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Abstract 
Randomized weights neural networks have fast learning speed and good generalization perfor-
mance with one single hidden layer structure. Input weighs of the hidden layer are produced ran-
domly. By employing certain activation function, outputs of the hidden layer are calculated with 
some randomization. Output weights are computed using pseudo inverse. Mutual information can 
be used to measure mutual dependence of two variables quantitatively based on the probability 
theory. In this paper, these hidden layer’s outputs that relate to prediction variable closely are se-
lected with the simple mutual information based feature selection method. These hidden nodes 
with high mutual information values are maintained as a new hidden layer. Thus, the size of the 
hidden layer is reduced. The new hidden layer’s output weights are learned with the pseudo in-
verse method. The proposed method is compared with the original randomized algorithms using 
concrete compressive strength benchmark dataset. 
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1. Introduction 
Machine learning (ML)-based data analysis has been a hot focuses in different disciplines. The most used learn-
ing prediction model construction methods are backup propagation neural networks (BPNN) and support vector 
machines (SVM) [1]. However, BPNN suffers from local optima, uncontrolled convergence speed and over-fit- 
ting problems. Although SVM can address small samples modeling problem with good generalization, quadratic 
program (QP) and large kernel matrix problems are difficult to overcome for big sample learning datasets. A 
special single-layer feed-forward (SLFN) networks-based neural networks learning algorithm, i.e., randomized 
weights neural networks, was proposed to overcome shortcomings that caused by the gradient-based learning 
algorithms [2] [3]. Its characteristics include: 1) input weights of the hidden layer are chosen randomly; 2) the 
hidden layer neurons need not be adjusted; and 3) output weights are analytically computed using pseudo in-
verse or least square method. The normally used pseudo inverse-based output weights calculation method has 
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two advantages: a) optimal solution to the least square problem can be obtained; and b) the optimal output 
weight matrix is with minimal norm. There, this randomized weights neural networks algorithm has faster 
learning speed, which has been successfully applied [4] [5]. Thus, pseudo inverse-based randomized algorithm 
solves the local minima problem with good testing performance and fast training time [6]. However, how to 
control and estimate randomization of the input weights is an open issue. Study shows that small norm of the 
weights is more important than the node number to obtain good generalization performance for feed forward 
networks [7]. The norms of the hidden weights generated by deep learning are small [8]. Therefore, a rando-
mized algorithms for nonlinear system identification with deep learning modification is proposed, which regards 
deep learning as pre-training technique to obtain the hidden layers’ input weights [9]. Thus, the small norm of 
the input weights and output weights are obtained by combination of the deep learning and the least-square ap-
proaches. However, long training time is needed. An effective and simple randomization control and estimation 
method needs to be addressed further. 

Mutual information (MI) can be used to measure the mutual dependence of the two variables quantitatively 
based on the probability theory and information theory. Thus, it has been used widely in feature selection. The 
MI is more comprehensive than the other normal feature selection methods for select optimal input variables 
[10]. However, the popular used MI based feature selection method needs lots of computational consume [11]. 
A simple MI based feature selection method is used in [12] [13]. For randomized weights neural networks, if we 
cannot control the randomization of the input weights effectively or simply, how about to control the hidden 
layer’s outputs? That to say, we can only select some hidden layer’s outputs that relate the prediction variables 
more closely to calculate output weights using pseudo inverse method.  

Motivated by the above problems, a modified randomized weight neural networks based on MI is proposed in 
this paper. At first, the input variables and the random chosen input weights feed into certain activation function 
to produce outputs of the hidden layer. Then, MI values between these hidden layer’s output and predicted va-
riables are calculated, and these outputs with MI values higher than a preset threshold are selected. At last, 
pseudo inverse method is used to compute weights between these selected hidden layer’s outputs and predicted 
variable. Therefore, input weights’ randomization is controlled in some degrees. Simulation based on concrete 
compressive strength benchmark dataset is used to validate the proposed method. 

2. Randomized Weights Neural Networks 
Suppose that SLFNs with L  hidden nodes can be represented as: 

1
( ) ( , , ) ( )

L

i i i i
i

f x G bβ
=

= = ⋅∑ a x β h x                                 (1) 

where, 
( , , ) ( )i i i i i ig G b g b= = ⋅ +a x a x                                 (2) 

ig  denotes the activation function of the thi  hidden node, ia  is the input weights connecting the input 
layer to the thi  hidden node, ib  is the bias of the thi  hidden node, iβ  is the output weight connecting the 
thi hidden node to the output layer, and ( )h x  is the mapping output of the hidden layer, can be denoted as 

1 1 1( ) [ ( , , ), , ( , , )]i i ix G b x G b x=h a a                               (3) 

Then, Equation (1) can be rewritten as: 
=Hβ Y                                           (4) 

where, 

1[ ( ), , ( )]L k L×=H h x h x                                    (5) 
T

1 1[ , , , ]L L×=β β β                                      (6) 
T

1 1[ , , , ]K k×=Y Y Y                                      (7) 

Theoretically, SLFNs are able to approximate any continuous target functions with enough hidden layer nodes 
using the randomized input weights. Give a training set [ , ], [1, ]l ly l k∈x , the randomized weight neural net-
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works aim to reach the smallest training error and the smallest norm of output weights jointly. 
2minmize : || ( ) ||

and
minmize : || ||

i i ih x yβ ⋅ −∑

β
                             (8) 

The solution can be analytically determined by the expression below:  
ˆ +=β H Y                                          (9) 

where +H  is the Moore-Penrose generalized inverse of matrix H . 
The reason of using Moore-Penrose generalized inverse is that matrix H  may be singular and/or be not 

square. The relations between +H  and H  include: + =HH H H , + + +=H HH H , T( )+ +=HH HH  and 
T( )+ +=H H H H .  

In particular, when H  has full column rank, 
T -1 T( )+ =H H H H                                    (10) 

And when H  has full row rank, 
T T -1( )+ =H H H H .                                   (11) 

3. Mutual Information Based Feature Selection  
3.1. Mutual Information 
Information entropy can quantify the uncertainty of the random variables and scale the amount of information 
shared by these variables. Thus, it has been widely used in many fields. The entropy can be represented as: 

H(X) p( ) log ( )x p x= −∑                                  (12) 

where, ( )p x  is the margin probability density. 
Mutual information (MI) can measure the mutual dependence of two variables, which is defined as:, 

( , )( ; ) ( , ) log ( ) ( )
( ) ( )
p x yMI p y x H H

p x p y
= = −∑∑Y X Y Y | X                   (13) 

where, ( , )p y x  is the joint probability density, and ( )H Y | X  is the conditional entropy at X  is known, 
which is calculated as 

| ( | ) log( ( | ))H p y x p y x= −∑∑(Y X)                            (14) 

For the continuous random variables,  

H(X) p( ) log ( )
x

x p x dx= −∫                                 (15) 

,
( | ) ( , ) log( ( | ))

x y
H p y x p y x dxdy= −∫∫Y X                          (16) 

,

( , )( ; ) ( , ) log
( ) ( )x y

p x yMI p y x dxdy
p x p y

= ∫∫Y X                          (17) 

3.2. Simple Feature Selection Based on Mutual Information 
Mutual information feature select (MIFS) algorithm can be described as: calculate MI values between each input 
feature and output variable, then select the input features with the bigger MI values and penalize the others fea-
tures have the bigger MI values with the selected features, and obtain the best input feature sub-set using the 
greedy search method [14]. This method is time-consuming for select features from high dimensional data. 

A simple method based on MI is: 1) Calculate MI values between each input feature and output variables; 2) 
Given a pre-set threshold value of the MI based on prior knowledge; 3) The features with higher MI values than 
the threshold are selected. How to select the optimal pre-threshold value is an open question.  
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4. MI Based on Modified Randomized Weights Neural Networks 
The proposed MI based modified randomized weights neural networks model are shown in Figure 1. 

As shown in Figure 1, after obtain the mapping outputs of the hidden layer nodes 1( )h x , ∙∙∙ , ( )Lh x , the MI 
values between these outputs and predicted variable are calculated with: 

( ) ( , )
; ( , ) log ( )

( ) ( )
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                      (18) 

Given that pre-set threshold value MIθ , the following equation is used to select hidden layer’s outputs: 
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We denote these hidden layer’s outputs with 1
i

ζ =
h

 as: 

sel sel

sel sel sel
1[ ( ), , ( )]L k L×=H h x h x                               (20) 

where, selL  is the number of the selected hidden layer’s outputs.  
Therefore, selH  has less randomization than that of the original H . Output weights are also computed us-

ing the Moore-Penrose method with: 
selˆ ( )+=β H Y                                       (21) 

Consideration problem of the learning parameters’ selection, the MI based randomized weights algorithms 
can be represented as the following optimization problem: 

2 2
MI

1 1
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ˆMin ( ) ( ( , , ) )

. .

k k

j j j j
j j

E y y k f L y k

L L L
s t

θ

θ θ θ

= =

= − = −

≤ ≤

≤ ≤

∑ ∑ β
               (22) 

Some intelligent optimization methods can be used to address this problem.  

5. Application on Modeling Concrete Compressive Strength 
Concrete compressive strength data obtained by the experimental studies of the group led by I.C. Yeh in Taiwan  
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Figure 1. MI based modified randomized weights neural networks model. 
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Chung Hua University [15]. This dataset contains 1030 samples, each sample has nine columns. The first 7 
columns are the input parameters, namely cement, blast furnace slag, fly ash, water, super plasticizer, coarse ag-
gregate and fine aggregate in concrete per cubic content of the various ingredients of concrete placement. The 
eighth column is conserved days, and the last column is concrete compressive strength. 

Given that L = 300, the MI values between hidden layer’s outputs and predicted variable are shown in Figure 
2. 

Figure 2 shows that the maximum MI value is almost 10 times than that of the minimum value. Thus, the 
hidden layer’s outputs are not stability. It is needed to select outputs with high MI values.    

The original randomized weights algorithm and MI based modified version are compared with different hid-
den nodes’ number and different MI pre-set threshold values. In order to overcome the randomization of the ini-
tial weights, the mean root mean square errors (MRMSEs) with repeated 100 times are used to estimate the 
model’s prediction accuracy. Statistical results are shown in Table 1. 

 

 
Figure 2. MI values between hidden layer’s outputs and predicted variable. 

 
Table 1. Statistical results (MRMSEs) of different learning parameters with repeated 100 times. 

MIθ   
L 

Original 
method 

(MRMSEs) 

 MI based modified method (MRMSEs, selL ) with different MIθ  

0.1* maxθ  0.2* maxθ  0.3* maxθ  0.4* maxθ  0.5* maxθ  0.6* maxθ  0.7* maxθ  maxθ  

L = 10 12.37 (12.41, 10) (12.27, 9.8) (12.57, 9.1) (13.97, 6.6) (14.76, 4.9) (16.42, 3.1) -- 0.2703 

L = 20 10.36 (10.25, 20) (10.31, 19.2) (10.73, 15.4) (11.73, 9.85) (13.60, 6.03) (15.04, 3.75) -- 0.3319 

L = 30 9.713 (9.675, 29.9) (9.702, 28.1) (10.16, 21.3) (10.95, 13.3) (12.33, 8.07) (14.77, 4.69) -- 0.3572 

L = 40 9.518 (9.444, 39.9) (9.621, 37.2) (9.787, 27.2) (10.61, 16.2) (11.78, 9.11) (13.89, 5.09) -- 0.3707 

L = 50 9.755 (9.799, 49.9) (9.638, 46.2) (9.591, 33.2) (10.21, 19.3) (11.21, 11.6) (13.19, 6.37) -- 0.3755 

L = 60 10.17 (10.12, 59.8) (9.772, 53.9) (9.486, 36.2) (10.16, 19.7) (11.26, 10.8) (13.02, 6.36) -- 0.4042 

L = 70 10.38 (10.71, 69.8) (10.14, 62.9) (9.453, 41.8) (9.973, 23.1) (11.02, 12.83) (12.14, 7.19) -- 0.4050 

L = 80 11.18 (11.33, 79.8) (10.62, 70.5) (9.625, 44.8) (9.738, 24.1) (10.79, 13.0) (12.68, 7.15) -- 0.4185 

L = 90 12.48 (12.22, 89.7) (11.24, 80.2) (9.634, 53.3) (9.736, 27.93) (10.56, 15.28) (11.50, 8.96) (13.72, 4.82) 0.4113 

L = 100 13.30 (13.06, 100) (12.88, 99.0) (12.20, 89.6) (10.47, 70.5) (9.885, 48.5) (9.614, 32.5) (10.00, 22.6) 0.4186 

L = 200 535.1 (488.6, 199) (47.26, 1.65) (12.38, 94.0) (9.678, 46.92) (10.01, 23.87) (10.95, 12.51) (12.46, 5.99) 0.4612 

L = 300 167.5 (166.4, 2.98) (253.1, 240) (20.24, 128) (10.69, 15.53) (9.646, 31.5) (10.51, 15.4) (12.05, 7.33) 0.4798 

L = 400 132.2 (135.3, 397) (156.7, 314) (58.05, 167) (11.66, 81.5) (9.874, 41.2) (10.24, 19.9) (11.26, 9.53) 0.4854 

L = 500 121.4 (118.1, 496) (379.7, 382) (512.9, 197) (12.56, 93.6) (9.957, 45.1) (10.16, 21.6) (10.95, 11.0) 0.5070 
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Table 1 shows that: 1) The maximum MI values based on different learning parameters between hidden 
layer’s output and predicted variable increase with the number of the hidden nodes; 2) All smallest prediction 
errors with different learning parameters (L, MIθ ) occur with L = 30 - 40; Thus, it may be the best range for this 
benchmark dataset; 3) The biggest prediction errors occur at about L = 200. The reason may be relate to the 
Moore-Penrose method; 4) The prediction performance isn’t much improved with the modified approach with L = 
40. However, with the other L values, the prediction performance can be improved much with suitable MI pre- 
set threshold value. Therefore, the largest prediction error problems at L = 200 can be avoided with the MI based 
modified approach. Thus, the proposed method has better robustness than that of the original randomized 
weighting algorithm. 

6. Conclusion 
This paper proposes new mutual information based randomized weights neural networks. Input weights of the 
hidden layer are produced randomly as normal randomized algorithm. Not all the outputs of the hidden layer are 
used to compute output weights. Mutual information based simple feature selection method is used to select 
hidden layer’s outputs. These selected outputs are used to compute weights of hidden layer with pseudo inverse 
method. Concrete compressive strength benchmark dataset is used to validate this method. More researches will 
address some theoretically analysis and to validate this idea with more benchmark datasets. 
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