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Abstract 
Due to non-ideal coefficients of the adaptive equalizer used in the system, a convolutional noise 
arises at the output of the deconvolutional process in addition to the source input. A higher con-
volutional noise may make the recovering process of the source signal more difficult or in other 
cases even impossible. In this paper we deal with the fluctuations of the arithmetic average (sam-
ple mean) of the real part of consecutive convolutional noises which deviate from the mean of or-
der higher than the typical fluctuations. Typical fluctuations are those fluctuations that fluctuate 
near the mean, while the other fluctuations that deviate from the mean of order higher than the 
typical ones are considered as rare events. Via the large deviation theory, we obtain a closed-form 
approximated expression for the amount of deviation from the mean of those fluctuations consi-
dered as rare events as a function of the system’s parameters (step-size parameter, equalizer’s tap 
length, SNR, input signal statistics, characteristics of the chosen equalizer and channel power), for 
a pre-given probability that these events may occur. 
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1. Introduction 
In this paper, we deal with the convolutional noise arising at the output from a blind deconvolutional process. A 
blind deconvolution process arises in many applications such as seismology, underwater acoustic, image 
restoration and digital communication [1]-[7]. A higher convolutional noise may lead to more errors in the 
recovering process [8]. According to [9] [10], the convolutional noise power depends on the step-size parameter, 
equalizer’s tap length, input signal statistics, channel characteristics, characteristics of the chosen blind equali- 
zation technique and on the signal to noise ratio (SNR). Thus, those fluctuations of the convolutional noise that 
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are near the mean value are well understood and investigated. By well understood we mean that it is well 
understood how to control the convolutional noise power (thus also the convolutional noise fluctuation near the 
mean) via the step-size parameter or equalizer’s tap length for instance. But up to now, those fluctuations of the 
convolutional noise that are larger than the typical ones (which are near the mean), which occur rarely, were not 
addressed. 

The theory of large deviations is concerned with the exponential decay of probabilities of large fluctuations in 
random systems. These probabilities are important in many fields of study, including statistics, finance, and 
engineering, as they often yield valuable information about the large fluctuations of a random system around its 
most probable state or trajectory [11]. According to [12], the theory of large deviations deals with the pro- 
babilities of rare events (or fluctuations) that are exponentially small as a function of some parameters, e.g., the 
number of random components of a system, the time over which a stochastic system is observed, the amplitude 
of the noise perturbing a dynamical system or the temperature of a chemical reaction. The reader may refer also 
to [13]-[17] for further information on the theory of large deviations. 

In this paper we address indirectly those fluctuations of the convolutional noise that are larger than the typical 
ones, which occur very rare. Namely, we consider the fluctuations of the arithmetic average (sample mean) of 
the real part of consecutive convolutional noises which deviate from the mean of order higher than the typical 
fluctuations. As already mentioned, typical fluctuations are those fluctuations that fluctuate near the mean, while 
the other fluctuations that deviate from the mean of order higher than the typical ones are considered as rare 
events. Via the large deviation theory, we obtain a closed-form approximated expression for the probability that 
these rare events may occur as a function of the step-size parameter, equalizers’s tap length, SNR, input signal 
statistics, characteristics of the chosen equalizer (based on a cost function where the error of the equalized 
output can be expressed as a polynomial function of order up to three), channel power and the amount of 
deviation from the mean. Based on this new expression we are able to evaluate approximately the amount of 
deviation from the mean of those fluctuations considered as rare events as a function of the system’s parameters 
(step-size parameter, equalizers’s tap length, SNR, input signal statistics, characteristics of the chosen equalizer 
and channel power), for a pre-given probability that these events may occur. 

The paper is organized as follows: after having described the system under consideration in Section 2 we 
evaluate in Section 3 approximately the amount of deviation from the mean of those fluctuations considered as 
rare events as a function of the systems parameters (step-size parameter, equalizerss tap length, SNR, input 
signal statistics, characteristics of the chosen equalizer and channel power), for a pre-given probability that these 
events may occur. Section 4 is our conclusion.     

2. System Description  
The system under consideration is illustrated in Figure 1, where we make the following assumptions: 

1) The input sequence [ ]x n  belongs to a two independent quadrature carrier case constellation input with 
variance 2

xσ  where [ ]rx n  and [ ]ix n  are the real and imaginary parts of [ ]x n  respectively. 
2) The unknown channel [ ]h n  is a possibly nonminimum phase linear time-invariant filter in which the 

transfer function has no “deep zeros”, namely, the zeros lie sufficiently far from the unit circle. 
3) The equalizer [ ]c n  is a tap-delay line. 
4) The noise [ ]w n  is an additive Gaussian white noise with zero mean and variance [ ] [ ]2

w E w n w nσ ∗ =     

where [ ]E ⋅  is the expectation operator. 
 

 
Figure 1. Block diagram of a baseband communication system.                                             
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The transmitted sequence [ ]x n  is transmitted through the channel [ ]h n  and is corrupted with noise [ ]w n . 
Therefore, the equalizer’s input sequence [ ]y n  may be written as:  

[ ] [ ] [ ] [ ]y n x n h n w n= ∗ +                                    (1) 

where “∗ ” denotes the convolution operation. The equalized output sequence is defined by:  

[ ] [ ] [ ] [ ] [ ] [ ]z n y n c n x n p n w n= ∗ = + +                               (2) 

where [ ]p n  is the convolutional noise (convolutional error) due to non-ideal equalizer’s coefficients  
[ ] [ ] [ ]( )h n c n nδ∗ ≠  and [ ] [ ] [ ]w n w n c n= ∗ . The update mechanism of the equalizer’s coefficients is given by  

[18]:  

[ ] [ ] [ ]
[ ] [ ]*1

F z n
c n c n y n

z n
µ

 ∂  + = −
∂

                              (3) 

where µ  is the step-size parameter, ( )*⋅  stands for the conjugate operation and [ ]F z n    is a predefined  

cost function that characterizes the intersymbol interference, see [19]-[26]. Minimizing this [ ]F z n    with  

respect to the equalizer parameters will reduce the convolutional error. In the following we deal with those  

equalization methods where 
[ ]
[ ]

F z n
z n
 ∂  
∂

 can be defined as a polynomial function [ ]P z n    of order up to  

three as is in the case of [19]. Thus, in this work we consider the following update mechanism of the equalizer’s 
coefficients:  

[ ] [ ] [ ] [ ]*1c n c n P z n y nµ  + = −                                  (4) 

3. The Deviation from the Mean 
In this section we obtain a closed-form approximated expression for the amount of deviation from the mean of 
those fluctuations considered as rare events as a function of the system’s parameters (step-size parameter, 
equalizers’s tap length, SNR, input signal statistics, characteristics of the chosen equalizer and channel power), 
for a pre-given probability that these events may occur. 

Theorem 1. For the following assumptions: 
1) The convolutional noise [ ]p n , is a zero mean, white Gaussian process with variance  

[ ] [ ]2 2p pE p n p n mσ ∗ = =  , where [ ]2
p rm E p n =   . [ ]rp n  is the real part of [ ]p n .  

2) The source signal [ ]x n  is a complex input where the real part of [ ]x n  is independent with the 
imaginary part of [ ]x n , with known variance 2

xσ  and higher moments. The mean of the input sequence is  
zero. Namely, [ ] 0E x n  =  .  

3) The convolutional noise [ ]p n  and the source signal are independent.  

4) 
[ ]
[ ]

F z n
z n
 ∂  
∂

 can be expressed as a polynomial function of the equalized output namely as [ ]P z n    of  

order three. 
5) The gain between the source and equalized output signal is equal to one. 
6) The convolutional noise [ ]p n  is independent with [ ]w n . 
 
The amount of deviation ( )sp  from the mean of those fluctuations considered as rare events as a function of 

the system’s parameters, given the probability that these events occur can be expressed by:  

2 p
s

rm
p

M
≈                                         (5) 

where the probability that the fluctuations of the arithmetic average (sample mean) of the real part of 
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consecutive convolutional noises which deviate from the mean of order higher than the typical ones is expressed 
by:  

[ ] ( )
1

1 exp
M

r s
n

P p n p r
M =

 > ≈ − 
 

∑                                (6) 

and pm  is given according to [27]:  
1 1

1 2

1 1
1 2

1 1
1 2

1 1
1 2

2
1 1 1 11

1
1

2
1 1 1 11

2
1

for 0 and 0

min ,

or for 0

max ,

where

4
2

4
2

mp mp

mp mp
p

mp mp

mp mp
p

mp

mp

Sol Sol

m Sol Sol

Sol Sol

m Sol Sol

B B A C B
Sol

A

B B A C B
Sol

A

> >

 =  

⋅ <

 =  

− + −
=

− − −
=

                              (7) 

(( ) ( ))
( )
( ) ( )(

)

2 2 2 2 2
1 3 3 12 1 3 12 1 12 3 12

2 2 2
3 3 12 12

2 22 2 2 2 2 2 4 2
1 3 12 12 1 3 1 12 1 3

4 4 2 2 2
3 12 12 1 3 1

45 18 6 9 2 2 3

45 18 9

12 6 12 4 15
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r
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w
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σ

σ σ σ σ

σ σ

= + + + + − +

+ + +

  = + + + + +  

   + + − + +   



( )) ( )
(( ) )

( )( )
( )

2 2 4
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




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( ( )
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



         (8) 

xr is the real part of [ ]x n , R is the channel length, N is the equalizer’s tap length, 
[ ]

2
2

21
0

r
r

x
w k R

kkSNR h n

σ
σ

= −

=

=
∑



  

and 1a , 12a , 3a  are properties of the chosen equalizer and found by:  

[ ]
[ ] ( ) ( ) ( )( )( )23

1 3 12r r r i

F z n
Re a z a z a z z

z n

  ∂   = + +  ∂ 
                        (9) 

where ( )Re ⋅  is the real part of ( )⋅  and rz , iz  are the real and imaginary parts of the equalized output 
[ ]z n  respectively. 
 
Proof. Let us first define:  

[ ]
1

1 M

M r
n

S p n
M =

= ∑                                       (10) 
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Next, by using assumption 1 from this section, we may write:  

[ ]( )
21 exp

22πr
pp

df p n d
mm

 
= = −  

 
                            (11) 

The propability density function (pdf) for MS  (10) is  

( )
2

exp
2π 2M

p p

M Msf S s
m m

 
= = −  

 
                             (12) 

since a sum of Gaussian random variables is also exactly Gaussian-distributed. According to [11], a large 
deviation approximation is obtained from this exact result by neglecting the term M , which is subdominant 
with respect to the decaying exponential, thereby obtaining [11]  

( ) ( )( ) ( )
2

exp ;
2M

p

sf S s MJ s J s
m

= ≈ − =                          (13) 

The Central Limit Theory (CLT) governs random fluctuations only near the mean-deviations from the mean  

of the order of pm
M

 [14]. Fluctuations which are of the order of pm  are, relative to typical fluctuations,  

much bigger: they are large deviations from the mean [14]. They happen only rarely, and so large deviation 
theory is often described as the theory of rare events-events which take place away from the mean, out in the 
tails of the distribution; thus large deviation theory can also be described as a theory which studies the tails of 
distributions [14]. According to [11] [14], the probability that  

( ) ( )( )expM s sP S p MJ p> −                              (14) 

where according to [11],   is used to stress that as M →∞  the dominant part of [ ]1

1 M
r snP p n p

M =

 > 
 

∑  is  

the decaying exponential ( )( )exp sMJ p− . Thus, based on (14), we may write:  

[ ] ( )
1

1 exp
M

r s
n

P p n p r
M =

 > − 
 

∑                              (15) 

where  

( )( ) ( )exp expsMJ p r− ≈ −                               (16) 

and  

( )s
rJ p

M
≈                                     (17) 

Thus from (17) and (13) we have:  
2 2

2
ps

s
p

rmp r p
m M M

≈ ⇒ ≈                               (18) 

Next we turn to find a closed-form approximated expression for pm . Based on [27], the expression for the  
convolutional noise power pm  for the noisy and non-biased input case [ ]( )0E x n  =   is given by (7), (8) and 

(9). This completes our proof.  

4. Conclusion  
In this paper we dealt with the fluctuations of the arithmetic average (sample mean) of the real part of 
consecutive convolutional noises which deviate from the mean of order higher than the typical ones. Via the 
large deviation theory, we obtained a closed-form approximated expression for the amount of deviation from the 
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mean of those fluctuations considered as rare events as a function of the system’s parameters (step-size pa- 
rameter, equalizerss tap length, SNR, input signal statistics, characteristics of the chosen equalizer and channel 
power), for a pre-given probability that these events may occur.  
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