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Abstract 
Aim of the present short review is to provide a comprehensive update on age-associated skeletal 
muscle damage, regeneration, and effect of endurance and resistance type of exercise training on 
muscle regeneration. Decrease in muscle quantity and quality leads to disability in the aging pop-
ulation. The degradation rate of muscle proteins during aging increased about two times, and 
muscle strength and motor activity decreased at the same time. Aging induced sarcopenia is a re-
sult of decreased synthesis and increased degradation of muscle proteins, which leads to the 
slower turnover rate of these proteins, especially contractile proteins, and this, in turn, leads to 
the decrease in muscle strength. Muscle damage is mainly caused by excessive strain in contract-
ing fibre and aging muscle is particularly sensitive to it. The decreased synthesis and increased 
degradation rate of contractile proteins are in accordance with the increase destructive processes 
in muscle and lead to the decrease in the regeneration capacity and development of sarcopenia in 
the elderly. Exercise training increases muscle mass, oxidative capacity, contracile quality, regene-
ration capacity and via this, physiological functioning of skeletal muscle is improved in the elderly. 
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1. Introduction 
Aging is a physiological process that includes a gradual decrease in skeletal muscle mass, strength, and en- 
durance coupled with an ineffective response to tissue damage [1]. Aging and a reduced physical level are 
mainly responsible for the progressive decline in several physiological capacities in the elderly [2]. Decrease in 
the protein synthesis rate is affected by the translational process occurring in older human skeletal muscle, 
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whereas the transcriptional process appears to be unaltered when compared with those in younger men [3]. 
Skeletal muscle fibers have a remarkable capacity to regenerate [3] [4], and this depends on the number of 
satellite cells under the basal lamina of fibers and their oxidative capacity [5]. Autografting of skeletal muscle in 
old rodents shows that regeneration proceeds at a significantly slower rate in comparison with young animals [6]. 
A decrease in the number of satellite cells has been shown in fast-twitch muscle fibers of elderly subjects [7]. In 
sarcopenic muscle, the decrease in the satellite cell pool and the length of telomeres might explain the higher 
prevalence of muscle injuries and delayed muscle regeneration [2]. Functionally heterogeneous satellite cells 
with different properties may be recruited for different tasks, for example, muscle regeneration [8]-[10]. After 
severe damage, muscles in old rodents did not regenerate as well as muscles in adults [6]. The decreased 
regeneration capacity of muscles has shown due to extrinsic causes rather than an intrinsic limitation of muscles, 
but it is a combination of both extrinsic and intrinsic factors that contribute to reduced skeletal muscle regene- 
ration [11] [12]. A contraction-induced muscle injury to weightbearing muscles in old rodents causes deficits in 
muscle mass and force [13]. The degradation rate of contractile proteins in rat skeletal muscle during aging 
increased about two times, and muscle strength and motor activity decreased at the same time [14]. Aging 
induced sarcopenia is a result of decreased synthesis and increased degradation of myofibrillar proteins, which 
leads to the slower turnover rate of muscle proteins, especially contractile proteins, and this, in turn, leads to the 
decrease in muscle strength [14]-[16]. Increasing dietary protein intake in combination with the use of anabolic 
agents attenuates muscle loss [15]. In essence, sarcopenia is an imbalance between protein synthesis and degra- 
dation rate [17]. 

Effective exercise training in the elderly increases both muscle oxidative capacity and contractile property, 
enhancing their life quality by improving muscle functional capacity and plasticity. 

The aim of this review is to provide a comprehensive update on age-associated skeletal muscle damage and 
regeneration, effect of endurance and resistance type of exercise training and to analyze the mechanisms which 
underly muscle damage and regeneration. 

2. Muscle Weakness in Elderly 
During aging the physical system suffers to a different extent and rate in diverse parts of the body. This results 
in reduced functional reserve, a decrease in vital capacity, deterioration of the capillaty blood supply, and a 
decrise of muscle mass [18]. 

Sarcopenia has been considered to be a minor modifiable risk factor for health outcomes, and it plays a 
significant role in the etiology of disability [19] [20]. Aging and inactivity or disuse is associated with a decline 
in muscle mass, structure, and strength [15] [21]. A sedentary lifestyle, bed rest, spaceflight, and hindlimb 
suspension lead the skeletal muscle to microcirculatory disturbances, atrophy, protein loss, changes in 
contractile properties, and fibertype switching [15] [22]-[24]. In both young and aged skeletal muscle, oxidative 
stress increases in response to inactivity [25] and may have an important role in mediating muscle atrophy. 
Inactivity results in a decrease in the number of myonuclei and an increase in the number of apoptotic 
myonuclei in skeletal muscle [26]. Heat-shock protein (HSP) 70 inhibits caspase-dependent and caspase- 
independent apoptotic pathways and may function in the regulation of muscle size via the inhibition of necrotic 
muscle fiber distribution and apoptosis in aged muscle [27]. The decline in elderly muscle mass primarily results 
from type II fiber atrophy and loss in the number of these muscle fibers (Figure 1). Increased variability in fiber 
size, accumulation of nongrouping, scattered, and angulated fibers, and the expansion of extracellular space are 
characteristics of muscle atrophy [28]. Beyond the loss of muscle size due to reduced fiber number and 
myofibrillar proteins that underlie muscle weakness in the elderly [29], impairments in neural activation have 
been found, as well as potential alterationsin other muscular properties that may reduce contractile quality 
defined as a reduction in involuntary force production per unit muscle size [30]-[32]. The functional and structural 
decline of the neuromuscular system is a recognized cause of decreased strength, impaired performance of daily 
activities, and loss of independence in the elderly [33]. Loss of muscle strength in older adults is weakly 
associated with the loss of lean body mass [34]. It means that muscle weakness in older adults is more related to 
impairments in neural activation and/or reductions in the intrinsic force generating capacity of skeletal muscle [33].  

3. Muscle Damage  
Certain intracellular mechanisms are associated with muscle damage both in young and old, such as calcium  
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Figure 1. Effect of aging on skeletal muscle.  
CSA: cross sectional area. 

 
overload, free radical formation and a decrease in energy supply. A fall in cellular adenosine triphosphate (ATP) 
content is associated with apoptosis and muscle ATP levels can decrease in response to stress [35]. The release 
of cellular proteins occurs when cellular ATP falls below a critical level, and interference in the energy supply to 
the muscle membrane is an important factor leading to enzyme efflux [36] [37]. The ability to alter mito- 
chondrial content and function is an important adaptive response of the skeletal muscle. Skeletal muscle rege- 
neration is accompanied by a marked stimulation of mitochondrial biogenesis concomitant with the onset of 
muscle fibre differentiation [38]. 

Muscle damage during exercise increases energy and protein needs [39]. Contracting muscle fibres release 
cytokines, which in turn create many effects in other organs, including the brain. Sooner or later, all these dif- 
ferent mechanisms create sensations of fatigue and exhaustion in the mind of the exercising subject [40]. Long 
lasting exercise induces an anti-inflammatory effect in skeletal muscle, especially in fast twitch (FT) muscle 
fibres and a pro-inflammatory effect in adipose tissue [41]. This effect contributes to increased lipolysis to 
provide energy for the exercising muscle. Cytokines play an important role in the exercise induced immune 
reaction and exercise related metabolic and cellular signal transduction, and they are also capable of increasing 
HSP synthesis [42]. It is possible that HSP may act as a cytokine in reaction to long lasting exercise, stimulate 
tumour necrosis factor-alpha (TNF-α), interleukin (IL)-β, and IL-8 in monocytes, and activate CD 14-dependent 
and Ca2+-dependent pathways [43]. Leukemia inhibitory factor (LIF) has been shown as a trauma factor for 
injured skeletal muscle due to its myotrophic action and in response to muscle injury together with IL-6 they are 
upregulated in injured muscle fibres and mononuclear cells at the site of the muscle injury [44]. High concentration 
of pro-inflammatory cytokine TNF-α promotes damage and impairs skeletal muscle [44]. Exercise caused 
muscle damage in elderly is more related with muscle fibers with low oxidative capacity. 

4. Endurance Training Caused Muscle Damage 
Endurance exercise training (ET) results in regulation of enzyme systems of Krebs cycle, electron trsnsport 
chain, capillary supplay, changes in key metabolic enzymes involved in fatty acid activation, and increased 
oxygen uptake [45]. ET does not result in hypertrophy of skeletal muscle fibers involved in the exercise 
response because the level of force production is relatively small compared to their maximal force-generating 
[46]. ET causes most changes in type I and IIA muscle fibres (Figure 2). The day following ET, significant 
destructive changes are in the myofibrils of these fibers. This damage includes the destruction of myosin and 
actin filaments and the disturbance of the regularity of Z-disc in some sarcomeres [47]. In some A-discs, myosin 
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filaments are absent and the destruction may cover the whole sarcomere. These structural changes are in 
accordance with biochemical ones [48]. Small structural rearrangements take place in type IIB fibres during ET 
as these fibers are less recruited. The number of mitochondria in type IIB fibers during ET does not increase 
significantly; they are located in small groups near nuclei and between myofibrils on the level of Z-disc, but not 
in each sarcomere [49]. As oxidative capacity of skeletal muscle decreasas in the elderly, endurance exercise has 
shown to be effective in its restoration as it stimulates mitochondrial biogeneses (Figure 2) and improves their 
functional parameters [50]. The higher oxidative capacity in trained elderly people is related to an increase in the 
abilities of cardiovascular system and to the lesser extent to an increase in muscle mitochondrial concentration 
[51]. Under conditions of hypoxia the connection between mitochondria and sarcomeres are disturbed as 
sarcomeric components disintegrate the muscle fiber structure and cause cell injury and death [52]. Aging and 
reduced physical level are responsible for the decline in several physiological capacities in the elderly. The 
degradation of muscle contractile proteins increased about two times in aging induced sarcopenic muscle, 
protein synthesis rate, muscle strength and motor activity decreased at the same time [14]. During adaptation of 
skeletal muscle to the ET changes in isform composition of main muscle contractile protein myosin, points to 
the transformation of the contractile apparatus in accordance with the increase in muscle oxidative capacity [53]. 
During the adaptation of elderly skeletal muscle to the ET these changes in FT skeletal muscle points to the 
transformation of the muscle contractile apparatus in accordance with the increase in muscle oxidative capacity. 
This adaptational process shows coordination between changes in oxidative capacity and contractile apparatus in 
skeletal muscle during adaptation to ET primarily in relation to muscle metabolism [54]. 

5. Resistance Training Caused Muscle Damage 
Resistance training (RT) cause an increase in the cross-sectional area (CSA) of the whole muscle and individual 
muscle fibers, and an increase in myofibrillar size and number (Figure 2). The hypertrophy response is related 
to activation of satellite cells in the early stages of training [55]. Structural changes in skeletal muscle during RT  

 

 
Figure 2. Effect of exercise training on aging muscle. 
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are fibre specific. FT fibres are more vulnerable to damage than slow-twitch (ST) [56]. In RT, type IIX/IIB 
fibres have twisted myofibrils in a relatively small area and they have lost connection with the neighbouring 
structures [49]. Damage caused by RT in skeletal muscle is also stimulus for regeneration due to muscle growth 
and promoting signalling events arising from the mechanical deformation of fibres, hormones and immune/ 
inflammatory responses. The focal denervation of muscle fibers during exercise is reversable and accompanied 
by by regeneration of new axonal terminals growing into pre-existing synaptic grooves. RT enhances the syn- 
thesis rate of myofibrillar proteins, not of sarcoplasmic proteins, and this is related to the mammalian target of 
rapamycin complex by activating proteins with mitogen activated protein kinase signalling [57]. Structural 
changes with exercise induced muscle damage are associated with the influence of gene expression strengthening 
the muscle, protecting the tissue against further injury [58], and an increased protein turnover rate [49]. RT 
increased the synthesis rate of myofibrillar proteins in ageing FT muscle. The slowdown of the turnover rate of 
contractile proteins with age approximately one third is caused both by the decreased protein synthesis rate and 
the intensification of the protein degradation rate. Although mechanical activity changes the turnover rate of 
contractile proteinsin both young and old, the turnover rate changes in old age are relatively slower than than in 
young.  

6. Muscle Regeneration 
Under the basal lamina, skeletal muscle contains quiescent mononucleated cells—satellite cells (Sc) characterized 
by their high level of Pax7 expression. Sc which soon after muscle damage activate, divide, proliferate, undergo 
myogenic differentiation, maturation and form new muscle fibres [59] [60]. Sc, which develop into myoblasts, 
contain a lot of ribosomes, branching granular sarcoplasmic reticulum with widened canals and a well developed 
Golgi apparatus [49]. Sometimes Sc also contain centrioles, which confirms that these cells are divided by 
mitosis. In some of these Sc, sarcoplasm close to the nucleus contains bundles of filaments, which may turn out 
to be myofilamets [61]. 

Many growth factors are produced in injured skeletal muscle (Figure 3) and influence its regeneration [60] 
[62]. Leukaemia inhibitory factor (LIF) stimulates skeletal muscle Sc proliferation and is involved in muscle 
hypertrophy and regeneration during exercise [63]. Peroxisome proliferator activated receptor isoform δ (Ppar δ) 
gene, which regulates skeletal muscle oxidative capacity via Sc proliferation [64] as well as injury induced 
myokine insulin-like 6 (Insl6) [65] also support muscle regeneration.  

The fact that Sc play a direct role in fast-to-slow fibre transition shows that considerable adaptive capacity 
resides in myonuclei [66]. The location of Sc in the postsynaptic region is evidence of the plastic regenerative 
capacity of this region [49]. If necessary, this kind of cells can join the muscle fibres and increase the area of the 

 

 
Figure 3. Regulation of damaged skeletal muscle regeneration. Exercise stimulates muscle 
regeneration process via Sc fusion with damaged fibers, or the formation of new muscle fi-
bers as a result of myoblasts’ fusion in order to maintain myonuclear domain size.  
Sc: satellite cells; MRFs: muscle regulatory factors; MyoD: myoblast determination protein; 
Myf 5: myogenetic factor; MRF 4: myogenic regulatory factor; IGF: insulin-like growth 
factor; FGF: fibroblasts growth factor; HGF: hepatocyte growth factor; LIF: leukemia inhi-
bitory factor; TGF: transforming growth factor; IL: interleukin. 
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synapse and the number of nuclei in the region. ST oxidative muscle fibres contain a large number of Sc in 
comparison with FT glycolytic fibres [67]. In exercising muscle, Sc are able to leave the fibre and form a new 
population of myogenic cells and are later ready to form new muscle fibres [49]. Regeneration capacity is higher 
in type I and IIA muscle fibres, where the oxidative capacity and insulin stimulated glucose uptake is higher in 
comparison with type IIB/IIX fibres [37] [68]. 

7. Effect of Endurance Training on the Muscle Regeneration 
Exercise training has the ability to influence the function of muscle fibres modifying their structure and 
metabolism and promoting the release of growth factors and other signalling molecules, such as nitric oxide, 
which work through the paracrine system to activate Sc [47]. ST oxidative (type I) muscle fibres contain a large 
number of myonuclei and Sc compared with FT glycolytic (IIB) fibres [67] [69]. Fast to slow fibre transition has 
been shown to be associated with increases in Sc activation, content and fusion to transforming fibres, especially 
within the IIB fibres [70] [71]. The number of Sc in very different stages of development under the basal lamina 
of type I and FT oxidative-glycolytic (type IIA) muscle fibres increases during ET [47] [61] [72]. Adenosine 
monophosphate-activated protein kinase (AMPK) is activated in response to ET [73] and related to the meta- 
bolic adaptation of skeletal muscle both in young and old. AMPK function includes glucose transport, glycogen 
metabolism, fatty acid oxidation and transcriptional regulation of structural muscle genes [74]. α1 isoform of 
AMPK is the regulator of skeletal muscle growth and α2 isoform regulates metabolic adaptation [75]. Increased 
mitochondrial biogeneses via AMPK is accompanied by supression of the myofibrillar protein synthesis through 
pathways mediated by mitogen activated protein kinase (MAPK), nuclear factor kappa B (NF-κB) mammalian 
target of rapamycin (mTOR) and tuberous sklerosis complex (TSC) [57] [76]. Insulin-like growth factor (IGF) I 
expression is higher in ST fibers [77] [78] and myostatin in fibers with higher oxidative capacity (type I and IIA) 
[79]. The components of the degradation system of muscle proteins, such as ubiquitin ligases muscle atrophy 
F-box (MAFbx) and muscle ring finger (MuRF) are about two fold higher in fibers with higher oxidative 
capacity [76] and in elderly. It was shown that the number of Sc in rat skeletal muscle increased about 3.5 times 
during ET [80]. Both oxidative capacity and Sc number in muscle fibers, which determine muscle regenerative 
capacity, are higher in young than in old muscle. Protein turnover in skeletal muscle is relatively slow, 
especially contractile proteins and endurance exercise training stimulates protein turnover [48]. The turnover 
rate of myosin heavy chain (MyHC) and myosin light chain (MyLC) isoforms provides a mechanism by which 
the type and amount of protein changes in accordance with the needs of the contractile machinery during 
adaptation to ET [81]. ET mainly increases the number of Sc under the basal lamina of type I and IIA fibres and 
increases the regeneration capacity of these fibres [49]. The mechanism associated with activity-induced shifts 
in myosin expression is the key to understanding the plasticity of skeletal muscle as the hypertrophied muscle 
fibre has adapted to a chronic overload via an alteration in its phenotype [82]. The mechanisms involved in 
regulating changes in the myosin expression and in the muscle mass may have different sensitivities to 
mechanical load [83]. 

8. Effect of Resistance Training on the Muscle Regeneration 
RT increases the CSA of the whole muscle and individual muscle fibres, and increases myofibrillar size and 
number [45]. The hypertrophy response to RT is related to the activation of Sc in the early stage of training [55]. 
RT causes fiber hypertrophy in two ways: damged fibers regenerate as a result of the fusion with Sc [84] as it is 
proved by the incorporation of 3H thymidine into the nucleus of the muscle fiber [85], and via Sc activation 
under the basal lamina, devision and after that myosymplasts fuse with each other and form myotubes [86]. RT 
also causes other morphological adaptations, such as hyperplasia, changes in muscle fine architecture, in myo- 
filament density and in the structures of connective tissue [55]. RT mainly causes an increase in the CSA of 
IIX/IIB and IIA fibres. Structural changes in skeletal muscle during RT are fibre specific. RT enhances the 
synthesis rate of myofibrillar proteins, not of sarcoplasmic proteins, and this is related to the mammalian target 
of rapamycin complex by activating proteins with mitogen activated protein kinase signalling [57]. Recovery 
from intensive RT caused damages is slower as a result of age, whereas there are no age related differences in 
recovery from less damaging metabolic fatigue [86]. Recovery from RT, during which the power of exercise 
increases less than 5% per session, causes hypertrophy of both FT and ST muscle fibres and an increase in the 
myonuclear number. This is achieved via Sc fusion with damaged fibres or the formation process of new muscle 
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fibres as a result of myoblasts’ fusion in order to maintain myonuclear domain size [85]. RT increases the level 
of IGF-I and mechano-growth factor (MGF) in skeletal muscle and these factors support faster recovery of 
muscle tissue [37]. 

9. Conclusion 
The decreased synthesis and increased degradation rate of contractile proteins are in accordance with the 
increase destructive processes in muscle and lead to the decrease in the regeneration capacity and development 
of sarcopenia in elderly. Muscle damage is mainly caused by excessive strain in contracting fibre and aging 
muscle is particularly sensitive to it. Several factors play a role in injured skeletal muscle and influence its 
regeneration. So, LIF stimulates skeletal muscle Sc proliferation and is involved in muscle hypertrophy and 
regeneration during exercise. Ppar δ gene, which regulates skeletal muscle oxidative capacity via Sc 
proliferation, and injury induced myokine Insl6 also support muscle regeneration. Oxidative muscle fibres 
contain a large number of myonuclei and Sc compared with glycolytic fibres. The number of Sc under the basal 
lamina of type I and type IIA muscle fibres increases during ET and these cells are in very different stages of 
development. Sc number also increases during RT. The paired box transcription factor Pax7 plays a critical role 
in regulating the specification of Sc and in maintaining the Sc population via selfrenewal process. An increase in 
Sc is related to several factors expressing different genes and FT muscle hypertrophy. IGF-I have a role in the 
hypertrophy of muscle fibres through the stimulation of the differentiation of Sc. The MGF level increases with 
the increase in the number of Sc in muscle fibres during RT. Mitochondrial biogenesis increases during ET via 
AMP-activated AMPK which is accompanied by suppression of the myofibrillar protein synthesis through 
pathways mediated by MAPK and NF-kB. As a result of exercise training muscle fibres with higher oxidative 
capacity contain more Sc, myonuclei, mitochondria, mRNA, and have higher total ribosomal RNA content. 
IGF-I expression is also higher in ST fibres. Myostatin, the expression inhibitor of muscle hypertrophy, is higher 
in FT IIB fibres. The proteasome-, lysosome- and Ca2+-mediated protein degradation is more intensive in fibres 
with higher oxidative capacity during and after exercise training. The components of the degradation system of 
muscle proteins, such as ubiquitin ligases MAFbx and MuRF, are higher in muscle fibres with higher oxidative 
capacity. Both oxidative capacity and Sc number in muscle fibres play an important role in skeletal muscle 
regeneration. Muscle protein synthesis and degradation are balanced in ET so that fibre size does not increase. 
ET improves the energetic potential of skeletal muscle and supports the effective functioning of the myofibrillar 
apparatus. Activation of AMPK in response to ET includes an induction of glucose transport, glycogen 
metabolism, fatty acid oxidation and transcriptional regulation of structural genes and α1 isoform of AMPK, 
which regulates skeletal muscle growth. This work adds an essential contribution to the understanding of 
physicians and exercise therapists about the effect of character of exercise training on aging muscle, its 
regeneration capacity and mechanisms of regulation.  
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