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Abstract 
The advection diffusion equation was solved analytically using separation of variables technique, 
considering first the wind speed and eddy diffusivity as constants; second as variables dependent 
on vertical height z. Comparison between predicted two models and observed concentration on 
Inshas, Cairo (Egypt) is done. 
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1. Introduction 
Air pollutants released from various sources affect directly or indirectly man and his environment. Air pol-
lutants emitted from different sources are transported dispersed or deposited my meteorological and topograph-
ical conditions. Dispersion of pollutants in the atmosphere is governed by the following dominant mechanisms 
[1], mean air flow that transports the pollutants downwind and turbulent velocity fluctuations that disperse the 
pollutants in all directions. Under moderate to strong winds, the continuously emitted pollutants from a cone- 
shaped plume in the downwind direction of the source. In this case, advection in the mean wind direction domi-
nates over diffusion and dispersion in the crosswind and vertical directions is assumed to be non-Gaussian. 
Along-wind diffusion is particularly important near the leading edge of the plume, where uncontaminated 
fluid from upwind mixes with the mass initially released [2]. 

Analytical solutions of the advection-diffusion equation are usually obtained just for stationary conditions and 
by making strong assumptions about the eddy diffusivity coefficients (K) and wind speed profiles (U). They are 
assumed as constant throughout the whole Atmospheric Boundary Layer (ABL) or follow a power law [3]-[6]. 
Moreira et al. presented a solution of the advection-diffusion equation based on the Laplace transform consi-
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dering the ABL as a multilayer system [7]. Number of dispersion regulatory models includes improved disper-
sion algorithms in terms of fundamental scaling parameters [8]-[11]. Gryning et al. suggested a modeling approach 
composed by individual models [12]; each one based the specific turbulent structure of the regimes in the ABL, 
following [13]. The models give the crosswind-integrated concentrations at the ground, for non-buoyant releases 
from a continuous point source. They are limited to horizontally homogeneous conditions and travel distances 
less than 10 km. 

Palazzi et al. have proposed a simple model for studying the diffusion of substances emitted in steady-state re-
leases of short duration assuming the presence of an infinite mixing layer [14]. The Gaussian models, which are 
the best known and most widely used, are based on a solution of the two-dimensional advection equation where 
both the wind and exchange coefficients are assumed to be constant. The Gaussian model solution is forced to 
represent an inhomogeneous atmosphere through empirical dispersion parameters [15]. 

In this study, we have formulated a mathematical model for dispersion of air pollutants in moderated winds 
by taking into account the diffusion in vertical height direction and advection along the mean wind. The eddy 
diffusivity and wind speed are assumed to be constant. An analytical solution has been obtained for the resulting 
advection-diffusion equation with the physically relevant boundary conditions. The moderate data collected 
during the convective conditions. Nine experiments were conducted at Inshas site, Cairo-Egypt [16], which used 
to investigate the analytical solution. 

2. Mathematical Treatment 
The dispersion of pollutants in the atmosphere is governed by the basic atmospheric diffusion equation. Under 
the assumption of incompressible flow, atmospheric diffusion equation based on the Gradient transport theory 
can be written in the rectangular coordinate system as: 

x y z
C C C C C C Cu v w K K K S
t x y z x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
              (1) 

where C is the mean concentration of a pollutant (Bq/m3), (µg/m3) and (ppm); S is the source term, respectively; 
(u, v, w) and (kx, ky, kz) are the components of wind and diffusivity vectors in x, y and z directions, respectively, 
in an Eulerian frame of reference. 

The following assumptions are made in order to simplify Equation (1): 
1) Steady-state conditions are considered, i.e. 0.C t∂ ∂ =  
2) As the vertical velocity is much smaller than the horizontal one in x-direction, the term ( ) w C z∂ ∂  is 

neglected. 
3) x-axis is oriented in the direction of mean wind u = U and U much greater than the wind speed  v  in 

y-direction the term ( )v C y∂ ∂  is neglected). 
4) Source (physical/chemical) pollutants are ignored so that S = 0. 
With the above assumptions, Equation (1) reduces to: 

.x y z
C C C CU K K K
x x x y y z z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂    
                      (2) 

The advection term in x direction is larger than the diffusion in x direction then we will neglect the diffusion 
term in x direction, 

.y z
C C CU K K
x y y z z

 ∂ ∂ ∂ ∂ ∂ = +   ∂ ∂ ∂ ∂ ∂  
                            (3) 

Equation (3) is solved together with the following boundary conditions. 
 The is assumed to be a perfectly total absorption i.e., 

( ),
0 at 0, .

C x z
z z h

z
∂

= = =
∂

                               (4) 

 The pollutant is totally penetrate through the top of the inversion/mixed layer located at height h, 
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i.e. 

( ), , 0 at .C x y z z h= =                                   (5) 

 A continuous point source with strength Q is assumed to be located at the point (0, ys, zs), i.e. 

( ) as 0sUC Q z z xδ= − =                                 (6) 

where ( )δ   is Dirac’s delta function. 
 Far away from the source, the concentration decreases to zero, i.e. 

 0 as , .C xy z→ →∞                                  (7) 

2.1. Variable Eddy Diffusivity and Wind Speed 
Here we will use Equation (3), considering the wind speed U as linear of z: 

* 0, 0 and at 0oU k u z z U U z= ≠ = =                           (8) 

and eddy diffusivity kz is expressed as functions of power law of z as: 

1
n

zk u z=                                       (9) 

where ko is Von-Karmen constant and u∗ is the friction velocity. Where u1 is turbulence intensity. 
Also after integrating Equation (3) with respect to y from (−∞ to ∞), Equation (2) becomes: 

* 1
y yn

o

C C
k u z u z

x z z
∂ ∂ ∂

=  ∂ ∂ ∂ 
                             (10) 

which is simply reads: 
2

1 21 1
2

* *

.y y yn n

o o

C C Cu u nz z
x k u k u zz

− −∂ ∂ ∂
= +

∂ ∂∂
                         (11) 

One can solve the two-dimensional partial differential Equation (11) analytically by using the separation of 
variables technique. We take the solution of Equation (11) of the form: 

( ) ( ) ( ) , .yC x z X x Z z= ⋅                                (12) 

Differentiating Equation (12) partially with respect to x and z and substituting in Equation (11), we get two 
ordinary differential equations in the variables X and Z as follows: 

21 d
d
X

X x
λ= −                                     (13) 

and 
1 2 2

2
2

d d
dd

n nz Z z Z
Z Z zz

α β λ
− −

+ = −                               (14) 

where λ2 is a constant, 1 *ou k uα =  and 1 * .ou n k uβ =  
The general solution of Equation (13) is given by 

( ) 2
e xX x λγ −=                                     (15) 

where γ  is a constant. 
Equation (14) becomes: 

2 2
2 3

2

d d 0.
dd

nZ Zz nz z Z
zz

λ
α

−+ + =                               (16) 

Equation (16) which simply reads: 
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2
2 2 2 2* *
* * * *2

**

d d
0

dd
Z Zz z z Z

zz
η µ + + − =                                (17) 

where ( )22 2 ,4 3 1 3 .n n iη λ α µ= − = − −  
The solution of Equation (14) is obtained in different boundary conditions as follows: 
Equation (10) along with the following boundary condition corresponding to Equation (4) and Equation (5): 

0 at 0, .Z z h= =                                      (18) 

On changing the dependent Z and independent z variables in Equation (16) by means of the substitutes: 

*

1
3
* *

3
2

n
n

n

Z z Z

z z

−
−

−

=

=

                                       (19) 

Equation (17) is a Bessel equation and has a solution [17]: 
1 3 3

2 2 2
n n n

Z z AJ z BJ zµ µη η
− − −

−

    
= +            

                          (20) 

where jµ and J−µ the Bessel functions of first kind of order µ and −µ, respectively, A and B are constants, ap-
plication of the boundary condition Equation (18) at z = 0 in Equation (20) yields B = 0 and condition z = h 
Equation (18) gives rise: 

1 3
2 2 0.
n n

h J hµ η
− − 

=  
 

                                  (21) 

Equation (21) this represents Storm-Liouville Eigen value problem which have the corresponding Eigen 
functions: 

( )
1 3

2 2 1, 2,3, , .
n n

Z z z J zα µ αη α
− − 

= = ∞  
 

                         (22) 

The general of Equation (10) is obtained by using Equation (15), Equation (21) and Equation (22) as: 

( ) ( )
1 3

22 2

1
, exp

n n

yC x z z A J z xα µ α
α

η λ
− −∞

=

  
= −      

∑                      (23) 

where 1,2,3, ,Aαα = ∞  are the unknown coefficients. Equation (23) represent the concentration distribu-
tion Cy through the Fourier-Bessel series [18] corresponding to a set of Eigen function Zα. 

Estimation of the coefficients Aα’s for crosswind integrated concentrations: The source at x = 0, Equation (6) 
gives: 

( )
3 3

2 2
*

1
.

n n

o p sk u z A J z Q z zα µ α
α

η δ
− −∞

=

  
= −      

∑                       (24) 

To determine the values of Aα  we use the orthogonally of Eigen functions series [18]. 

Multiplying Equation (24) by 
1 3

2 2 0
n n

z J zµ βη β
− − 

≥  
 

 and integrating according to z from 0 to h, we get: 

3
1 2

2

2 3
* 2 2

1

2
* 1.

n
n

s
p s

n
o

J z
Q z

A
k u h

J h

µ β

β

µ β

η
β

η

−
−

−

+

 
  
 = ≥
 
  
 

                         (25) 
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Substituting Aβ  in Equation (23), the final solution is given as follows: 

( ) ( ) ( )

3 3
2 21

2
2

2 3
1* 2 2

1

2
, exp .

n n

n
s

s
y p n

o

J z J z
zz

C x z Q x
k u h

J h

µ α µ α

α
µ β

η η
λ

η

− −

−
∞

−
=

+

   
      
   = −

 
  
 

∑                (26) 

In which 
3

2
n

hβη
−

 is given as: 

3
2 0.

n

J hµ βη
− 

=  
 

                                  (27) 

2.2. Eddy Diffusivity and Wind Speed as Constant 
Here we will use Equation (3), considering the wind speed U and eddy diffusivity zk  as constant: 

Also after integrating Equation (3) with respect to y from (−∞ to ∞), Equation (2) becomes: 
2

2
y yC C

u k
x z

∂ ∂
=

∂ ∂
                                  (28) 

which is simply reads: 
2

2 .y yC Ck
x u z

∂ ∂
=

∂ ∂
                                  (29) 

One can solve the two-dimensional partial differential Equation (29) analytically by using the separation of 
variables technique. We take the solution of Equation (29) of the form: 

( ) ( ) ( ), .yC x z F x G z=                                (30) 

Differentiating (30) partially with respect to x and z and substituting in Equation (29), we get two ordinary 
differential equations in the variables F(x) and G(x) as follows: 

( )
( ) 2d1

d
F x

F x x
λ= −                                (31) 

and 

( ) ( )
2

2
2

d
d

z G zk G z
u z

λ= −                                (32) 

where 2λ  is a constant. 
The general solution of Equation (31) is given by 

( ) 2
e xF x λγ −=                                   (33) 

where γ  is a constant. 
Equation (32) becomes: 

( ) ( )
2

2
2

d
0

d
z G zk G z

u z
λ+ =                               (34) 

which have solution 

( ) ( ) ( )2 2 2cos sin where 1G z A z Bi z iλ λ= + = −                     (35) 

where A and B are constant. 
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Then from Equation (33) and Equation (35) the general solution 

( ) ( ) ( )( )2 2 2e cos, sin .x A zC x z Bi zλ λ λ− +=                       (36) 

By differentiate Equation (36) with respect to z and applying the boundary conditions we get: 

( ) ( ) ( )( )2 2 2 2 2e sin cos .
, x A z

C x
B i z

z
z λ λ λ λ λ−∂

= +
∂

                   (37) 

Appling the boundary condition Equation (4) on Equation (37) which gives 0B =  and Equation (36) be-
comes: 

( ) ( ) 22cos e ., xC x zz A λλ −=                             (38) 

Again apply the boundary condition Equation (6) leads to 

( )2sec .s
s

QA z
uz

λ=                                (39) 

Substituting A in Equation (38), the final solution is given as follows: 

( ) ( ) ( )2 2 2e cos sec, .x
s

s

Q z z
uz

C x z λ λ λ−=                       (40) 

In the Previous section we used the wind speed and eddy diffusivity as functions in the vertical height z, and 
we had the solution Equation (26). Now we have two forms of the solutions Equation (26) and Equation (40). 

3. Applications 
3.1. Source Data 
The diffusion data for the estimating were gathered during 135I isotope tracer nine experiments in moderate wind 
with unstable conditions at Inshas, Cairo. During each run, the tracer was released from source has height 43 m 
for twenty four hours working, where the air samples were collected during half hour at a height 0.7 m. 

We collected air samples from 92 m to 184 m around the source in AEA, Egypt. The study area is at, domi-
nated by sand soil with poor vegetation cover. The air samples collected were analyzed in Radiation Protection 
Department, NRC, AEA, Cairo, Egypt using a high volume air sampler with 220 V = 50 Hz bias [10]. Meteoro-
logical data have been provided by the measurements done at 10 and 60 m. Table 1 gives the data information  
 
Table 1. Meteorological data of the nine convective test runs at Inshas site in March and May 2006. 

Run No. Working 
hours 

Release rate 
(Bq) 

Wind speed 
(m∙s−1) 

Wind direction 
(deg) W* (m∙s−1) Zi (m) P-G stability class 

1 48 1028571 4 301.1 2.27 600.85 A 

2 49 1050000 4 278.7 3.05 801.13 A 

3 1.5 42857.14 6 190.2 1.61 973 B 

4 22 471428.6 4 197.9 1.23 888 C 

5 23 492857.1 4 181.5 0.958 921 A 

6 24 514285.7 4 347.3 1.3 443 D 

7 28 1007143 4 330.8 1.51 1271 C 

8 48.7 1043571 4 187.6 1.64 1842 C 

9 48.25 1033929 4 141.7 2.1 1642 A 
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about the diffusion tests and the wind vectors. In addition, it contains values of vertical velocity scale (w*)   
and mixing height (zi). The data from these nine unstable test runs have been utilized for the following    
analysis. 

Table 1 gives information about the diffusion tests and the wind vectors. In addition, it contains values of the 
vertical velocity scale (w*). 

3.2. Model Parameters 
For the concentration computations, we require the knowledge of wind speed, wind direction, source strength, 
the dispersion parameters, mixing height and the vertical scale velocity. Wind speeds are greater than 3 m/s most 
of the time even at 10 m level. Further the variation wind direction with time is also visible. The analytical ex-
pressions depend upon downwind distance, vertical distance and atmospheric stability. The atmospheric stability 
has been calculated from Monin-Obukhov length scale (1/L) [19] based on friction velocity, temperature, and 
surface heat flux. 

4. Results and Discussion 
The concentration is computed using data collected at vertical distance of a 30 m multi-level micrometeorologi-
cal tower. In all a test runs were conducted for the purpose of computation. The concentration at a receptor can 
be computed in the following way: 

Applying formula Equation (26) which contains the wind sped and eddy diffusivity as variable and Equation 
(40) which contains the wind sped and eddy diffusivity as constant at y = 0.0 for half hourly averaging. 

Table 2 contains the observed concentrations Bq/m3 and proposed concentrations in bounded and unbounded 
cases. 

As an illustration, results computed from these approaches are shown in Table 2, for nine typical tests con-
ducted at Inshas site, Cairo-Egypt [16]. This table shows that the predicted concentrations for 135I using Equation 
(26) is very near to the observed concentration more than the predicted concentrations using Equation (40), be-
cause the eddy diffusivity and the wind speed were used as constants, on the other hand the eddy diffusivity and 
the wind speed had been used as functions in vertical height z, in Equation (26). 

Figure 1 shows the variation of predicted and observed concentration of 135I with the downwind distance. One 
gets good agreement between observed and predicted concentration Equation (26) more than predicted concen-
tration Equation (40). 

Figure 2 shows that the predicted concentrations which are estimated from Equation (26) and Equation (40) 
are a factor of two with the observed concentration. 
 
Table 2. Observed and predicted concentrations for run 9 experiments. 

Test Downwind distance 
(m) 

Vertical distance 
(m) 

Observed conc. 
(Bq/m3) 

Predicted conc. Equation (40) 
(Bq/m3) 

Predicted conc. Equation (26) 
(Bq/m3) 

1 100 5 0.025 0.032 0.051 

2 98 10 0.037 0.033 0.031 

3 115 5 0.091 0.090 0.070 

4 135 5 0.197 0.148 0.160 

5 99 2 0.272 0.155 0.234 

6 184 11 0.188 0.162 0.138 

7 165 12 0.447 0.032 0.339 

8 134 7.5 0.123 0.033 0.107 

9 96 5.0 0.032 0.032 0.034 
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Figure 1. Maximum computed concentrations compared with observed maximum value for each test run Equation (26) and 
Equation (40). 
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Figure 2. Diagram of predicted model for Equation (26) and Equation (40) with corresponding observation. Solid lines indi-
cate one to one and dashed lines a factor of two. 
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5. Statistical Method 
Now, the statistical method is presented and comparison among analytical, statically and observed results will be 
offered [20]. The following standard statistical performance measures that characterize the agreement between 
prediction (Cp = Cpred) and observations (Co = Cobs): 

1) Normalized mean square error (NMSE): It is an estimator of the overall deviations between predicted and 
observed concentrations. Smaller values of NMSE indicate a better model performance. It is defined as: 

( )2

NMSE .o p

po

C C

C C

−
=  

2) Fractional bias (FB): It provides information on the tendency of the model to overestimate or underestimate 
the observed concentrations. The values of FB lie between −2 and +2 and it has a value of zero for an ideal 
model. It is expressed as: 

( )
( )

FB .
0.5

o p

o p

C C

C C

−
=

+
 

3) Correlation coefficient (R): It describes the degree of association between predicted and observed concen-
trations and is given by: 

( )( )
.

o po p

o p

C C C C
R

σ σ

− −
=  

4) Fraction within a factor of two (FAC2) is defined as: 
FAC2 = fraction of the data for which 

( )0.5 2p oC C≤ ≤  

where σp and σo are the standard deviations of Cp and Co respectively. Here the over bars indicate the average 
over all measurements (N∙m). A perfect model would have the following idealized performance: NMSE = FB = 
0 and COR = FAC2 = 1.0. 

From the statistical method of Table 3, we find that the predicted concentrations Equation (26) and Equation 
(40) for 135I lies inside factor of 2 with observed data. Regarding to NMSE, FB and COR the predicted concen-
trations Equation (26) for 135I is better with observed data more than predicted concentrations Equation (40), this 
is because in model of Equation (26) the wind speed and eddy diffusivity were used as functions in the vertical 
height z, contrast that Equation (40) the wind speed and eddy diffusivity were used as constant. 

 
Table 3. Comparison between averages predicted isotopes for 135I and observed concentrations. 

Statistical functions 
135I 

NMSE FB COR FAC2 

Predicated concentrations Equation (40) 1.75 0.65 0.29 0.74 

Predicated concentrations Equation (26) 0.10 0.19 0.99 0.4 

6. Conclusions 
In this paper, we have formulated a mathematical model for dispersion of air pollutants in moderated winds. The 
diffusion in vertical height direction and advection along the mean wind are taking into account. The eddy diffu-
sivity and the wind speed are assumed to be constant times and variable times. The analytical model is compared 
with data collected from nine experiments conducted at Inshas, Cairo (Egypt). One gets the predicted concentra-
tion Equation (40) that is in poor agreement with the corresponding observation in contrast Equation (26) that 
gives good agreement with the corresponding observation. Because the eddy diffusivity and the wind speed 
were used as constants (Equation (40)). On the other hand, the eddy diffusivity and the wind speed had been 
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used as functions in vertical height “z”, in Equation (26). 
Statistical method also shows that wind speed and eddy diffusivity are taken as a variable better than as a 

constant. 
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