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Abstract 
This article is concerned with the problem of prediction for the future generalized order statistics 
from a mixture of two general components based on doubly type II censored sample. We consider 
the one sample prediction and two sample prediction techniques. Bayesian prediction intervals 
for the median of future sample of generalized order statistics having odd and even sizes are ob-
tained. Our results are specialized to ordinary order statistics and ordinary upper record values. A 
mixture of two Gompertz components model is given as an application. Numerical computations 
are given to illustrate the procedures. 
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1. Introduction 
Let the random variable (rv) T follows a class including some known lifetime models; its cumulative distribution 
function (CDF) is given by 

( ) ( ) ( )1 exp , 0, 0 ,F t t tθλ θ= − − > >                              (1) 

and its probability density function (PDF) is given by 

( ) ( ) ( ) ( )exp , 0, 0 ,f t t t tθλ θλ θ′= − > >                            (2) 
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where ( )tλ′  is the derivative of ( )tλ  with respect to t and ( ) ( );t tλ λ α≡  is a nonnegative continuous func-
tion of t and α may be a vector of parameters, such that 

( ) 0tλ →  as 0t +→  and ( )tλ →∞  as t →∞ . 
The reliability function (RF) and hazard rate function (HRF) are given, respectively, by 

( ) ( )exp ,R t tθλ= −                                        (3) 

( ) ( ) ,H t tθλ′=                                         (4) 

where ( ) ( ) ( ). . . .H f R=  
The general problem of statistical prediction may be described as that of inferring the value of unknown ob-

servable that belongs to a future sample from current available information, known as the informative sample. As 
in estimation, a predictor can be either a point or an interval predictor. The problem of prediction can be solved 
fully within Bayesian framework [1]. 

Prediction has been applied in medicine, engineering, business and other areas as well. For details on the histo-
ry of statistical prediction, analysis, application and examples see for example [1] [2]. 

Bayesian prediction of future order statistics and records from different populations has been dealt with by 
many authors. Among others, [3] predicted observables from a general class of distributions. [4] obtained Baye-
sian prediction bounds under a mixture of two exponential components model based on type I censoring. [5] ob-
tained Bayesian predictive survival function of the median of a set of future observations. Bayesian prediction 
bounds based on type I censoring from a finite mixture of Lomax components were obtained by [6]. [7] obtained 
Bayesian predictive density of order statistics based on finite mixture models. [8] obtained Bayesian interval pre-
diction of future records. Based on type I censored samples, Bayesian prediction bounds for the sth future observ-
able from a finite mixture of two component Gompertz life time model were obtained by [9]. [10] considered 
Bayes inference under a finite mixture of two compound Gompertz components model. Bayesian prediction of 
future median has been studied by, among others, they were [5] [11] [12]. 

Recently, [13] introduced the generalized order statistics (GOS’S). Ordinary order statistics, ordinary record 
values and sequential order statistics were, among others, special cases of GOS’S. For various distributional 
properties of GOS’S, see [13]. The GOS’S have been considered extensively by many authors, among others, 
they were [14]-[33]. 

Mixtures of distributions arise frequently in life testing, reliability, biological and physical sciences. Some of 
the most important references that discuss different types of mixtures of distributions are a monograph by 
[34]-[36]. 

The PDF, CDF, RF and HRF of a finite mixture of two components of the class under study are given, respec-
tively, by 

( ) ( ) ( )1 1 2 2 ,f t p f t p f t= +                                    (5) 

( ) ( ) ( )1 1 2 2 ,F t p F t p F t= +                                    (6) 

( ) ( ) ( )1 1 2 2 ,R t p R t p R t= +                                    (7) 

( ) ( ) ( ) ,H t f t R t=                                       (8) 

where, for 1, 2j = , the mixing proportions jp  are such that 1 20 1, 1jp p p≤ ≤ + =  and ( ) ( ) ( ), ,j j jf t F t R t  
are given from (1), (2), (3) after using jθ  and ( )j tλ  instead of θ  and ( )tλ . 

The property of identifiability is an important consideration on estimating the parameters in a mixture of dis-
tributions. Also, testing hypothesis, classification of random variables, can be meaning fully discussed only if the 
class of all finite mixtures is identifiable. Idenifiability of mixtures has been discussed by several authors, includ-
ing [37]-[39]. 

This article is concerned with the problem of obtaining Bayesian prediction intervals (BPI) for the future 
GOS’S from a mixture of two general components based on doubly type II censored sample. One- and two-sam- 
ple prediction cases are treated in Sections 2 and 3, respectively. Bayesian prediction intervals for the median of 
future sample of GOS’S having odd and even sizes are obtained in Sections 4. A mixture of two Gompertz com-
ponents is given as an application in Section 5. Finally, numerical computations are given in Section 6. 
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2. One Sample Prediction 
Let ; , , 1; , , ; , ,, , , ,1 , 0s n m k s n m k r n m kT T T s r n k+ ≤ < ≤ >  be the ( )r s−  GOS’S drawn from a mixture of two com-  
ponents of the class (2). Based on this doubly censored sample, the likelihood function can be written (see 
[27]) as 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

1
1 1 1

1
0

1
2

, 1,

ln , 1,

r
r sm s ms

i i r s
i s

rsk
r s i

i s

c R t f t R t R t m
L

c R t R t H t m

γ
ω

θ

+
− − − +

= =

−

=

     × ≠ −         = 
   = −    

∏ ∑

∏
t





            (9) 

where ( ), ,s rt t=t  , Θθ ∈ , Θ  is the parameter space, and 

( )
( ) ( )

( )
( )

( )( )

( ) ( )

1 1
1

1 21

1
1

1 1
, ,

1 !1 1 !

, 1 ,

1
1 .

s s r
r

s

r

r j r
j

s

C k
c c

sm s

C k n r m

s

γ γ

ω

− −
−

−

−
=

− −
= = 

−+ − 

= = + − + 

−  = −     

∏







 

For definition and various distributional properties of GOS’S, see [13]. 
By substituting Equations (1) and (5) in Equation (9), we get 
for 1m ≠ − , 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )1

1 1 1 2 2 1 1 2 2
=

1 1 1
1 1 2 2 1 1 2 2

=0
.r

r m
i i i i

i s

s s ms
r r s s

L c p R t p R t p f t p f t

p R t p R t p R t p R t
γ

θ

ω+
− − − +

    = + +     

 × + +    

∏

∑

t







          (10) 

And for 1m = − , 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

1 1 1 2 2
2 1 1 2 2 1 1 2 2

= 1 1 2 2

ln .
rsk i i

r r s s
i s i i

p f t p f t
L c p R t p R t p R t p R t

p R t p R t
θ

−  +  = + + ×      + 
∏t    (11) 

We shall use the conjugate prior density, that was suggested by [3], in the following form  

( ) ( ) ( ) ( )1 2 1 2; ; exp ; , , , , , , ,C D pπ θ ν θ ν θ ν θ θ θ α α ν∝ − = ∈Ω                 (12) 

where Ω  is the hyper parameter space. 
Then the posterior PDF of θ , ( )*π θ t , is given by 

( ) ( ) ( )* ; .Lπ θ π θ ν θ∝t t                               (13) 

Substituting from Equations (10) and (12) in Equation (13), for 1m ≠ − , the posterior PDF ( )*π θ t  takes 
the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

1

*
1 1 2 2 1 1 2 2

1

1 1 2 2 1 1 2 2
0

; exp ;

,
s

r

r m
i i i i

i s

s
s

r r s s

C D p R t p R t p f t p f t

p R t p R t p R t p R t
γ δ

π θ θ ν θ ν

ω+

=

−

=

    ∝ − + +         

 × + +    

∏

∑

t







   (14) 

where ( ) ( )( )1 1 .s s mδ = − − +


  
For 1m = − , using Equations (11) and (12) in Equation (13), the posterior PDF can be written as 
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( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( )

*
1 1 2 2

1 1 1 2 2
1 1 2 2

1 1 2 2

; exp ;

ln .

k
r r

rs i i
s s

i s i i

C D p R t p R t

p f t p f t
p R t p R t

p R t p R t

π θ θ ν θ ν

−

=

∝ − +      
 +  × +   + 

∏

t

               (15) 

Now, suppose that the first ( )r s−  GOS’S ; , , 1; , , ; , ,, , , ,1 ,s n m k s n m k r n m kT T T s r n+ ≤ < ≤  have been formed and  
we wish to predict the future GOS’S 1; , , 2; , , ; , ,, , , .r n m k r n m k n n m kT T T+ +   Let *

; , ,a r a n m kT T +≡ , 1, 2, ,a n r= − , the  
conditional PDF of the tha  future GOS given the past observations t , can be written (see [27]) as 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1* *

0*
1 11* * *

0

, 1,
,

ln ln , 1,

r a i r a i
a

a
i a r a

i
a a i ka i ka

i a r a r a
i

R t R t f t m
h t

R t R t R t R t f t m

γ γ
ω

θ
ω

+ − + −
− − −

=

− −− − −

=

   ≠ −    ∝ 
     = −    

 

∑

∑
t         (16) 

where ( ) ( )
1

1 .ia
i

a
i

ω
− 

= −  
 

 

When 1m ≠ − , substituting from Equations (1) and (5) in Equation (16), the conditional PDF takes the 
form 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1* * *
1 1 2 2

0

* *
1 1 2 2 1 1 2 2

,

,

r a i

r a i

a
a

a i a a
i

r r a a

h t p R t p R t

p R t p R t p f t p f t

γ

γ

θ ω
+ −

+ −

− −

=

−

 ∝ + 

 × + +    

∑t
                (17) 

In the case when 1m = − ; the conditional PDF takes the form 

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( )

1 1* * *
1 1 2 2 1 1 2 2

0
1* * * *

1 1 2 2 1 1 2 2 1 1 2 2

, ln ln

,

a i a ia
a i a a r r

i
k k

a a r r a a

h t p R t p R t p R t p R t

p R t p R t p R t p R t p f t p f t

θ ω
− − −

=

− −

 ∝ + +   

   × + + +     

∑t
       (18) 

The predictive PDF of *
aT  given the past observations t  is obtained from Equations (13), (17) and (18) 

and written as 

( ) ( ) ( )* * * * *, d , ,a a a rf t h t t t
θ

θ π θ θ= >∫t t t                           (19) 

where for 1m ≠ − , 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) }
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s
i

C D p f t p f t
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         (20) 

where 

( ) ( )

( ) ( )( )
( ) ( )( )

,
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1 1
1 ,

1 1 ,
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a s
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Also, for 1m = − , 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( )
( )

( ) ( ) ( )( )

( ) ( )( )

1 1 2 2

1 1

1 1 2 2 1 1 2 2

2
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1 1 2 22
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1 1 2 2

* ; exp ;

ln

ln

ln .

, a a

k s

a a s s

r a ij j ij a
i a a

ii s j j ij

a

r r

a

i

C D p f t p f t
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∑
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t t

          (21) 

It then follows that the predictive survival function is given, for the tha  future GOS, by 

( )* * * *d , .a a a rP T f t t t
ν

ν ν
∞

 > = >  ∫t t                            (22) 

A 100 %τ  BPI for *
aT  is then given by 

( ) ( )* ,aP L T U τ < < = t t  

where ( )L t  and ( )U t  are obtained, respectively, by solving the following two equations 

( )* 1
2aP T L τ+ > = t t ,                              (23) 

( )* 1
2aP T U τ− > = t t .                              (24) 

3. Two Sample Prediction 
Suppose that ; , , 1; , , ; , ,, , , , 1s n m k s n m k r n m kT T T s r n+ ≤ < ≤ . 

Be a doubly type II censored random sample drawn from a population whose CDF, ( )F x  and PDF,
( )f x  and let 1; , , 2; , , ; , ,, , , , 1, 1N M K N M K N N M KY Y Y K M≥ ≥ − . 
Be a second independent generalized ordered random sample (of size N) of future observations from the same 

distribution. Based on such a doubly type II censored sample, we wish to predict the future GOS  
; , , , 1, 2, , ,b b N M KY Y b N≡ =   in the future sample of size N. 

It was shown by [32] that the PDF of GOS bY  is in the form 

( ) ( ) ( ) ( )

( ) ( ) ( )

11
0

1 1

, 1,

ln , 1,

b i

b

b b
ii

Y K b

f y R y M
h y

R y R y f y M

γ
ω

θ
− −−

=

− −

 ≠ −   ∝ 
 = −      

∑


                      (25) 

where ( )( )1i K N i Mγ = + − +  and ( ) ( )
1

1 .ib
i

b
i

ω
− 

= −  
 

 

Substituting from Equations (1) and (5) in (25), we have 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

1
1

1 1 2 2 1 1 2 2
0

11
1 1 2 2 1 1 2 2 1 1 2 2

[ ] , 1,

ln , 1.

b i

b

b
b

i
i

Y
bK

p f y p f y p R y p R y M
h y

p R y p R y p R y p R y p f y p f y M

γω
θ

−
−

−

=

−−


+ + ≠ −  ∝ 

 + + + = −          

∑


     (26) 

The predictive PDF of , 1, 2, , ,bY b N=   given the past observation t is obtained from Equations (14), (15) 
and (26), and written as 

( ) ( ) ( )* d , 0,
b bY Yf y h y y

θ
θ π θ θ= >∫t t                             (27) 

where for 1, 1,m M≠ − ≠ −  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ }
1
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r

b

b i

r m
i i

i s
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=

− − −
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+

∏
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,          (28) 

where 

( ) ( ),
,

1 1
1 ,ib s

i

b s
i

η + − −  
= −   

  







 

Also for 1, 1,m M= − = −  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( )
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−
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=
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∑
∏
∑

t

.            (29) 

Bayesian prediction bounds for bY , 1, 2, ,b N=   are obtained by evaluating 

( )d , 0.
bb YP Y f y y

ν
ν ν

∞
 >  = >  ∫t t                             (30) 

A 100 %τ  BPI for bY  is then given by 

( ) ( ) ,bP L Y U τ< < =  t t  

where ( )L t  and ( )U t  are obtained, respectively, by solving the following two equations 

( ) 1
2bP Y L τ+

 >  = t t ,                              (31) 

( ) 1
2bP Y U τ−

 >  = t t .                              (32) 

4. Bayesian Prediction for the Future Median 
The median of N observations, denoted by NY , is defined by 

; , ,

; , , 1; , ,

, 2 1
1 , 2
2

N M K

N
N M K N M K

Y N
Y

Y Y N

ϕ

ϕ ϕ

ϕ

ϕ+

= −
=   + =  

 , 

where ϕ  is a positive integer, 1ϕ ≥ . 

4.1. The Case of Odd Future Sample Size 
The PDF of future median NY  takes the form (26) with b ϕ=  and 2 1N ϕ= − . 

Substituting b ϕ=  in Equation (27), we obtain the predictive PDF ( )
NYf y t


  of the median of 2 1N ϕ= −   

observations. 
A 100 %τ  BPI for NY  is then given by 

( ) ( ) ,NP L Y U τ < < = t t  
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where ( )L t  and ( )U t  are obtained, respectively, by solving the following two equations 

( ) 1
2NP Y L τ+ > = t t ,                               (33) 

( ) 1
2NP Y U τ− > = t t ,                               (34) 

where, for 0, NP Yν ν > > t
  is predictive survival function, given by Equation (30) with b ϕ=  and 

2 1N ϕ= − . 

4.2. The Case of Even Future Sample Size 
The joint density function of two consecutive GOS ; , ,N M KY Yϕ ϕ≡  and 1; , , 1N M KY Yϕ ϕ+ +≡  is given by 

( )
( ) ( ) ( )( ) ( ) ( )
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( ) ( ) ( ) ( ) ( )
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, 1 1 1

1 1
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   −    −
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     = −    −
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And 
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ϕ
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ϕ

+− ≠ −=  +

− = −
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Expanding ( )( ) ( )
1

0M Mh F y h
ϕ

ϕ

−
 
 −  binomially and applying the transformation 1

2N

Y Y
Y ϕ ϕ++

=  and  

Z Yϕ= , the Jacobian of transformation is 2, we obtain 
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1 1 1( )
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.       (36) 

By substituting Equations (2), (4) and (5) in Equation (36) and integrating out z, yields the density func-
tion of NY , in the case of 1M ≠ − , as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1 1

1 1 2 2 1 1 2 2
0 0

1 1 2 2 1 1 2 2

2 2
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∑ ∫





      (37) 

In the case 1M = − , we have 
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2
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            (38) 
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The predictive density function of the future median of 2N ϕ=  observations is given by 

( ) ( ) ( )* d , 0,
N NY Yf y y y

θ
θ π θ θ= >∫t t

 



                           (39) 

where ( )*π θ t  and ( )
NY y θ


  are given by Equations (13) and (37), (38), respectively. It then follows  

that the predictive survival function is given, for NY , by 

( )d , 0.
NN YP Y f y t y

ν
ν ν

∞
 > = >  ∫t





                             (40) 

The lower and upper bound of 100 %τ  BPI for NY  can be obtained by solving Equations (33) and (34), 
numerically. 

5. Example 
Gompertz Components 

Suppose that, for 1, 2j =  and ( ) 10, 1, e 1j t
j j

j

t t αθ λ
α

 > = = −   so ( ) e j t

j
t α

λ = . 

In this case, the thj  subpopulation is Gompertz distribution with parameter 0jα > . Let 1,p α  and 2α  
are independent random variables such that ( )1 2~ ,p Beta b b  and for 1, 2j = , jα  to follow a left truncated 
exponential density with parameter jd  (LTE(dj)), as used by [40]. A joint prior density function is then 
given by  

( )
( )

1 2 21 1
1 2 1

1
; exp ,jb b

j
j

p p
d

α
π θ ν − −

=

 −
 ∝ −
  
∑                          (41) 

where ( )1 1 2 1 20 1, 1, , , , 0jp b b d dα< < > >  and 2 11p p= − . 

5.1.1. One Sample Prediction 
For 1, 1m m≠ − = −  substituting ( )j tλ , ( )

j
tλ . 

And Equation (41) in Equation (22) and solving, numerically, Equations (23) and (24) we can obtain the 
lower and upper bounds of BPI. 

Special Cases 
1) Upper order statistics 
The predictive PDF (19), when 0m =  and 1k =  becomes 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){
( ) ( ) }

1 2
1

0 0 0

1 1 2 2 1 1 2 2

1 1 1 1,
, 1 1 2

2
1 1* *

1 1

2 1 1 2 2
0 0

1 1 2 2 2

2
1

1

1
exp

d d

r

a a i i
i s

a s s a ia s

jb b

i s s r r
i

n r a

a

a

i

a

j j

p f t p f t p f t p f t

p R t p R t p R t

f

p R t

p R t

t K p p
d

p R t

η

α

α

α

∗ ∗

=

− − − − − −

= =

− − +
∗ ∗

∞ ∞ − −

=

    × + +     

 × + +   

 × +

 −
 = −









 ∫ ∫ ∫

∏

∑∑

∑







t

dp

,           (42) 

where 

( ) ( )1 * * *
1 , d d .

r
a at

K h t t
θ

θ π θ θ
∞− = ∫ ∫ t t  

Substituting from Equation (42) in Equation (22) and solving Equations (23) and (24), numerically, we 
can obtain the bounds of BPI. 

2) Upper record values 
When ( )1, 1 1rm k γ= − = = , the predictive PDF (19) becomes 
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( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )

( )

( ) ( )( ) ( ) ( )( )

1 2
1

1 1 2 20 0 0

2
11 1

1 1 2 2 2
01

1

1 1 2 2 1 1

2
1 1* *

2 1 2
1

2 2 1 2

1

ln

ln ln d d

e

d

xp a a

r as j j ij a
s s i

ii s j j ij

i a i

a a r

jb b
a

j j

r

p f t p f t

p f t
p R t p R t

p R t

p R t p R t p R t p R t

f t t K p p

p

d

ω

α

α

α

∗ ∗

−− =

==
=

− −∗

∞ ∞ − −

=

∗

 + 

 

 −
 = −
 

 × +   
 

 × + +  





∫ ∫ ∫

∑
∑∏

∑

∑

,           (43) 

where 

( ) ( )1 * * *
2 , d d .

r
a at

K h t t
θ

θ π θ θ
∞− = ∫ ∫ t t  

Substituting from Equation (43) in Equation (22) and solving Equations (23) and (24), numerically, we 
can obtain the bounds of BPI. 

5.1.2. Two Sample Prediction 
For 1M ≠ −  and 1, 1m M≠ − = −  and 1m = − , substituting ( )j tλ , ( )

j
tλ  and Equation (41) in Equation 

(30) and solving, numerically, Equations (31) and (32) we can obtain the lower and upper bounds of BPI. 
Special Cases 
1) Upper order statistics 
Substituting 0M m= =  and 1K k= =  in Equation (27), we have 

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }

1 2
1

1 1 2 20 0 0

1 1
,

1 1 2 2 1 1 2 2 ,
0 0

1
1

2
1 1

1 1 2
1

1 11 2 2 22 2 1

1
exp

d d d

b

r

i i
i s

b sn r b s
r r

j

i
i

s
s s

b b
Y

j j

N b i

p f t p f t

p R t p R t p f y p f y

p R t p

f y t B p p
d

p R y p RR t y p

α

α

η

α

=

−

∞ ∞ − −

=

− +

−−

= =

− −

 −
 =   +   

× + +

−
  

+

      

 × +    

∑ ∏∫ ∫ ∫

∑∑








,         (44) 

where 

( ) ( )1 *
1 0

d d .
bYB h y y

θ
θ π θ θ

∞− = ∫ ∫ t  

To obtain 100 %τ  BPI for , 1, 2, ,bY b N=  , we solve Equations (31) and (32), numerically. 
2) Upper record values 
In Equation (27), by putting 1K k= = , the predictive PDF of bY  takes the form 

( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )

1 2
11

1 1 2 20 0 0

1 1 2 2 1 1 2 2

2
1 1

1 1 2

2
1 1

2 1

2 1 22
1

2
1

ln

ln d d

e

d

1
xp

b

b

r r

rs j j ij
s

jb b

s
i s j j i

Y
j

j

j
p R y p R y

p f y p f y p R t p R t

p f t
p R t p R t p

p R t

f y B p p
d

α α

α −∞ ∞ −

− =

=
=

−

=

+  

× + + 

 −
 = −


    
   × +   
  

 
∫ ∫ ∫

∑

∑

∏
∑

t

,           (45) 

where 

( ) ( )1 *
2 0

d d .
bYB h y y

θ
θ π θ θ

∞− = ∫ ∫ t  

Substituting from Equation (45) in Equation (30) and solving Equations (31) and (32), numerically, we 
can obtain the bounds of BPI. 

5.1.3. Prediction for the Future Median (the Case of Odd N) 
Special Cases 
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1) Upper order statistics 
Substituting ( )j tλ , ( )

j
tλ , ( );C θ ν  and ( );D θ ν  in Equation (27) with b ϕ=  and 2 1N ϕ= −  and 

by putting 0M m= =  and 1K k= = , we have 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){
( ) ( ) }

1 2
2

1 1
1 1 2

1

1

0 0 0

1 1 2 2 1 1 2 2
=

1 1 1,
1 1 2 2 , 1 1 2 2

=0

1 1

=0

2 2 1 2

1
exp

d d d

N

r n r
i i r r

i s

s ss
i s

jb b

i

Y

N i

s

j j

f y B p p
d

p f t p f t p R t p R t

p f y p f y p R t p R t

p R y p R y p
ϕ

ϕ
ϕ

α

α α

η

∞ ∞ − −

=

−

+

−

−

− − −

  × + +      

 × + +

 −
 = −
  

+





 



 

×

∫ ∫ ∫

∏

∑∑

∑







t 

,               (46) 

where 

( ) ( )1 *
1 0

d d .
NYB h y y

θ
θ π θ θ

∞− = ∫ ∫ t


   

To obtain 100 %τ  BPI for NY , we solve Equations (33) and (34), numerically. 
2) Upper record values 
The predictive PDF (27), when 1K k= = , becomes 

( ) ( )
( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( ) ( )
( )

1 2
11

1 1 2 20 0 0

1 1 2 2 1 1 2 2

2
1 1

1 1 2 2 1 22

2
1 1

2 1 2
1

1

ln

ln d d d

1
exp

N

r r

rs j j ij
s s

i s j j ij

jb b
Y

j j

p R y p R y

p f y p f y p R t p R t

p f t
p R t p R t p

p R

f y t B p

t

p
d

ϕα

α α

∞ ∞ −

− =

=

− −

=

=

+  

× + +   

 −
 = −
 

  
   × + ×  
 





∫ ∫ ∫

∑
∏

∑

∑



 

,           (47) 

where 

( ) ( )1 *
2 0

d d .
NYB h y y

θ
θ π θ θ

∞− = ∫ ∫ t


   

To obtain 100 %τ  BPI for NY , we solve Equations (33) and (34), numerically. 

5.1.4. Prediction for the Future Median (the Case of Even N) 
Special Cases 

1) Upper order statistics 
The predictive PDF and survival function of NY  can be obtained by substituting 0M m= =  and 

1K k= =  in Equations (39) and (40), respectively. 
2) Upper record values 
The predictive PDF and survival function of NY  can be obtained by substituting 1K k= =  in Equations 

(39) and (40), respectively. 
To obtain 100 %τ  BPI for future median of ordinary order statistics or ordinary upper record values. 
We solve Equations (33) and (34), numerically. 

6. Numerical Computations 
In this section, 95% BPI for future observations from a mixture of two ( ) , 1, 2jGomp jα = , components are 
obtained by considering one sample and two sample schemes. 

6.1. One Sample Prediction 
In this subsection, we compute 95% BPI for * , 1, 2aT a = , in the two cases ordinary order statistics and ordi-



A. A. Ahmad, A. M. Al-Zaydi 
 

 
595 

nary upper record values according to the following steps: 
1) For a given values of the prior parameters ( )1 2,b b  generate a random value p from the ( )1 2,Beta b b  

distribution.  
2) For a given values of the prior parameters jd , for 1, 2,j =  generate a random value jα  from the 

( )jLTE d  distribution.  
3) Using the generated values of 1,p α  and 2α , we generate a random sample from a mixture of two 

( )jGomp α  components, 1, 2,j =  as follows:  
• generate two observations 1 2,u u  from ( )Uniform 0,1 ; 

• if 1u p≤ , then ( )1 2
1

1 log 1 log 1 ,t uα
α

= − −    otherwise ( )2 2
2

1 log 1 log 1t uα
α

= − −   ; 

• repeat above steps n times to get a sample of size n; 
• the sample obtained in above steps is ordered. 
4) Using the generated values of 1,p α  and 2α , we generate upper record values of size 12n =  from a 

mixture of two ( ) , 1, 2jGomp jα = , components. 
5) The 95% BPI for the future observations are obtained by solving numerically, Equations (23) and (24) 

with 0.95τ = . Different sample size n and the censored size are considered. 

6.2. Two Sample Prediction 
In this subsection, we compute 95% BPI for two sample prediction in the two cases ordinary order statistics 
and ordinary upper record values according to the following steps: 
1) For a given values of the prior parameters ( )1 2,b b  generate a random value p from the ( )1 2,Beta b b  

distribution.  
2) For a given values of the prior parameters 𝑑𝑑𝑗𝑗 , for 1, 2,j =  generate a random value jα  from the 

( )jLTE d  distribution.  
3) Using the generated values of 1,p α  and 2α , we generate a doubly type II sample from a mixture of two 

( ) , 1, 2,jGomp jα =  components. 
4) The 95% BPI for the observations from a future independent sample of size N are obtained by solving 

numerically, Equations (31) and (32) with 0.95τ = . 
5) Generate 10,000 samples each of size N from a mixture of two ( )jGomp α  components, then calculate 

the coverage percentage of bY . 
6) Different sample sizes n and N are considered. 

6.3. Prediction for the Future Median 
In this subsection, 95% BPI for the median of N future observations are obtained when the underlying pop-
ulation distribution is a mixture of two Gompertz components in the two cases ordinary order statistics and 
ordinary upper record values according to the following steps: 
1) For a given values of the prior parameters ( )1 2,b b  generate a random value p from the ( )1 2,Beta b b  

distribution.  
2) For a given values of the prior parameters jd , for 1, 2,j =  generate a random value jα  from the 

( )jLTE d  distribution.  
3) Using the generated values of 1,p α  and 2α , we generate a doubly type II sample from a mixture of two 

( ) , 1, 2,jGomp jα =  components. 
4) The 95% BPI for the median of N of future observations are obtained by solving numerically, Equations 

(33) and (34) with 0.95τ =  for different values of N, when 2 1N ϕ= −  is odd and 2N ϕ=  is even. 
5) Generate 10,000 samples each of size N from a mixture of two ( )jGomp α  components, then calculate 

the coverage percentage of NY . 
6) The prediction are conducted on the basis of a doubly type II censored samples and type II censored 

samples. 
The computational (our) results were computed by using Mathematica 6.0. When the prior parameters 

chosen as b1 = 1.5, b2 = 2, d1 = 1, d2 = 2 which yield the generated values of 10.516065, 1.46186,p α= =
2 3.1847.α =  In Tables 1-4, 95% BPI for future observations are computed in case of the one and two  
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Table 1. 95% BPI for future order statistics *
aT , 1,2a = , when 1 2 1 21.5, 2, 1, 2b b d d= = = =  and the generated parameters 

( )1 20.516065, 1.46186, 3.1847 .p α α= = =                                                                                    

Case 
( ),n r  

*
aT  

1S =  2S =  

( ),L U  Length ( ),L U  Length 

(10, 7) 
*

1T  (0.562965, 0.744602) 0.181638 (0.443015, 0.618514 ) 0.175499 
*

2T  (0.748781, 1.53094) 0.782164 (0.569291, 1.30527) 0.735977 

(15, 10) 
*

1T  (0.47374, 0.548465) 0.0747253 (0.40578, 0.480169) 0.0743882 
*

2T  (0.587001, 0.901358) 0.314357 (0.494304, 0.804901) 0.310597 

(20, 15) 
*

1T  (0.719253, 0.774191) 0.0549385 (0.601514, 0.65858 ) 0.0570667 
*

2T  (0.866788, 1.14337) 0.276584 (0.740253, 1.01961) 0.279359 

(50, 35) 
*

1T  (0.789649, 0.797004) 0.00735491 (0.555976, 0.563516 ) 0.00754019 
*

2T  (0.791368, 0.883652) 0.0922842 (0.559453, 0.816295) 0.256842 

 
Table 2. 95% BPI for the future upper record values *, 1,2aT a = , when 1 2 1 21.5, 2, 1, 2b b d d= = = =  and the generated pa-

rameters ( )1 20.516065, 1.46186, 3.1847 .p α α= = =                                                                                    

r  *
aT  

1S =  2S =  

( ),L U  Length ( ),L U  Length 

5 
*

1T  (1.47048, 2.71682) 1.24633 (0.783431, 1.80835) 1.02492 
*

2T  (1.50643, 3.48872) 1.98229 (0.803645, 2.5354) 1.73175 

8 
*

1T  (1.38189, 1.94658) 0.564687 (1.80196, 2.44531) 0.643359 
*

2T  (1.36459, 2.32526) 0.960663 (1.8222, 2.82042) 0.998218 

10 
*

1T  (1.93128, 2.45302) 0.52174 (1.90637, 2.49514 ) 0.58877 
*

2T  (1.91008, 2.76182) 0.851738 (1.92627, 2.83318) 0.906915 

 
Table 3. 95% BPI and PC for the future order statistics , 1,2bY b = , when 1 2 1 21.5, 2, 1, 2b b d d= = = =  and the generated 

parameters ( )1 20.516065, 1.46186, 3.1847 .p α α= = =                                                                                    

N 
( ),n r  bY  

1S =  2S =  

( ),L U  Length PC ( ),L U  Length PC 

10 
(20, 15) 

1Y  (0.00253099, 0.357705) 
0.355174 97.13 (0.00253088, 0.354125) 

0.351594 97.32 

2Y  (0.0249745, 0.561048) 
0.536074 97.50 (0.0250174, 0.552829) 

0.527811 97.55 

10 
(20, 18) 

1Y  (0.00253086, 0.352991) 
0.35046 96.72 (0.00253091, 0.353966) 

0.351435 96.99 

2Y  (0.0250486, 0.550266) 
0.525218 97.33 (0.0250276, 0.552571) 

0.527543 97.29 

15 
(30, 22) 

1Y  (0.00168778, 0.244183) 
0.242495 96.79 (0.00168788, 0.244617) 

0.242929 96.53 

2Y  (0.018541, 0.382363) 
0.363821 96.59 (0.0194943, 0.384252) 

0.364758 96.26 

15 
(30, 27) 

1Y  (0.00168747, 0.241649) 
0.239962 96.56 (0.0016876, 0.243342) 

0.241654 96.76 

2Y  (0.0163242, 0.374301) 
0.357976 97.29 (0.0172091, 0.379132) 

0.361923 96.92 
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sample predictions, respectively. In Table 5 and Table 6, 95% BPI for the medians of future samples with 
odd or even sizes are computed. Our results are specialized to ordinary order statistics and ordinary upper 
record values. 
 
Table 4. 95% BPI and PC for future ordinary upper record values , 1,2bY b = , when 1 2 1 21.5, 2, 1, 2b b d d= = = =  and the 

generated parameters ( )1 20.516065, 1.46186, 3.1847 .p α α= = =                                                                                    

Case N 
( ),n r  bY  

1S =  2S =  

( ),L U  Length PC ( ),L U  Length PC 

6 
(8, 5) 

1Y  (0.0244019, 1.26507) 1.24067 97.19 (0.0242337, 1.26247) 1.23824 97.20 

2Y  (0.184594, 1.79401) 1.60942 97.02 (0.177304, 1.8683) 1.69099 97.44 

6 
(8, 7) 

1Y  (0.0243355, 1.17383) 1.14949 96.89 (0.0245445, 1.25834) 1.23379 96.91 

2Y  (0.179104, 1.49161) 1.31251 97.36 (0.188427, 1.62202) 1.43359 97.37 

8 
(10, 7) 

1Y  (0.0240923, 1.1295) 1.10541 96.68 (0.0244941, 1.20562) 1.18112 96.92 

2Y  (0.169789, 1.47476) 1.30497 96.85 (0.187398, 1.59348) 1.40609 96.03 

8 
(10, 9) 

1Y  (0.0239792, 1.08241) 1.05843 96.36 (0.0237464, 1.11903) 1.09529 96.75 

2Y  (0.161039, 1.35434) 1.1933 97.08 (0.153654, 1.41319) 1.25954 97.43 

 
Table 5. (Ordinary order statistics) 95% BPI and PC for future median NY  when 2 1N ϕ= −  is odd or 2ϕ , is even and

1 2 1 21.5, 2, 1, 2b b d d= = = =  and the generated parameters ( )1 20.516065, 1.46186, 3.1847 .p α α= = =                                           

30n =  
r  NY  

1S =  2S =  

( ),L U  Length PC ( ),L U  Length PC 

18 
5Y  (0.150064, 1.7981) 1.64804 96.70 (0.149628, 1.81497) 1.66534 96.55 

4Y  (0.15732, 1.87535) 1.71803 86.29 (0.156637, 1.89352) 1.73689 85.81 

22 
5Y  (0.150599, 1.78292) 1.63232 96.50 (0.150879, 1.77517) 1.62429 96.70 

4Y  (0.158553, 1.85921) 1.70066 85.77 (0.159278, 1.85101) 1.69173 85.63 

27 
5Y  (0.151131, 1.76607) 1.61494 96.39 (0.15093, 1.77256) 1.62163 96.69 

4Y  (0.160396, 1.84172) 1.68132 85.25 (0.159707, 1.8485) 1.68879 85.26 

 
Table 6. (Ordinary upper record values) 95% BPI and PC for future median NY  when 2 1N ϕ= −  is odd or 2ϕ , is even 

and 1 2 1 21.5, 2, 1, 2b b d d= = = =  and the generated parameters ( )1 20.516065, 1.46186, 3.1847 .p α α= = =                                                              

10n =  
r  NY  

1S =  2S =  

( ),L U  Length PC ( ),L U  Length PC 

5 
3Y  (0.160855, 2.18738) 2.02653  98.29 (0.145888, 2.22403) 2.07814 98.77 

2Y  (0.133759, 1.70622) 1.57246  84.56 (0.148567, 1.75259) 1.60402 83.42 

7 
3Y  (0.170573, 2.00065) 1.83008  98.14 (0.148896, 1.98626) 1.83736 98.66 

2Y  (0.142946, 1.5994) 1.45645  84.74 (0.140236, 1.60923) 1.469 84.34 

9 
3Y  (0.200611, 1.52718) 1.32657  96.87 (0.196739, 1.51186) 1.31512 96.75 

2Y  (0.116557, 1.29989) 1.18334  86.34 (0.118077, 1.27117) 1.1531  86.46 
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6.4. Conclusions 
1) Bayes prediction intervals for future observations are obtained using a one-sample and two-sample 

schemes based on a finite mixture of two Gompertz components model. Our results are specialized to 
ordinary order statistics and ordinary upper record values. 

2) Bayesian prediction intervals for the medians of future samples with odd or even sizes are obtained based 
on a finite mixture of two Gompertz components model. Our results are specialized to ordinary order 
statistics and ordinary upper record values. 

3) It is evident from all tables that the lengths of the BPI decrease as the sample size increase. 
4) In general, if the sample size n and censored size r are fixed the lengths of the BPI increase by increasing 

s. 
5) For fixed sample size n, censored size r and s, the lengths of the BPI increase by increasing a or b. 
6) The percentage coverage improves by the use of a large number of observed values. 
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