put 1K = ,  

ecm τ= , ecTM =  and ( ) ecty t = . Then (1) and (2) of (H2) hold. Moreover, since 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

e, d e d e d e ,
ctt t ctcs s ct

t

L L LG t s y s s t s s s s y t
c c

δ η η
η ηγ

α
η η

− − −= − = ≤ ≤
Γ Γ∫ ∫ ∫  
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(3) of (H2) holds. Therefore, by Theorem 1 A has a unique fixed point in F. 
By using Theorem 2, we discuss the fractional chaos neuron model [4]. 
Example 1. We consider the following fractional differential equation with delay 

( ) ( ) ( ) [ ]( )
0

π
sin 0, ,

2
c u t
D u t u t t T

T
φη τ

β
−

= − + ∈  

where ( ]0,1η∈ , [ ), 0,β τ ∈ ∞ , ( )0 0,T ∈ ∞  and [ ]( ),0 ,Cφ τ∈ −  . In this equation, ( )u t  is an internal state 
of the neuron at time t, β  is a dissipative parameter and τ  is delay time. Moreover, we use a sinusoidal 
function with a periodic parameter 0T  as an activation to be related to the output of the neuron. This equation is  

called the fractional chaos neuron model [4]. Put E =  , 2n = , ( )2 tτ τ=  and ( ) 2
1 2 1

0

π, , sin
2

xf t x x x
T

β= − + .  

Since 

( ) ( ) 2 2
1 2 1 2 1 1 1 1 2 2

0 0 0

π π π, , , , sin sin ,
2 2 2

x yf t x x f t y y x y x y x y
T T T

β β− ≤ − + − ≤ − + −  

f satisfies (Hf) for 1L β=  and 2
0

π
2

L
T

= . Therefore, by Theorem 2 the equation above has a unique solution in  

[ ]( ) ( ) ( ){ }0, , and 0 0u u C T u φ∈ = . For analysis of neural networks using fixed point theorems, see [7] [8]. 
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