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Abstract 
This paper uses a robust feedback linearization strategy in order to assure a good dynamic per- 
formance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor 
(PMSM) in a rotating reference frame (d, q). However this control requires the knowledge of cer- 
tain variables (speed, torque, position) that are difficult to access or its sensors require the addi- 
tional mounting space, reduce the reliability in harsh environments and increase the cost of motor. 
And also a stator resistance variation can induce a performance degradation of the system. Thus a 
sixth-order Discrete-time Extended Kalman Filter approach is proposed for on-line estimation of 
speed, rotor position, load torque and stator resistance in a PMSM. The interesting simulations 
results obtained on a PMSM subjected to the load disturbance show very well the effectiveness and 
good performance of the proposed nonlinear feedback control and Extended Kalman Filter algo-
rithm for the estimation in the presence of parameter variation and measurement noise. 
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1. Introduction 
In recent years, there has been an emerging growth of PMSM. This machine has been widely used in many in-
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dustrial applications. The main advantages, as compared with other AC motor drive, are high power factor, high 
power density, high torque to current ratio, high efficiency, Hence robustness, lower loss, lower maintenance 
and less complex motor can be obtained [1] [2]. 

However, the control of PMSM is proved very difficult because the dynamic model of the PMSM is nonlinear, 
multidimensional and complex where some parameters vary with temperature or saturation. This nonlinear dy-
namic behavior induces the use of nonlinear feedback control strategy [3] [4] in order to permit a decoupling of 
the PMSM variables in a (d, q) coordinate so that stator currents can be separately controlled.  

On the other hand, to preserve and improve the reliability under parameters variation and noises injected by 
the inverter (which can induce a state-space “coupling” and degradation of the system), a robust control ap-
proach has been made on the motor drives [5]-[7]. This control algorithm uses H-infinity synthesis of currents 
correctors in order to insure robust stability and performances of the inner current loop. 

To guarantee good performances in presence of parameters variations (more specifically the stator resistance 
and load variation) and whereas advanced PMSM control strategies require knowledge of the instantaneous 
speed (which is difficult to access), the technique based on the state observer allowing an on-line estimation of 
the speed, position, load torque and the stator resistance is necessary.  

Accurate estimation of speed in the presence of measurement and system noise, and parameter variations is a 
challenging task. Kalman filter (KF) named after Rudolph E. Kalman [8] is one of the most well known and of-
ten used tools for stochastic estimation. The KF is essentially a set of mathematical equations [9] [10] that im-
plement a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error co-
variance when some presumed conditions are met. For the speed, torque and stator resistance estimation prob-
lem of PMSM, where parameter variation and measurement noise is present, KF is the ideal one.  

Many literatures on the KF technique and its applications, essentially extended for the estimation of the speed, 
have been published [11]-[13]. However, using the nonlinear feedback control, this Extended KF (EKF) tech-
nique doesn’t take into account the combination load torque and stator resistance variation. 

In the present research, after a brief review of the PMSM model, on the one hand a robust Input-output linea-
rization and decoupling scheme is developed and on the other hand a sixth-order discrete-time EKF, based on 
KF principle, is proposed to estimate the speed, currents, position and extended for the load torque and stator re-
sistance reconstruction.  

Finally, the proposed combination nonlinear feedback control and EKF approach are confirmed by simula-
tions results carried out on PMSM drive system in the presence of measurement noise and parameter variations. 

2. PMSM Equations and Robust Feedback Control 
By assuming that the saturation of the magnetic parts and the hysteresis phenomenon are neglected; by consi-
dering the case of a smooth-air-gap PMSM (where the inductances are equal: Ld = Lq) and according to the field 
oriented principle where the direct axis current (Id) is always forced to be zero which simplifies the dynamics 
and achieve maximum electromagnetic torque per ampere, the PMSM model in the rotor reference (d, q) frame 
are as follows [2] [5]: 
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This Equation (1) shows that the dynamic model of PMSM is nonlinear because of the coupling between the 
electrical currents and some parameters (in particular Rs) vary with temperature. Thus, in order to control inde-
pendently the currents (Id, Iq) and then preserve the robustness performance and stability of the system under 
parameters variation and measurement noise, we can uses a robust feedback linearization strategy to regulate the 
motor states [18]. Thus, we can see that the system (1) has relative degree r1 = r2 = 1 and can be transformed in-
to a linear and controllable system by chosen: 
• a suitable and an appropriate change of coordinates given by: 

( )1 1z h x= ; ( )2 2z h x=  with                               (2) 

where [ ]1 2,v v T  are the new input vector of the obtained decoupled systems 
• the feedback linearization control having the following form: 
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This feedback control (3) is effective and leads the system (1) to two decoupled subsystems; 
• and two robust controllers C(s), using H∞  synthesis and “Doyle method” [6] [14], defined as: 
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The real t0 is an adjusting positive parameter, chosen adequately small (t0 < 1), in order to satisfy the robust-
ness performance, to have a good regulation and convergence of the currents.  

The block diagram structure for the control of (Id, Iq) can be summarized as follows in Figure 1. 
However the control of a PMSM generally required the knowledge of the instantaneous speed of the rotor that 

is not measurable. Also a variation of the stator resistance or/and load torque (Rs and TL) can induce a lack of 
field orientation. In order to achieve better dynamic performance, an on-line estimation of rotor speed, stator re-
sistance and load torque is necessary.  

In this study, in order to respect to the parametric variations in the presence of measurement and system noise 
(stochastic estimation), an EKF’s algorithm for speed estimation extended for the stator resistance and load tor-
que reconstruction, is presented and explained in the next section. 

3. Model of Extended Kalman Filter 
For parameter estimation using a full order EKF, the model structure (1) is discretized directly using Euler ap-
proximation (1st order) proposed in [15]. Furthermore, the state vector is extended to the stator resistance and 
load torque. Thus, choosing the currents (Id, Iq), speed (Ω), rotor position (θ), load torque (TL) and stator resis-
tance (Rs) as state variables, the voltages (Vd, Vq) as inputs, the new discrete-time and Stochastic sixth-order 
nonlinear dynamic model for the PMSM is described by Equation (5): 
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Figure 1. Proposed currents control scheme. 
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The resulting output vector ( )eY k  consists of the estimated motor current in a rotor reference frame being 
compared to the measured current. The difference is used to correct the state vector of the system model. 

( )eX k  and ( )eY k  are the state vector and output, respectively at the k-th sampling instant, i.e. et k T= ⋅  
with Te the adequate sampling period chosen without failing the stability and the accuracy of the discrete-time 
model.  

The random disturbance input, represented by ( )n k , is the sum of modeling uncertainty, the discretization 
errors and the system noise. The measurement noise is represented by ( )r k . Both ( )n k  and ( )r k , are as-
sumed to be white Gaussian noise with zero mean and covariance matrix Q and R respectively. Consider that: 
• ( )ˆ

eX k  = the estimate of ( )eX k  and ( )1 EKFK k + =  gain; 

• ( )ˆ 1eX k k+  = the linear minimum mean square estimate of ( )1eX k + ; 

• ( )1P k k+  = state prediction covariance error; 

• ( )1 1P k k+ +  = state estimation covariance error;  

• Initialization givens: ( ) ( )ˆ ˆ0 0 0e eX X=  and ( ) ( )0 0 0P P= . 

The steps of the proposed sixth-order Discrete-time Extended Kalman Filter algorithm are as follows: 
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The EKF algorithm consists of repeated use of step (1-8) for each measurement. ( )F k  is the Jacobian ma-
trix of partial derivatives of ( )•f  with respect to ( )eX k . From Equation (5), we obtain: 
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4. Simulation Results and Discussion 
The proposed robust nonlinear feedback control combined with a EKF strategy has been investigated with 
simulation tests carried out for a 1.6 kW PMSM by means of SIMULINK in order to illustrate its effectiveness 
against load, measurement noise and parameter variation (Figure 2). The nominal parameters of the PMSM, de-
termined by means of the least-squares identification techniques proposed by the references [16] [17], are shown 
in the Table 1. 

In order to evaluate its robustness and effectiveness, the comparisons between the estimated state variables 
and the simulated ones have been realized for several operating conditions with the presence of about 15% white 
noise on the measured currents and with additional load torque (Tl > 1 N∙m).  

Thus the simulations are obtained at first in the nominal case with the parameters of the PMSM (Table 1) and 
then in the second case, with 50% variation of the nominal stator resistance (Rs = 1.5 Rsn) in order to verify the 
behavior of the proposed EFK algorithm estimator with respect to stator resistance and load torque variation. 

 

 
Figure 2. Simulation scheme. 

 
Table 1. Nominal parameters of the PMSM. 

Pmn = 1.6 kW Un = 220/380 V fn = 0.0162 N∙m∙sec∙rad−1 

p = 3 Ωn = 1000 rpm Jn = 0.0049 kg∙m2 

Rsn = 2.06 Ω Phifn = 0.29 Wb Lqn = Ldn = 9.15 mH 
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Initialization and Tuning of the EKF Algorithms 
The important and difficult part in the design of the full order EKF is choosing the proper values for the cova-
riance matrices Q and R. The change of values of covariance matrices affects both the dynamic and steady-state.  

In order to have a good performance, to insure better stability, convergence time and considerable rapidity of 
the EKF, the chosen values for the covariance matrices Q, R and P can be initialized and adjusted as follows:  

( ) { }4
6 6 0 10P diag× = ; { }3

2 2 10R diag× = ; { }6 6Q diag q× = , 

the real qi must be tuned adequately small: 20 10q − ∈   , 
Our proposed Feedback control and EKF algorithm operate with a sampling period Te = 1 ms and using Euler 

approximation.  
Experiment simulation were performed and examined with regards to the following tasks: possibility current 

changing and load torque acting. 
Figure 3 and Figure 4 show the responses of the currents, speed, rotor position, load torque and stator resis-

tance for a step variation of the current reference (IdRef) under noisy conditions. 
 

 
Figure 3. Nominal case (Rr = Rrn): Comparison between estimated and simulated values for TL = 1.5 N∙m in the presence of 
measurement noises. 
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Figure 4. Non nominal case (Rr = 1.5*Rrn): Comparison between estimated and simulated values for TL = 2.5 N∙m in the 
presence of measurement noises. 

 
One can see that in both nominal (Figure 3) and non-nominal cases (Figure 4 where Rr = 1.5 Rrn), the esti-

mated values of currents, speed, rotor position and load torque converge very well to their simulated values and 
are not affected too much from the injected noise.  

The observed better speed responses (Figure 3(b), Figure 4(b)), in the presence of parameter uncertainty and 
measurement noises, indicate the good regulation and convergence of the currents (with a decoupled system) 
due to a favorable stator resistance (Figure 3(e), Figure 4(e)) and load torque estimation (Figure 3(d), Figure 
4(d)).  

These good waveforms illustrate the fast convergence and high performance of the robust decoupling control 
and EKF algorithm against modeling uncertainty, parametric variation and measurement noise. 

5. Conclusions 
We have shown in this work that a robust nonlinear feedback control combined with a EKF approach have been 
realized to permit a linearization, decoupling and regulation of the PMSM states (currents) in order to assure a 
good dynamic performance of the global system and for solving range of problems in sensorless (speed, rotor 
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position and load torque) control of PMSM drive without mechanical sensor. 
The interesting simulation results obtained on the PMSM show the effectiveness, the convergence and the 

stability of the proposed control in presence of stator resistance variation, measured noise and load.  
Thus in the industrial applications, because of the economic advantages (especially for low-powered motors), 

one will appreciate very well the experimental implement of this robust EKF sensorless control algorithm to 
substitute the PMSM mechanical sensor for the reconstitution of the speed, rotor position, load torque and stator 
resistance. 
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Nomenclature  
Tem, Tl : Electromagnetic and load torques (N.m) 
Id, Iq : (d, q)-axis stator currents (A) 
p, J, f : p: pole number; J: inertia (kg∙m2); f: Damping coefficient (Nm∙s/rad) 
Ld, Lq : (d, q)-axis inductances (H)  
Rs, Te : Stator resistance (Ω) and Sampling period (s). 
Vd, Vq : D-axis and q-axis stator voltage (V). 
Φf, θ : Φf : Rotor magnet flux linkage (Wb); θ: Rotor position at electrical angle (rpm). 
ωr, Ω : ωr: Rotor electrical radian speed; Ω: Mechanical rotor speed (rad/s). 
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