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Abstract

Let In(r)={XG]R”

|Xi|s ri =1,2,---,n} be a hypercube in R". We prove theorems concerning

mean-values of harmonic and polyharmonic functions on |, (r) , which can be considered as nat-
ural analogues of the famous Gauss surface and volume mean-value formulas for harmonic func-

tions on the ball in R" and their extensions for polyharmonic functions. We also discuss an ap-
plication of these formulas—the problem of best canonical one-sided Ll-approximation by har-

monic functions on 1, (r).
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1. Introduction

This note is devoted to formulas for calculation of integrals over the n-dimensional hypercube centered at 0

[, = In(r)::{XG]R"

x| < r,i:1,2,---,n}, r>0,

and its boundary P, :=P,(r):=4l,(r), based on integration over hyperplanar subsets of I, and exact for
harmonic or polyharmonic functions. They are presented in Section 2 and can be considered as natural analogues
on |, of Gauss surface and volume mean-value formulas for harmonic functions ([1]) and Pizzetti formula [2],
([3], Part 1V, Ch. 3, pp. 287-288) for polyharmonic functions on the ball in R". Section 3 deals with the best
one-sided L*-approximation by harmonic functions.
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Let us remind that a real-valued function f is said to be harmonic ( polyharmonic of degree m>2) in a given
domain QcR" if feC?*(Q) (f ec™ (Q)) and Af =0 (Amf :0) on Q, where A is the Laplace
operator and A™ is its m-th iterate

n 2
Af = %, A" f = A(A™H),
iz OX;

For any set D cR", denote by 7 (D) (ﬂm (D),m> 2) the linear space of all functions that are har-
monic (polyharmonic of degree m) in a domain containing D. The notation dA, will stand for the Lebesgue
measure in R".

2. Mean-Value Theorems

n g \¥2 .
Let B, (r)::{x eR"||x]= (Zi:le) < r} and S, (r)={xeR,||x|=r} be the ball and the hypersphere in
R" with center 0 and radius r. The following famous formulas are basic tools in harmonic function theory
and state that for any function h which is harmonic on B, (r) both the average over S (r) and the average
over B, (r) areequalto h(0).

The surface mean-value theorem. If he 3 (B (r)), then

1
mjsnmhd“n—l =h(0), o

where do,; isthe (n-1)-dimensional surface measure on the hypersphere S, (r).
The volume mean-value theorem. If he 3 (B, (r)), then

! jBn(r)houn =h(0). 2)

CAG)

The balls are known to be the only sets in R" satisfying the surface or the volume mean-value theorem. This
means that if Q < R" is a nonvoid domain with a finite Lebesgue measure and if there exists a point X, € Q
1
2 ()
open ball centered at X, (see [4]). The mean-value properties can also be reformulated in terms of quadrature
domains [5]. Recall that Q@ = R" is said to be a quadrature domain for 5’-[((2) if Q isaconnected open set
and there is a Borel measure dg with a compact support K, < Q such that fﬁf di, = IK fdu forevery A4, -

i

such that h(x,)= J'th/ln for every function h which is harmonic and integrable on Q, then Q isan

integrable harmonic function f on Q. Using the concept of quadrature domains, the volume mean-value
property is equivalent to the statement that any open ball in R" is a quadrature domain and the measure du
is the Dirac measure supported at its center. On the other hand, no domains having “corners” are quadrature
domains [6]. From this point of view, the open hypercube I is not a quadrature domain. Nevertheless, it is
proved in Theorem 1 below that the closed hypercube |, is a quadrature set in an extended sense, that is, we
find explicitly a measure du with a compact support K, having the above property with Q replaced by
I, butthe condition K, < I  is violated exactly at the “corners™ (for the existence of quadrature sets see [7]).
This property of | is of crucial importance for the best one-sided L'-approximation with respect to J{(In)
(Section 3).
Let us denote by D} the (n—l) -dimensional hyperplanar segments of |, defined by

D) = D,i]"(r)::{XE In||xk|s|xi|:|xj|,k £, j}, 1<i<j<n,
(see Figure 1). Denote also

o (X)= (r_maX{|X1|I'(|!X2|"”’|X”|}) . k>0,

and dAx =e@,dA, . It can be calculated that
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Figure 1. The sets D;’(1) (white), D;*(1) (green)and DZ(1) (coral).

rn+k r.n+k—1
A% (1.)=2"n! , A% (P)=2"nl——,
) =2ty AR =2
and
. rn+k—1
ﬂ’ﬁl(Dn)zz 1n!m, WhereD U1<I<j<n n-

The following holds true.
Theorem 1 If he H (1,), then h satisfies:
(i) Surface mean-value formula for the hypercube

1 1
lml ( Pn ) J.Pn n-1 ﬂn,l ( Dn ) IDn n-1 (3)

(ii) Volume mean-value formula for the hypercube

1
‘<7k — O+

A“’K '[ hdd, /1,?_‘51 (D,) J.Dnhd/ln‘ll’ k=0 “)

In particular, both surface and volume mean values of h are attained on D, .
Proof. Set

Xti :=(X1’" ) |—1’t’X|+1’ "'Xn)'
1

M, =M, (x):=max|x

j#i

and

Using the harmonicity of h, we get for

0= [ AhdA —ZI Oz

B T L L
a ;-[—r I ax ( )aX( )dXXm d)(I 1dX d

=_Zn:.[_rr...'[ {(I +J )S|gnxcok1 )aa:_(X)dxi}dxl”'dXi_ldXi+1”'an

= _i_[_rr"'.[._rr{.‘-l\:l-a)k‘l (X)ﬁ[h(xi—xi )+ h(x)]dxi }dx1 et dx., e

dA

n
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Hence, we have

0= —gfr'--ﬁr{h(xir)+h(xiﬂ)—[h(x‘,Mi )Jrh(x‘+Mi )}}dxl---dxifldxm---dxn (5)

if k=1 and
O==—§§[;-~j;j;ﬁ&72(x)[h(xiﬁ)4—h(x)}d&dxln-d&Adxnln‘dxn
- 6
+é¥;~[}w4(ﬂw)DWﬂMJ+h(ﬂMJ}wq~w$ﬂmﬂ~dm ©
if k>2.
Clearly, (5) is equivalent to (3) and from (6) it follows
0= jlmmz%-—jhdzqz 2jrmzn1, @)
which is equivalent to (4). a

Let M =M (x) =maX,., |x | Analogously to the proof of Theorem 1 (ii), Equation (7) is generalized to:
Corollary 1 1f he H (I ) and @eC?[0,r] issuchthat ¢(0)=0 and ¢'(0)=0, then

0= j M)Ahd2, = j "(r—M)hd2, 2j r—M)hdA,,. (8)

The volume mean-value formula (2) was extended by P. Pizzetti to the following [2] [3] [8].
The Pizzetti formula. If g ™ (B, (r)), then

2k k
.[B (r)gd/ln =r “n/zz & g(O)

22%T(n/2+k+1) k!

Here, we present a similar formula for polyharmonic functions on the hypercube based on integration over the
set D,.

Theorem 2 If ge{™(1,), m=>1,and @ eC*"[0,r] is such that (p<k)(o)=o, k=0,1,---,2m-1, then
the following identity holds true forany k >0:

J‘In(p(Zm) I" )gdl _ 22]‘ (0 (2s+1) -M )Am s 1gdﬂ~n,1; (9)
) dJ'
here ol (t)=—2(t).
where o7 (t) =221
Proof. Equation (9) is a direct consequence from (8):
0= j M)A"gdA,

- _ZJ.D"(D (r-M)A™gd4,, +.[| ¢? (r-M)A"*gd,

— :_ZZJ‘ ZSHAmSlgdlnl'i‘J.(Dzmgdﬂ

3. A Relation to Best One-Sided L1-Approximation by Harmonic Functions

Theorem 1 suggests that for a certain positive cone in C(In) the set D, is a characteristic set for the best
one-sided L'-approximation with respect to H (In) as it is explained and illustrated by the examples
presented below.

Foragiven f eC(l,), letus introduce the following subset of H (1,):

H (I, f)={hes(1,) )

A harmonic function h' e 5—[7(In, f) is said to be a best one-sided L*-approximant from below to f with
respectto H (I,) if
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|f=hS| <|f -h|, foreveryhe # (1,,),
where
lol, =, old4

Theorem 1 (ii) readily implies the following ([6] [9]).

Theorem3Let feC(l,) and h' e H (I, f). Assume further that the set D, belongs to the zero set of
the function f —h'.Then h' isa best one-sided L'-approximant from below to f with respectto (In).

Corollary 2 If f eC*(1,), any solution h of the problem

ho, = fio,» Vhp, =Vfp . h eH _(1,,1), (10)
is a best one-sided L'-approximant from below to f with respect to H ( I, )
Corollary 3 If f(x)= g(x)]_[lgkjgn(xi2 —xf)z, where geC(1,) and g>0 on I, then hf(x)=0 is

a best one-sided L"-approximant from below to f with respectto FH (1,).
Example1let n=2, r=1 and f (x,X,)=xX; .By Corollary 2, the solution

mfl(xl,xz)z—xf/4+gxfx22—x;‘/4 of the interpolation problem (10) with f = f, is a best one-sided L'-

appro-ximant from below to f, with respect to FH (Iz) and || f,—hb1 \ =8/45. Since the function f, belongs
4

to the positive cone of the partial differential operator D, ::W (that is, D;,f >0), one can compare
: X2Ox ,

the best harmonic one-sided L*-approximation to f, with the corresponding approximation from the linear sub-
space of C(l,):

fBZYZ(IZ):: {b EC(|2)|b(X1:X2): Z[an (Xl)le +ay; (Xz)xfl}-

j=0

The possibility for explicit constructions of best one-sided L -approximants from B“(Iz), is studied in [10].
The functions f, —h" and f —b; , where b” and b; are the unique best one-sided L'-approximants to f;
with respect to B*? ( | 2) from below and above, respectively, play the role of basic error functions of the cano-
nical one-sided L -approximation by elements of B”(Iz). For instance, bt can be constructed as the unique
interpolant to f, on the boundary ¢:= {(x1 %) € Ly|[%|+[%,| :1} of the inscribed square and

|| f,—h% ||1 =14/45 (Figure 2).

Example2Let n=2, r=1 and f,(x,X,)=x +14x'x; +X; . The solution
h'2 (%, %) =X +X —28(xfx§ + xfx§)+70xfx;‘ of (10) with f = f, is a best one-sided L"-approximant from

below to f, with respectto F (1,) and || f, —h/2[|=8/75 . It can also be verified that || f, —b'2 | =121/900
(see Figure 3).

Figure 2. The graphs of the function f,(x,x,)= x’x2 (coral) and its best one-sided L*-approximants from below,
h® with respectto H(1,) (left)and b with respectto B**(1,) (right).
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Figure 3. The graphs of the function f,(x,x,)= +14x/x; +X; (coral) and its best one-sided L'-approximants from
below, h' withrespectto H (1,) (leftyand b with respectto B>*(1,) (right).

Remark 1 Let ¢ eC?[0,r] is such that ¢(0)=0, ¢'(0)=0, and ¢'>0, ¢">0 on [0,r]. It follows
from (8) that Theorem 3 also holds for the best weighted L'-approximation from below with respect to .’J—[(In)
with weight (p”(r -M ) . The smoothness requirements were used for brevity and wherever possible they can be
weakened in a natural way.
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