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Abstract 
The present study deals with MHD (magneto hydrodynamics) mixed convection flow of a Casson 
fluid over an exponentially stretching sheet with the effects of Soret and Dufour, thermal radiation, 
chemical reaction. The governing partial differential equations are converted into ordinary dif-
ferential equations by using similarity transformations. These equations are then solved numeri-
cally by applying finite difference scheme known as the Keller Box method. The effects of various 
parameters on velocity, temperature and concentration profiles are presented graphically to in-
terpret and the results are discussed. 
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1. Introduction 
The study of magneto hydrodynamics, boundary layer flow with heat and mass transfer from a stretching surface 
has many applications in industrial and engineering fields. Magnetic fields can be used to manage thermal en-
ergy in flowing electrically conducting polymers (Garnier [1]). After the pioneering studies of Sakiadas [2] and 
Crane [3], several researchers further investigate the problem of stretching sheet boundary layer flow to obtain 
thermal and kinematic behaviour by considering the various types of stretching velocity. Magyari and Keller [4] 
examine the similarity solutions of thermal boundary layer and flow over an exponentially stretching surface 
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with an exponential temperature distribution. Numerical solution of boundary layer flow over an exponentially 
stretching sheet including thermal radiation is investigated by Bidin and Nazar [5], and analytical study is inves-
tigated by Sajid and Hayat [6]. 

Casson fluid is one type of fluid model for non-Newtonian fluid, which has significant applications in poly-
mer processing industries and biomechanics. Casson fluid can be defined as a shear thinning liquid which is 
presumed to have an infinite viscosity at zero rate of shear and a yield stress under which no flow occurs and 
zero viscosity at an infinite rate of shear. Casson fluid model is used in many foodstuffs and biological materials, 
especially blood. It describes the steady shear stress, shear rate behaviour of blood. Merill et al. [7] and Mc 
Donald [8] investigate the behaviour of blood. Nadeem et al. [9] investigate the magneto hydrodynamic bound-
ary layer flow of Casson fluid over exponentially permeable shrinking sheet. Casson fluid over an unsteady 
stretching surface is analyzed by Mukhopadhyay [10]. The application of the minimal energy phenomenon to a 
Casson fluid is studied by John L. McGregor [11]. A similarity solution technique for mixed convection heat 
transfer from an exponentially stretching surface with the effect of viscous dissipation is investigated by Partha 
et al. [12]. Recently Dual pal [13] studies mixed convection heat transfer in the boundary layers over an expo-
nentially stretching surface including magnetic field. The effects on mixed free forced convective and mass 
transfer steady, laminar boundary layer flow over a vertical plate with temperature dependent viscosity are pre-
sented by Kafoussias and Williams [14]. 

The mass flux created by temperature gradient is known as thermal diffusion (Soret) effect. The energy flux 
caused by concentration differences is known as diffusion thermo (Dufour) effect. The Soret effect has been 
utilized for medium molecular weight (eg. N2 and air) and isotope separation. These effects have several appli-
cations in engineering problems. Here a survey conducted by Dursunkaya and Worek [15] on Soret and Dufour 
effects in transient and steady natural convection from a vertical surface. The combined effects of thermal diffu-
sion and diffusion thermo over stretching surface with free convective heat and mass transfer are investigated by 
Afify [16]. T. Hayat [17] describes the effects of Soret and Dufour on magneto hydrodynamic flow of Casson 
fluid. Alam and Rahman [18] study the Dufour and Soret effects on mixed convection flow with variable suction. 

Several researchers have studied the effects of thermal radiation, and these include that Pramanik [19] inves-
tigates Casson fluid flow and heat transfer over an exponentially stretching surface in the presence of thermal 
radiation and porous medium. Numerical analysis of magneto hydrodynamic stagnation point flow of a Casson 
fluid includes thermal radiation discussed by Shateyi and Marewo [20]. Anur Ishak [21] present the magneto 
hydrodynamic boundary layer flow over an exponentially stretching sheet with the effect of radiation. Swathi 
Mukhopadhyay [22] investigate Casson fluid flow and heat transfer on an unsteady stretching surface subjected 
to suction/blowing with the effect of thermal radiation. Recently effects of mass transfer on magneto hydrody-
namic flow of Casson fluid with chemical reaction are studied by S.A. Shehzad and T. Hayat [23]. 

This paper provides the solution to the problem of fluid flow, heat and mass transfer of a Casson fluid over an 
exponentially stretching surface by considering the effect of Soret and Dufour, thermal radiation, chemical reac-
tion by adopting the Keller Box method. 

2. Mathematical Formulation 
Consider two-dimensional steady, laminar, incompressible MHD flow of a Casson fluid over a vertical exponential 

surface stretching with velocity ( ) e
x
L

wU x a= , temperature distribution ( )wT x  and concentration distribution 

( )wC x  moving through a fluid of constant temperature T∞  and concentration C∞  as shown in Figure 1. The 
x-axis is oriented about the vertical surface in the upward direction and y-axis is normal to it. A magnetic field is 
applied in the direction perpendicular to the stretching surface. The magnetic Reynolds number is taken to be 
small enough such that the induced magnetic field is negligible. The rheological equation of state for an iso-
tropic and incompressible flow of a Casson fluid can be written as: 

2
2

y
ij b ij

P
eτ µ

π
 

= + 
 

 when cπ π>                               (1) 
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Figure 1. Physical model and coordinate system.                          

yP  is known as yield stress of the fluid, mathematically expressed as 2b
yP

µ π
β

= , bµ  is known as plastic  

dynamic viscosity of the non Newtonian fluid, π is the product of the component of deformation rate with itself 
(i.e. ij ije eπ = ) and ijτ  is the (i, j)th component of the stress tensor. 

Considering u, v as velocity components in the directions of x and y respectively in the flow field. The gov-
erning equations of continuity, momentum, energy and concentration are given by 

0u v
x y
∂ ∂

+ =
∂ ∂

                                        (3) 

( ) ( )( )
2 2

*
2

11 T C
u u u B uu v g T T C C
x y y

συ β β
β ρ∞ ∞

 ∂ ∂ ∂
+ = + + − + − − ∂ ∂ ∂ 

               (4) 
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να
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 ∂  ∂ ∂ ∂ ∂ ∂
+ = − + + +  ∂ ∂ ∂ ∂∂ ∂  

                 (5) 

( )
2 2

2 2
T

m

DKC C C Tu v D k C C
x y Ty y ∞

∂ ∂ ∂ ∂
+ = + − −

∂ ∂ ∂ ∂
.                           (6) 

where ρ  is the density of the fluid, σ  is the electrical conductivity, υ  is the kinematic viscosity, B is the 
magnetic induction, α is the thermal diffusivity, D is the solutal diffusivity of the medium, Tβ  and Cβ  are the 
coefficient of thermal and solutal expansions, μ is the dynamic co-efficient of viscosity, pC  and sC  are the 
specific heat capacity and concentration susceptibility, mT  is the mean fluid temperature, TK  is the thermal 
diffusion ratio, γ is the chemical reaction parameter and 2b c yPβ µ π=  is the Casson parameter. 

The boundary conditions considered are defined as: 

( ) ( ) 2
0e , 0, e

x x
L L

w wu U x a v T T T T T∞ ∞= = = = = + −  

( ) 2
0 e

x
L

wC C C C C∞ ∞= = + −  at 0y =                              (7) 

, ,0u T T C C∞ ∞= → →  as y →∞                               (8) 

where subscripts w and ∞  indicate that conditions at the wall and at the external(outer) edge of the boundary 
layer respectively and ( )wU x  is the stretching velocity, ( )wT x  and ( )wC x  are the exponential temperature 
and concentration distribution respectively. 

In above conditions “a” is velocity parameter of the stretching surface, 0T  is temperature distribution pa-
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rameter, 0C  is the parameter of the concentration distribution in the stretching surface. 

We introduce stream function ψ as Ψu
y

∂
=
∂

, v
x
ψ∂

= −
∂

 and define variables. 

( ) ( ) ( )2 2e , e , e
2 2

x x x
L L La au a f y v f f

L L
υη η η η η

υ
′ ′= = = − +    

( ) ( ) ( ) ( ) ( ) ( )2 2
0 0, e , , e

x x
L LT x y T T T C x y C C Cθ η φ η∞ ∞ ∞ ∞= + − = + −  

By using the Rosseland approximation for radiative heat flux, rq  is defined as: 
* 4

*

4
3r

Tq
yK k

σ ∂
= −

∂
                                           (9) 

where *σ  is the Stephen Boltzman constant and *K  is the mean absorption coefficient. Since the temperature 
differences within the flow field are assumed to be small, and then we linearize and expand 4T  into the Taylor 
series about T∞ , which after neglecting higher order forms take the form. 

4 3 44 3T T T T∞ ∞≅ −  

To obtain similarity solutions, we assumed that the magnetic field is of the form ( ) 0e
x
LB x B=  where 0B  is 

the constant magnetic field and ( ) 0e
x
LK x K=  is the exponential reaction, 0K  is constant. 

With the help of above similarity transformations the governing equations are transformed in to 

( ) ( )
3

2 211 2 2 e 0
X

f ff f N Mfλ θ φ
β

−  ′′′ ′′ ′ ′+ + − + + − = 
 

                       (10) 
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3
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3

X
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   

               (11) 

( ) 0Sc f f ScSr Scφ φ φ θ γφ′′ ′ ′ ′′+ − + − =                              (12) 

The corresponding boundary conditions are 

( ) ( ) ( ) ( )0 1,0 0 1, 0 1 0 1: ,f f θη φ′= = = ==  

( ) ( ) ( ): 0, 0, 0fη θ φ′→ ∞ ∞ = ∞ = ∞ =  

where xX
L

=  is the X-location, observing Equations (10), (11) in MHD mixed convection due to Casson fluid, 

the velocity and temperature profiles are not similar because the x coordinate cannot be deleted from these equa 

tions. It is hard to proceed in this case. To reduce the difficulty of analysis, it was considered xX
L

=  to find 

local similarity solutions for the governing equations. Now one can study the effects of different parameters on 
various profiles at any given X-location. 

2
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γ =  is the chemical reaction parameter. 
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The wall shear stress, heat and mass transfer coefficients with constant density are given by  

02
y
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y
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τ µ
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 
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 where k is the thermal conductivity. The 

dimensionless form of skin friction 2
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2
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x

Re
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3. Method of Solution 
The governing equations with boundary equations are solved numerically by using finite difference scheme 
known as Keller Box method which is described by Cebeci and Bradshaw [24]. This method involves the fol-
lowing steps: 

Step 1: Reducing higher order ODEs (systems of ODES) in to systems of first order ODEs; 
Step 2: Writing the systems of first order ODEs into difference equations using central difference scheme; 
Step 3: Linearizing the difference equations using Newton’s method and writing it in vector form; 
Step 4: Solving the system of equations using block elimination method. 

4. Numerical Discussions 
To solve the above differential equations numerically, we adopt Matlab software. In this process the step size, 

0.01η∆ =  is used to obtain numerical solution with five decimal place accuracy as the criterion of convergence. 
Table 1 shows that the comparison between wall temperature gradient ( )0θ ′  calculated by the present method 
and of Magyari and Keller for λ = X = Df = Nr = Sr = γ = N = M = Sc = Ec = 0 and β →∞ . The numerical  

vales of ( )11 0f
β

  ′′+ 
 

, ( )0θ ′− , and ( )0φ′−  for the various values of λ, X, Df , Nr, Sr, γ, β are shown in Ta-

ble 2. 

5. Results and Discussion 
In the present study, the following values are adopted for the numerical computations N = 0.5, Df = 0.03, Sr = 
0.5, λ = 1.0, Pr = 1.0, M = 1.0, Sc = 0.22, X = 0.5, γ = 0.1, β = 0.5. These values are used throughout the calcula-
tions unless otherwise mentioned. 

Figure 2 shows that the non-dimensional velocity profile for different values of the mixed convection pa-
rameter λ. We have observed the results for both aiding flow and apposing flow. It illustrates that the dimen-
sionless velocity increases, as the value of λ increases. As λ increases, the buoyancy effects increase and hence 
the fluid flow accelerates. In the case of mixed convection, temperature is low for aiding flow and more for  
 
Table 1. Comparison of results for ( )0θ′−  with previous published work.                                            

Pr Magyari and Keller [4] Present 

0.5 
1.0 
3.0 
5.0 
8.0 
10.0 

−0.59434 
−0.95478 
−1.86908 
−2.50014 
−3.24213 
−3.66038 

−0.5946 
−0.9548 
−1.8691 
−2.5002 
−3.2423 
−3.6606 
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Table 2. Effects of skin friction coefficient, heat and mass transfer coefficients for various values of λ, X, Df , Nr, Sr, γ and β.      

Λ X Nr Sr  𝐷𝐷𝑓𝑓  γ Β (1 + 1/β)"(0) −θ'(0) −Ф'(0) 

1.0 
2.0 
3.0 

0.5 
0.5 
0.5 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

0.03 
0.03 
0.03 

0.1 
0.1 
0.1 

0.5 
0.5 
0.5 

−1.9167 
−1.1259 
−0.3918 

0.6505 
0.7017 
0.7383 

0.4246 
0.4560 
0.4797 

1.0 
1.0 
1.0 

0.2 
1.0 
2.0 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

0.03 
0.03 
0.03 

0.1 
0.1 
0.1 

0.5 
0.5 
0.5 

−1.4607 
−2.3684 
−2.7091 

0.6870 
0.5841 
0.3124 

0.4431 
0.4044 
0.4054 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

1.5 
3.0 
4.6 

0.5 
0.5 
0.5 

0.03 
0.03 
0.03 

0.1 
0.1 
0.1 

0.5 
0.5 
0.5 

−1.8828 
−1.8174 
−1.7766 

0.5637 
0.4204 
0.3429 

0.4371 
0.4593 
0.4722 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

1.0 
1.0 
1.0 

1.0 
3.0 
5.0 

0.03 
0.03 
0.03 

0.1 
0.1 
0.1 

0.5 
0.5 
0.5 

−1.9071 
−1.8687 
−1.8309 

0.6527 
0.6612 
0.6692 

0.3779 
0.1894 
−0.0019 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

1.0 
2.0 
3.0 

0.1 
0.1 
0.1 

0.5 
0.5 
0.5 

−1.8774 
−1.8372 
−1.7967 

0.5596 
0.4601 
0.3535 

0.4387 
0.4530 
0.4675 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

0.03 
0.03 
0.03 

0.15 
0.25 
0.35 

0.5 
0.5 
0.5 

−1.9203 
−1.9266 
−1.9326 

0.6496 
0.6480 
0.6466 

0.4394 
0.4670 
0.4927 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

1.0 
1.0 
1.0 

0.5 
0.5 
0.5 

0.03 
0.03 
0.03 

0.1 
0.1 
0.1 

0.8 
1.0 
1.5 

−1.6085 
−1.4976 
−1.3415 

0.6370 
0.6315 
0.6233 

0.4171 
0.4143 
0.4101 

 

 
Figure 2. Velocity profiles for various values of mixed con-
vection parameter λ.                                       

 
opposing flow. As λ increases, the convection cooling effect increases and therefore temperature decreases. 
Figure 3, Figure 4 reveal that the dimensionless temperature and concentration reduces with increase of λ. 

Figure 5 depicts the effects of Casson parameter β on dimensionless velocity profiles for impermeable 
stretching surface. The velocity is found to decrease with the increasing Casson parameter β. Figure 6, Figure 7 
present the temperature and concentration profiles for Casson parameter β. It shows that the both temperature 
and concentration profiles decreasing with increasing of β. Figure 8 illustrates the velocity profile for different 
values of the magnetic parameter M. The presence of magnetic field reduces the momentum boundary layer  
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Figure 3. Temperature profiles for various values of mixed 
convection parameter λ.                                   

 

 
Figure 4. Concentration profiles for various values of mixed 
convection parameter λ.                                 

 

 
Figure 5. Velocity profiles for various values of Casson pa-
rameter β.                                             



K. Sharada, B. Shankar 
 

 
172 

 
Figure 6. Temperature profiles for various values of Casson 
parameter β.                                          

 

 
Figure 7. Concentration profiles for various values of Casson 
parameter β.                                           

 

 
Figure 8. Velocity profile for various values of magnetic pa-
rameter M.                                            
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thickness. Thus the velocity decreases as the magnetic parameter increases. 
Increasing the values of the Ec generates heat in the fluid due to frictional heating. Figure 9 demonstrates that 

influence of the Ec on the profile of temperature. It is observed that the temperature profile increases as the 
value of the Ec increases. The effects of Prandtl number on temperature profiles are shown in Figure 10. Prandtl 
number can be used to increase the rate of cooling conducting fluids. Prandtl number signifies the ratio of mo-
mentum diffusivity to thermal diffusivity. Temperature is found to decrease with increasing Pr. Pr = 1, indicates 
that the velocity boundary layer and thermal boundary layer are approximately equal. 

Figure 11 displays the effect of thermal radiation of the temperature profiles. From this we observe that the 
temperature increases with increasing value of the parameter Nr. Figure 12 shows that the effect of Soret on 
concentration profile. An increase in the Soret number increases the concentration and the boundary layer 
thickness. It is observed that the concentration profile increases as the Sr increases. 

Figures 13-15 explain the effects of the X-location on the velocity, temperature and concentration profiles. 
From Figure 13, it is observed that the velocity profile decreases with an increase in X in the boundary layer. 
Figure 14 depicts that as the value of X increases, the temperature increases. The concentration profile increases 
with as increasing the value of X. 

The effect of fD  on temperature profile is depicted in Figure 16. The temperature profile increases as fD  
increases. Figure 17 displays the nature of concentration profiles for various values of chemical reaction  
 

 
Figure 9. Temperature profile for various values of Eckert 
number Ec.                                           

 

 
Figure 10. Temperature profile for various values of number 
Pr.                                                     
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Figure 11. Temperature profile for various values of radiation 
parameter Nr.                                         

 

 
Figure 12. Concentration profile for various values of Soret 
number Sr.                                            

 

 
Figure 13. Velocity profile for various values of X-location.     
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Figure 14. Temperature profile for various values of X-loca- 
tion.                                                   

 

 
Figure 15. Concentration profile for various values of X-lo- 
cation.                                                

 

 
Figure 16. Temperature profile for various values of Dufour 
number Df.                                            
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Figure 17. Concentration profile for various values of chem-
ical reaction parameter γ.                                      

 
parameter γ. Chemical reaction increases the rate of interfacial mass transfer and reduces the local concentration. 
Therefore the concentration profile decreases with an increase of the parameter γ. 

6. Conclusions 
The numerical solutions for MHD mixed convection flow of a Casson fluid over an exponentially stretching sur- 
face with Soret and Dufour, thermal radiation, chemical reaction are analyzed. The results are presented graphi-
cally with various parameters and the values are agreed with previously published work. From the graphical re- 
presentations, we have the following observations: 
• The effect of Casson fluid parameter when treated as fluid with variable plastic dynamic viscosity, the veloc-

ity profile decreases, temperature and concentration distributions are increased. 
• The temperature increases with increasing values of the radiation parameter and Dufour number fD . 
• An increase in the mixed convection parameter λ increases the velocity profiles, and decreases the tempera-

ture profiles and concentration profiles. 
• An increase in the X-location reduces the non-dimensional velocity increase in the temperature and concen-

tration distribution. 
• With increasing values of chemical reaction parameter γ, the velocity profile decreases. 

An increase in the Soret number increases the concentration profile and the boundary layer thickness. 
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