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Abstract 
In the traffic equilibrium problem, we introduce capacity constraints of arcs, extend Beckmann’s 
formula to include these constraints, and give an algorithm for traffic equilibrium flows with ca-
pacity constraints on arcs. Using an example, we illustrate the application of the algorithm and 
show that Beckmann’s formula is a sufficient condition only, not a necessary condition, for traffic 
equilibrium with capacity constraints of arcs. 
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1. Introduction 
In [1], Wardrop introduced the traffic equilibrium problem and proposed a scalar equilibrium principle. In [2], 
Beckmann et al. gave a mathematical programming problem that was equivalent to Wardrop’s traffic equili-
brium problem. Using Beckmann’s work, it is possible to find the traffic equilibrium flow if the cost function is 
a scalar. In [3], Chen and Yen generalized Wardrop’s equilibrium principle to a (weak) vector equilibrium prin-
ciple. In [4] [5], we extended the vector equilibrium principle to capacity constraints along arcs and derived ex-
istence and stability results for (weak) vector equilibrium flows. In this paper, we introduce the traffic equili-
brium problem with capacity constraints of arcs (TEPCCA), extend Beckmann’s transformation to cover capac-
ity constraints along arcs, and give an algorithm for traffic equilibrium flows with capacity constraints of arcs 
for scalar cost functions. As an example, we illustrate the algorithm and show that Beckmann’s transformation is 
a sufficient condition only, not a necessary condition, for traffic equilibria with capacity constraints of arcs. For 
other results with respect to traffic equilibrium with capacity constraints of arcs, we refer to [6], and for other 
results with respect to algorithms of equilibrium flows, we refer to [7]-[9] and the references therein. 
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For a traffic network, let V denote the set of nodes, E the set of directed arcs, and W the set of origin- 
destination O-D pairs. For each Wω∈ , let Pω  denote the set of available paths joining O-D pair ω and denote  
by ,

W
K P m Kωω∈
= =


. Let ( ) W
D dω ω∈
=  denote the demand vector, with ( )0dω >  denoting the traffic  

demand on O-D pair ω. For each a E∈ , the arc flow { }: 0af R z R z+∈ = ∈ ≥ . For each Wω∈  and k Pω∈ ,  
let ( )0kf ≥  denote the traffic flow on path k. ( ) ( ){ }T

1 2, , , : 0, 1, 2, ,m m
k m ik K

f f R z z z R z i m+∈
= ∈ = ∈ ≥ =    

is said to be a path flow (flow). Clearly, for a E∈ , a ak kW k Pf f
ωω δ

∈ ∈
= ∑ ∑ , where 1akδ =  if arc a belongs to  

path k, otherwise 0akδ = , thus ( )a af f f= . Let ( )a a E
C c

∈
=  denote the capacity vector, where ( )0ac >  

denotes the capacity of flow on arc a. A traffic network is usually denoted by { }, , , ,V E W D Cℵ= . For each arc 
a E∈ , the flow on arc a needs to satisfy the capacity constraint: 0a ac f≥ ≥ , and for each Wω∈ , the flow f 
needs to satisfy the demand constraint: kk P f d

ω ω∈
=∑ . A flow f satisfying the demand and capacity constraints 

is called a feasible path flow (a feasible flow for short). Let 

{ }: , and , 0m
k a ak PA f R W f d a E c f

ω ωω+ ∈
= ∈ ∀ ∈ = ∀ ∈ ≥ ≥∑ . 

In this paper, we assume that for each Wω∈ , the demand dω  is fixed and A ≠ ∅ . It is easy to verify that A 
is convex and compact. For each a E∈ , let ( ) ( )a a a at t f t f R+= = ∈  be the cost on arc a, and for each 

, wW k Pω∈ ∈ , the cost kt  along path k is assumed to be the sum of all arc costs along k, i.e., 
( ) ( )k ak aa Et f t fδ

∈
= ∑ . 

2. Preliminaries 
For the following definitions, see [4] [5]. 

Definition 2.1. Assume that a flow f A∈ . 
1) for a E∈ , if a af c= , then a is said to be a saturated arc of flow f, otherwise a nonsaturated arc of flow f. 

2) for W
k Pωω∈
∈


, if there exists a saturated arc a of flow f such that a belongs to path k, then k is said to be  

a saturated path of flow f, otherwise a nonsaturated path of flow f. 
Definition 2.2. (Equilibrium principle with capacity constraints of arcs). A flow f A∈  is said to be in equi-

librium if, 

( ) ( ), , , 0k jW k j P t f t fωω∀ ∈ ∀ ∈ − >  

0 or path is a saturated path of flow .kf j f⇒ =  

f is said to be an equilibrium flow or solution of the TEPCCA. A TEPCCA is usually denoted by { }, ,A tΓ = ℵ . 

3. A Generalization of Beckmann’s Formula 
For the TEPCCA { }, ,A tΓ = ℵ , construct the following mathematical programming problem Q: 

( ) ( )
0

Min d

, ,

. . , , ,

0, , .

af
aa E

k
k

a k ak a
k

k

z f t x x

f d W k P

s t f f c a E W k P

f W k P

ω ω

ω
ω

ω

ω

δ ω

ω

∈
=

= ∀ ∈ ∈

 = ≤ ∀ ∈ ∈ ∈

 ≥ ∀ ∈ ∈

∑ ∫
∑

∑∑
 

The above formula is a generalization of Beckmann’s formula. The next theorem shows that each solution of 
the generalization of Beckmann’s formula is an equilibrium flow for Γ . 

Theorem 3.1. Consider the TEPCCA. Assume that for each a E∈ , ( )at f  is continuous on mR+ , then the 
flow f A∈  is in equilibrium if f solves the mathematical programming problem Q. 

Proof. Set kkh f dω ω= −∑  and a a ag c f= − . The Kuhn-Tucker conditions for the problem Q are: 
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[ ]

( )

0, ,

0,
0, ,

0, 0, 0, , ,

a
a k

ak k k

a a a

k k

a k

z f h g
W k P

f f f
c f a E

f W k P
W a E k P

ω
ω ω

ω

ω

ω ω

ρ λ β ω

λ
β ω
ρ λ β ω

∂ ∂ ∂
− − − = ∀ ∈ ∈ ∂ ∂ ∂
− = ∀ ∈

 ≥ ∀ ∈ ∈
 ≥ ≥ ≥ ∀ ∈ ∈ ∈

∑ ∑
 

where , aωρ λ  and kβ  are Lagrange multipliers. Since for each a E∈ , ( )at f  is continuous on mR+ , we 
have 

[ ] ( ) ( ) ( )
0 0

d d , .a af f a
a a a ak k

a a ak k a k k

z f f h
t x x t x x t f t

f f f f f
ω

ω ω
ω

δ ρ ρ
∂ ∂ ∂∂ ∂ = = ⋅ = = = ∂ ∂ ∂ ∂ ∂ 

∑ ∑ ∑ ∑∫ ∫  

When path k is a nonsaturated path of flow f, for each a k∈ , we have 0a ac f− > . Note that ( ) 0a a ac fλ − = , 
we have 0aλ = . Thus, 

0 if path is a nonsaturated path of flow
0 otherwise.

a a
a a a

a a k a kk k

k fg g
f f

λ λ λ
∈ ∈

=∂ ∂ 
= = − ≤∂ ∂ 

∑ ∑ ∑  

Hence, when k is a nonsaturated path, we have ( ) 0k kf t ωρ− = , i.e., 

if 0, ,
if 0, ,

k k

k k

f t W k P
f t W k P

ω ω

ω ω

ρ ω
ρ ω

> = ∀ ∈ ∈
= ≥ ∀ ∈ ∈

 

and when k is a saturated path, we have ( ) 0k k aa kf t ωρ λ
∈

− + =∑ , i.e., 

( )if 0, 0 ,
if 0, 0 ,

k k aa k

k k

f t W k P
f t W k P

ω ω ω

ω

ρ λ ρ ω
ω

∈
> ≥ = − ≤ ∀ ∈ ∈
= ≥ ∀ ∈ ∈

∑  

In other words, if paths k is a nonsaturated path, then kt ωρ≥ , and if paths k such that 0kf > , then kt ωρ≤ . 
Thus, for ( ) ( ), , , 0k jW k j P t f t fωω∀ ∈ ∀ ∈ − >  and j is a nonsaturated path, then 0kf = , otherwise 0kf > , 
which implies that ( ) ( )k jt f t fωρ≤ ≤ , a contradiction. By Definition 2.2, the proof is finished. 

From the generalization of Beckmann’s formula, it is easy to construct an algorithm to calculate the equili-
brium flow for the TEPCCA { }, ,A tΓ = ℵ . 

4. An Algorithm for the Traffic Equilibrium Flow with Capacity Constraints of Arcs 
For the TEPCCA { }, ,A tΓ = ℵ , because there are usually many paths in W

K Pωω∈
=


, implying that there are 
many variable in the generalization of Beckmann’s formula, it is often difficult to compute its solution. Note that 
there are many paths for which the flow is zero in an equilibrium flow. If we delete these from K, it does not 
cause any change in the equilibrium flow. For this season, we construct the following algorithm to compute the 
equilibrium flow with capacity constraints of arcs. Assume that for each a E∈ , ( )at f  is continuous on mR+ . 

Step 1. Find a feasible flow 0f A∈  and denote by { }0 0: 0lH l K f= ∈ > . Let 0i = . 
Step 2. Solve the restricted problem iQ : 

( ) ( )
0

Min d

, ,

. . ,

0, .

af
aa E

i
k

k

a k ak a
k

i
k

z f t x x

f d W k H

s t f f c a E

f k H

ω

ω

ω

δ

∈
=

 = ∀ ∈ ∈

 = ≤ ∀ ∈

 ≥ ∀ ∈

∑ ∫
∑

∑∑
 

We obtain solution 1if A+ ∈ . For each O-D pair Wω∈ , denote by ( ){ }1 1 1max : 0i i i
l P l lt f f

ωωτ
+ + +

∈= > , 
where ( )1i

lt f +  denotes the cost of path l when flow is 1if +  on the network ℵ . 
Step 3. After deleting all saturated arcs of the flow 1if +  in the network ℵ , we compute its shortest path for 
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each O-D pair. For each O-D pair Wω∈ , let 1iSω
+  = { l Pω∈ : l is a shortest path for ω  and ( )1 1i i

lt f ωτ
+ +< }. 

Step 4. If 1 1i i
W

S Sωω
+ +

∈
= = ∅


, go to Step 5; otherwise let 1 1, 1i i iH H S i i+ += = +  and go to Step 2. 

Step 5. The equilibrium flow is 1if +  for the TEPCCA and stop. 
The following example shows the calculation process of the algorithm. 
Example 4.1. Consider the TEPCCA (see Figure 1), where 

{ }1,2,3,4,5,6V = , { }1 2 3 4 5 6 7 8 9 10 11, , , , , , , , , ,E e e e e e e e e e e e= , ( )6,7,10,8,7,5,9,7,9,11,7C = , 

{ } ( ) ( ){ }1, 2 1,4 , 3,6W ω ω= = , ( ) ( )1 2, 9,8D d dω ω= = , 

and 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 2 2 3 3 3 4 4 4

5 5 5 6 6 6 7 7 7 8 8 8

9 9 9 10 10 10 11 11 11

2 2 2 2

2 2 2

2 2 2

4 17, 3 18, 30 120, 2 84,

112, 2 18, 8 62, 6 65,

18, 15, 2 10.

e e e e e e e e e e e e

e e e e e e e e e e e e

e e e e e e e e e

t f f t f f t f f t f f

t f f t f f t f f t f f

t f f t f f t f f

= + = + = + = +

= + = + = + = +

= + = + = +

 

For O-D pair ( )1 1,4ω = : 1Pω  contains paths ( )1 3l e= , ( )2 4 10l e e= , ( )3 1 5l e e= , and ( )4 1 6 10l e e e= , and 
for O-D pair ( )2 3,6ω = : 2Pω  contains paths ( )5 9l e= , ( )6 7 11l e e= , ( )7 2 8l e e=  and ( )8 2 6 11l e e e= . 

Let ( )T 8
1 2 3 4 5 6 7 8, , , , , , ,f f f f f f f f f R+= ∈ , where jf  denotes the flow on path ( )1,2,3,4,5,6,7,8jl j = . 

Thus, we have 

1 2 3 4 5 63 4 7 8 1 2 3 4 8, , , , , ,e e e e e ef f f f f f f f f f f f f f f= + = + = = = = +  

7 8 9 10 116 7 5 2 4 6 8, , , ,e e e e ef f f f f f f f f f f f= = = = + = + . 

Next, we compute the equilibrium flow with capacity constraints of arcs. 
1) It is easy to verify that 

( ) ( )T T0
1 2 3 4 5 6 7 8, , , , , , , 9,0,0,0,8,0,0,0f f f f f f f f f A= = ∈ . 

{ } { }0 0
1 5: 0 ,lH l K f l l= ∈ > = . Let 0i = . 

2) Solve the restricted problem 0Q : 

( ) ( ) 3 3
1 1 5 50

1

5

1Min d 10 120 18
3

9
. .

8

af
aa Ez f t x x f f f f

f
s t

f

∈
= = + + +

=
 =

∑ ∫
 

We obtain solution 1 0f f A= ∈ . For O-D pair ( )1 1,4ω = , 1
1 2550ωτ = , and for O-D pair ( )2 3,6ω = , 

1
2 82ωτ = . 

 

 
Figure 1. A traffic network. 
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3) There is no saturated arc of flow 1f  in the network ℵ . For O-D pair ( )1 1,4ω = , it is easy to verify that 
the shortest path is 4l , whereas for O-D pair ( )2 3,6ω = , the shortest path is 8l . Note that 

( ) ( )4 8

1 1 1 1
1 250 2550, 46 82l lt f t fω ωτ τ= < = = < = , 

thus { } { }1 1
1 4 2 8,S l S lω ω= = . 

4) Since { }1 1 1
1 2 4 8,S S S l lω ω= = ≠ ∅ , let { }1 0 1

1 4 5 8, , ,H H S l l l l= =  and solve the restricted problem 
1Q : 

( ) ( ) ( ) ( )

( )

23 3
1 1 4 4 4 8 4 80

3 3 3 3
4 4 5 5 8 8 8 8

23 3 3 3
1 1 4 4 4 8 5 5 8 8

1 4

5 8

4 8

1 4 5

4Min d 10 120 17 18
3

1 1 215 18 18 10
3 3 3

5 1 510 120 50 18 46
3 3 3

9
8

. .
5

10 0, 6 0, 9 0, 7

af
aa Ez f t x x f f f f f f f f

f f f f f f f f

f f f f f f f f f f

f f
f f

s t
f f

f f f

∈
= = + + + + + + +

+ + + + + + + +

= + + + + + + + + +

+ =
+ =
+ ≤
≥ ≥ ≥ ≥ ≥ ≥ ≥

∑ ∫

8 0f






 ≥

 

We obtain solution ( )T2 4,0,0,5,8,0,0,0f A= ∈ . For O-D pair ( )1 1,4ω = , 2
1 600ωτ = , and for O-D pair 

( )2 3,6ω = , 2
2 82ωτ = . 

5) After deleting saturated arc 6e  of flow 2f  in the network ℵ . For O-D pair ( )1 1,4ω = , it is easy to 
verify that the shortest path is 2l , whereas for O-D pair ( )2 3,6ω = , the shortest path is 5l . Note that 

( ) ( )2 5

2 2 2 2
1 2124 600, 82 82l lt f t fω ωτ τ= < = = = = , 

thus { }2 2
1 2 2,S l Sω ω= = ∅ . 

6) Since { }2 2 2
1 1 2S S S lω ω= = ≠ ∅ , let { }2 1 2

1 2 4 5 8, , , ,H H S l l l l l= =  and solve the restricted problem 
2Q : 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

23 3
1 1 4 4 4 8 4 80

3 3 3 3 3
2 4 2 4 2 2 5 5 8 8 8 8

2 33 3
1 1 4 4 4 8 2 4

3 3 3
2 2 5 5 8 8

1 2 4

4Min d 10 120 17 18
3

1 2 1 215 84 18 18 10
3 3 3 3

4 110 120 50
3 3

2 1 599 18 46
3 3 3

. .

af
aa Ez f t x x f f f f f f f f

f f f f f f f f f f f f

f f f f f f f f

f f f f f f

f f f

s t

∈
= = + + + + + + +

+ + + + + + + + + + + +

= + + + + + + +

+ + + + + +

+ +

∑ ∫

5 8

2 4

4 8

1 2 4 5 8

9
8
11
5

10 0, 8 0, 6 0, 9 0, 7 0

f f
f f
f f

f f f f f

=
 + = + ≤
 + ≤

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

 

We obtain solution ( )T3 1.44,3.64,0,3.92,6.92,0,0,1.08f A= ∈ . For O-D pair ( )1 1,4ω = , 3
1 182.20ωτ = , 

and for O-D pair ( )2 3,6ω = , 3
2 65.89ωτ = . 

7) After deleting saturated arc 6e  of flow 3f  in the network ℵ . For O-D pair ( )1 1,4ω = , it is easy to ve-
rify that the shortest path is 2l , whereas for O-D pair ( )2 3,6ω = , the shortest path is 5l . Note that  

( ) ( )2 5

3 3 3 3
1 2182.20 182.20, 65.89 65.89l lt f t fω ωτ τ= = = = = = , thus 3 3

1 2,S Sω ω= ∅ = ∅ . 
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8) Because 3 3 3
1 2S S Sω ω= = ∅ , the equilibrium flow is ( )T3 1.44,3.64,0,3.92,6.92,0,0,1.08f = , hence 

stop. 
Note that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 1

1 1 1

2 2

2 2 2

3 3

3 3 3

4 4

4 4 4

32 3
3 4 3 40 0

32 3
7 8 7 80 0

2 3 3
1 10 0

2 3
0 0

4 4d 4 17 d 17 17 ,
3 3

d 3 18 d 18 18 ,

d 30 120 d 10 120 10 120 ,

2d 2 84 d 84
3

e e

e e

e e

e e

f f
e e e

f f
e e e

f f
e e e

f f
e e e

t x x x x f f f f f f

t x x x x f f f f f f

t x x x x f f f f

t x x x x f f

= + = + = + + +

= + = + = + + +

= + = + = +

= + = +

∫ ∫

∫ ∫

∫ ∫

∫ ∫

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

5 5

5 5 5

6 6

6 6 6

7 7

7 7 7

8 8

8 8

3
2 2

2 3 3
3 30 0

22
4 8 4 80 0

2 3 3
6 60 0

2 3
0 0

2 84 ,
3

1 1d 112 d 112 112 ,
3 3

d 2 18 d 18 18 ,

8 8d 8 62 d 62 62 ,
3 3

d 6 65 d 2 65

e e

e e

e e

e e

f f
e e e

f f
e e e

f f
e e e

f f
e e

f f

t x x x x f f f f

t x x x x f f f f f f

t x x x x f f f f

t x x x x f f

= +

= + = + = +

= + = + = + + +

= + = + = +

= + = +

∫ ∫

∫ ∫

∫ ∫

∫ ∫

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

8

9 9

9 9 9

10 10

10 10 10

11 11

11 11 11

3
7 7

2 3 3
5 50 0

32 3
2 4 2 40 0

32 3
6 8 6 80 0

2 65 ,

1 1d 18 d 18 18 ,
3 3

1 1d 15 d 15 15 ,
3 3
2 2d 2 10 d 10 10 .
3 3

e e

e e

e e

e

f f
e e e

f f
e e e

f f
e e e

f f

t x x x x f f f f

t x x x x f f f f f f

t x x x x f f f f f f

= +

= + = + = +

= + = + = + + +

= + = + = + + +

∫ ∫

∫ ∫

∫ ∫  

Thus the generalization of Beckmann’s formula Q is: 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

3 3 3
3 4 3 4 7 8 7 8 1 1

23 3 3
2 2 3 3 4 8 4 8 6 6

333 3
7 7 5 5 2 4 2 4 6 8 6 8

1 2 3 4

5 6 7 8

2 4

3 4

6

4Min 17 18 10 120
3
2 1 884 112 18 62
3 3 3

1 1 22 65 18 15 10
3 3 3

9
8

11
6

. .

z f f f f f f f f f f f

f f f f f f f f f f

f f f f f f f f f f f f

f f f f
f f f f
f f
f f

s t f

= + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + + + +

+ + + =
+ + + =
+ ≤
+ ≤

8

7 8

4 8

1 2 3 4

5 6 7 8

7
7
5

10 0,8 0,6 0,5 0,
9 0,7 0,7 0,5 0.

f
f f
f f

f f f f
f f f f






 + ≤
 + ≤

+ ≤
 ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥
 ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

 

It is easy to verify that ( )T1.44,3.64,0,3.92,6.92,0,0,1.08f =  is the solution of the generalization of Beck-
mann’s formula Q ( )( )Min 1327.31z f = . Clearly, f is an equilibrium flow for the TEPCCA. 

Note that ( )T1.46,3.74,0,3.80,6.80,0,0,1.20g =  is also an equilibrium flow for the TEPCCA, but it is not a  
solution of the generalization of Beckmann’s formula Q, i.e., Theorem 3.1 is a sufficient condition only, not a 
necessary condition. 
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