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Abstract 
We investigate the effect of the Majorana Fermions which are formed at the boundary of a p-wave 
superconductor. When the Majorana overlapping energy is finite we construct the scattering ma-
trix S by mapping the Majorana zero mode to Fermions for which coherent states are defined and a 
path integral is obtained. The path integral is used to compute the scattering matrix in terms of 
the electrons in the leads. This method is suitable for computing the conductivity. We investigate a 
chiral Majorana Hamiltonian and show that in the absence of vortices the conductivity vanishes. 
We compute the conductivity for p wave superconductor coupled to two metallic leads, and we 
show that when the overlapping energy between the two Majorana fermions is finite, the Andreev 
Crossed reflection conductance is finite. 
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1. Introduction 
At the surface of a topological insulator electrons carry a Berry phase of π ; in the presence of an attractive 
interactions superconductivity is induced. For a low-level doping we obtain a p-wave topological superconductor. 
Majorana fermions appear on the surface of a topological insulator in a region where the chemical potential 

( ).effµ r  changes sign. We consider the effect of the Majorana modes on the p-wave superconductor [1]-[4]. 
When two metallic leads are attached to the superconductor, the Majorana fermion induces resonant Andreev 
reflection [5] or crossed Majorana Andreev reflection. With increasing doping, a regular superconductor is ex-  

pected with the Andreev conductance of the order of 
22e

h
Γ 

 ∆ 
 (Γ  is the tunneling width and ∆  is the su- 

perconducting gap), which is much smaller than the Andreev conductance carried by the Majorana fermions. 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2015.69142
http://dx.doi.org/10.4236/jmp.2015.69142
http://www.scirp.org
mailto:david@sci.ccny.cuny.edu
http://creativecommons.org/licenses/by/4.0/


D. Schmeltzer 
 

 
1372 

The phenomena of Andreev reflection and crossed Andreev reflection can be understood from the general prop-
erties of the scattering S [5]-[11]. The scattering matrix S is computed using the continuity equations and the un-
itarity properties. For finite Majorana energies, it is difficult to obtain the scattering matrix S. For such cases it is  

preferable to represent the scattering matrix S as a Dyson series ( ).de effi t H tT
∞
−∞ ′ ′− ∫ =   

S  [12], expressed in terms  

of the leads Hamiltonian. This is obtained by integrating the Majorana fermions. This approach has the advan-
tage of taking account the renormalization effect for the tunneling matrix element. Experimentally the tunneling 
for the differential conductance is in disagreement with the quantized values [13]. The purpose of this paper is  

to introduce the scattering matrix S as a Dyson series ( ).de effi t H tT
∞
−∞ ′ ′− ∫ =   

S . Using the scattering matrix we  

will compute the differential conductance for different cases considered in the literature. The plan of the 
paper is as follows. In Section 2, we formulate the problem in terms of the leads and the fermionic representa-
tion of the Majorana fermions. In Section 3, we consider a superconducting island deposited on the surface of a 
three-dimensional topological insulator. The area outside the superconductor is gaped by a ferromagnetic ma-
terial. We demonstrate that in the absence of vortices the conductivity between the metallic leads vanishes. In 
Section 4, we consider two Majorana fermions coupled to two leads and compute the Andreev crossed reflection 
for the p-wave superconductor. Section 5 is devoted to conclusions. 

2. Majorana Fermions for a P-Wave Superconductor 
We consider a p-wave superconductor described by the ( ),x yσΨ  the Bogoliubov-de Genes fermion operator. 
At the boundary between the superconductor and the metallic leads Majorana zero modes are formed (the 
chemical potential changes sign). The Bogoliubov-de Genes operator contains also the zero modes given by the 
operator ( )0Ĉ r . The coupling of the p-wave superconductor to the two leads is given by, 

† †

,
d , , , , . .

2 2 2 2t
L L L LH t y d x y x y d x y x y h cσ σ σ σ

σ =↑ ↓

        = = − Ψ = − + = Ψ = +                
∑ ∫          (1) 

† ,
2
Ld x yσ

 = − 
 

, ,
2
Ld x yσ

 = − 
 

 are the fermions in the left lead and † ,
2
Ld x yσ

 = 
 

, ,
2
Ld x yσ

 = 
 

 repre-  

sent the fermions in the right lead. 
I the presence of the Majorana fermions we replace the Bogoliubov-de Genes operator ( ),x yσΨ  by the zero 

mode part ( )0Ĉ r . 
For an even number of Majorana fermions, we replace the zero mode ( )0Ĉ r  by the representation: 

( ) ( ) ( )0 2 1 2 1 2 2
1

ˆ ˆ ˆ2
n

a a a a
a

C F Fγ γ− −
=

= +  ∑r r r                          (2) 

The spinors are given by ( )2aF r  and ( )2 1aF − r  

( ) ( )

( ) ( )

2 2

2 1 2 1

T
22 2

2

T
2 12 2

2 1

1 1e , e

1 1e , e

a a

a a

i i
a

a

i i
a

a

f r
F

i i r

f r
F

i i r

φ φ

φ φ− −

−

−
−

−

 
=  

− 

 
=  

− 

r

r

                       (3) 

The two component spinors are localized at the positions 2 1a−=r R  and 2a=r R . We introduce the fermion 
operators †

aζ  and aζ , 1, 2,3, ,a n=  . The transformation between the two representation is given by:  
†

2 1
1ˆ
2a a aγ ζ ζ−  = +  , †

2
1ˆ
2a a ai

γ ζ ζ = −  , 1, 2,3, ,a n=  . 

The overlap between different Majorana fermions will introduce the energy a  for the Majorana Hamilto-

nian: ( )Majorana †
2 1 21 1

ˆ ˆa n a n
a a a a a aa aH i γ γ ζ ζ= =

−= =
= =∑ ∑  . This allows to obtain the Majorana action, 
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( ) ( )Majorana † †

1
d

a n

a t a a a a
a

t iζ ζ ζ ζ
=

=

 = ∂ − ∑∫S                             (4) 

The action in Equation (4) allows for the construction of the integral for the Majorana fermions which will be 
used for computing the conductivity. For an odd number of Majorama Fermions we will have for the 2 1n +   

Majorana an unpaired Fermionic, we can choose for †
1 1 1

1ˆ
2n n nγ ζ ζ+ + + = +   or †

1 1 1
1ˆ
2n n ni

γ ζ ζ+ + + = −  . 

3. A Chiral Majorana Fermion Coupled to Two Leads 
We consider a grounded superconducting island of radius R deposited on the surface of a three dimensional to-
pological insulator. The area outside the superconductor is gaped by a ferromagnetic material. We will attach the 
superconducting island to two leads at 0θ =  (left lead) and πθ =  (right lead). We will show that in the ab-
sence of vortices the left lead is effectively not coupled to the right lead and therefore the conductance vanish. 

3.1. No Vortex in the Superconductor 
The Hamiltonian at the interface is described by a chiral Majorana Hamiltonian. 

( )( ) ( )Majorana
0

ˆ ˆdvH i
R θθγ θ γ θ= − ∂∫




                           (5) 

We replace the Majorana fermion ( )γ̂ θ  by regular fermions ( )C θ  and ( )†C θ , ( ) ( ) ( )†1ˆ
2

C Cγ θ θ θ = +    

and expand the fermion in angular momentum states: ( ) eil
llC Cθθ = ∑ . The Majorana Hamiltonian takes the 

Bogoliubov-de Genes form: 

Majorana hvH
R

= ( ) ( )† † † †

0
l l l l l l l l

l
C C C C l C C C C l− − − −

>

 − + − ∑                     (6) 

The Bogoliubov-de Genes eigenvalues for the Hamiltonian in Equation (6) are: 0 0λ= =  and 0 2hv l
Rλ≠ = .  

The eigenspinors are, ( )lχ  (for the zero eigenvalue) and ( )lη  (for the non zero eigenvalues). 

( ) ( ) ( )†1
2

l C l C lχ  = + −   

( ) ( ) ( ) ( ) ( ) ( )† † †1 1,
2 2

l C l C l l C l C lη η   = − − = − −                       (7) 

( )Majorana 2
l

hvH l
R

= ∑ ( ) ( )† l lη η  

The tunneling Hamiltonian is given by 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

† †2 2 2 2
1 1 2 2ˆ ˆ0 e 0 e 0 π e π e π ,

i i i i

tH g d d g d d
φ φ φ φ

θ θ γ θ θ θ γ θ
− −   

= = − = = + = − = =   
      

    (8) 

We substitute the eigenspinor, ( )lχ  and ( )lη  and find: 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )

1 1

1 1

† 2 2
1 1

† 2 2
2 2

even odd

0 e 0 e

π e π e

i i

t
l

i i

l l

H g d d l

g d d l l

φ φ

φ φ

θ θ χ

θ θ χ η

−

−

 
= = − =  

 
  

+ = − = −    
  

∑

∑ ∑
                (9) 
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The Hamiltonian tH  in Equation (9) is independent from ( )lχ . The integration of the Majorana fermions 
in Equations (7)-(10) will give a scattering matrix. We find that the scattering matrix depends only on the right 

lead! The left lead ( ) ( )
1 1

† 2 2
1 10 e 0 e

i i
d d

φ φ

θ θ
− 

= − = 
  

 which couples to ( )lχ  will not appear in the scattering 

matrix! As a result the cross-Andreev conductance will vanish. 

3.2. A Vortex inside the Superconductor 
When a vortex is added to the case considered in case given in 3.1 we need to add the impurity Hamiltonian: 

( ) ( ) ( ). 0 vortex 00
ˆd ;impH t Yθ θ γ θ= ∫ r r



                            (10) 

( )vortexY r  is the Majorana vortex which couple with the strength ( )0;t θ r  to the chiral Majorana fermion 
( )0ˆ ;γ θ r . Due to this coupling ( )0;t θ r  the two leads will be coupled and the cross-Andreev conductance will 

be finite. The exact result of the Andreev conductance will depend on the details of the coupling ( )0ˆ ;γ θ r . 

4. A Pair of Two Majorana Fermions Coupled to Two Leads 
We consider a grounded p-wave topological superconductor attached to two leads. Close to the leads due to the 
boundary condition the p-wave superconductor has to Majorana modes. We will compute the Crossed Andreev 
Reflection a process where an incoming electron from lead 1 is turned into an outgoing hole in lead 2. In 
this case a single electron at each lead is tunneling into superconductor to form a Cooper pair. We consider 

two half vortices localized in the superconductor at 1 1 , 0
2
Lx y− = = ≈ =  

r R  and 2 2 , 0
2
Lx y = = ≈ =  

r R .  

For this case, we have for the zero modes, 

( ) ( ) ( ) ( )†
0 0 1 1 2 2

ˆ ˆ ˆ ˆ2C C F Fγ γ= = +  r r r r                         (11) 

where 1̂γ  and 2γ̂  are the two Majorana operators. We attach the two leads at , 0
2
Lx y = − =  

 and 

, 0
2
Lx y = =  

, and due to the non-locality of the spinors ( )1F r , ( )2F r  the Majorana fermions couples to the  

fermions in the two leads. We consider a situation where the two Majorana fermions overlap with energy 0 . 
Using the energy 0  we construct the ( )MajoranaH  Hamiltonian. The tunneling Hamiltonian between the leads 
and the Majorana fermions is given by the Hamiltonian tH : 

( )

1 1 2 2
† †2 2 2 2
1 1 1 2 2 2

0 1 2

ˆ ˆ,0 e ,0 e ,0 e ,0 e
2 2 2 2

ˆ ˆ

i i i i

t

Majorana

L L L LH g d x d x d x d x

H i

φ φ φ φ

γ γ

γ γ

− −          = = − − = − + = − =          
             

= 

   (12) 

†
1 ,0

2
Ld x = − 

 
, 1 ,0

2
Ld x = − 

 
 are the fermions in the left lead and †

2 ,0
2
Ld x = − 

 
, 2 ,0

2
Ld x = − 

 
 are  

the fermions in the right lead. 0  describes the overlapping between the two Majorana Fermions (two independent 
half vortices). The two vortices are localized at positions R1, R2 and their wave functions are non-orthogonal.  

We replace the two Majorana Fermions with a single fermion, †
1

1ˆ
2

γ ζ ζ = +   and †
2

1ˆ
2i

γ ζ ζ = −  . The  

tunneling Hamiltonian is given in terms of leads operators †V  and V form: 

† †

2t
gH V Vζ ζ = +                                (13) 

The operators †V  and V are expressed in terms of the one dimensional leads: 
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1 1 2 2

1 1 2 2

† † †2 2 2 2
1 1 2 2

† †2 2 2 2
1 1 2 2

1 1e ,0 e ,0 e ,0 e ,0
2 2 2 22 2

1 1e ,0 ,0 e ,0 e
2 2 22 2

i i i i

i i i i

L L L LV d x d x d x d x
i

L L LV d x e d x d x d x
i

φ φ φ φ

φ φ φ φ

− −

− −

          = = − − = − + = − =          
             

      = − = − − = − + = − =      
       

,0
2
L  

  
   

   (14) 

The action for this case is given by: 

( )( ) ( ) ( )( ) ( )( ) ( )† † †
0

1d
2 t t tS t t i t t i t H tζ ζ ζ ζ ε ζ ζ = ∂ + ∂ − −  ∫                  (15) 

Using the Grassman integration [14] (see Equation (1.191) in Nakahara) for the Majorana Fermions †ζ , ζ  
we obtain the effective Hamiltonian ( ).effH t  for the leads: 

( ) ( )2
.effH t ig= − ( ) ( )0†

0
d e ;iV t V tττ τ

∞
 − ∫ 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

† † †2 2 2 2
1 1 2 2

† †2 2 2 2
1 1 2 2

e e e e

e e e e

i i i i

i i i i

V t V t d t d t id t id t

d t d t id t id t

φ φ φ φ

φ φ φ φ

τ

τ τ τ τ

− −

− −

 
− ≡ − + −  

 
 
⋅ − − + − + − − −  
 

          (16) 

For the electrons in the leads, we use the right (R) and left (L) movers representation. ( )1 1,0
2
Ld x d t = − ≡ 

 
 

and ( )† †
1 1,0

2
Ld x d t = − ≡ 

 
 are the electrons in the left lead (1) and ( )2 2,0

2
Ld x d t = ≡ 

 
 and  

( )† †
2 2,0

2
Ld x d t = ≡ 

 
 are the eletrons in the right lead (1). 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 1 2 2 2e e ; e eF F F F

L L L Lik ik ik ik
d t R t L t d t R t L t

− −
= + = +                   (17) 

We apply on the left lead a voltage 2V , and on the right lead a voltage 2V− . As a result, we obtain for 
each lead, two Green’s functions. For the left lead (1) we have ( )1,

0 ,R E ωG  (right mover) and ( )1,
0 ,L E ωG  (left 

mover). 

( )

( )

1,
0

1,
0

2 2,
0 0

2 2

2 2,
0 0

2 2

R

L

eV eVE E
E

eV eVE i E i

eV eVE E
E

eV eVE i E i

ω
ω ω

ω
ω ω

   Θ − Θ − +   
   = +
   − − + − − −   
   
   Θ − + Θ −   
   = +
   + − + + − −   
   

G

G

                        (18) 

Similarly, for the right (2) lead we have 

( )

( )

2,
0

2,
0

2 2,
( ) 0 0

2 2

2 2,
0 0

2 2

R

L

eV eVE E
E

eV eVE i E i

eV eVE E
E

eV eVE i E i

ω
ω ω

ω
ω ω

   Θ + Θ − −   
   = +

 − + + − + − 
 

   Θ − − Θ +   
   = +
   + + + + + −   
   

G

G

                        (19) 
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( )xΘ  is the step function which is zero for 0x <  and one for 0x ≥ ). The current in the leads is given by:  

( ) ( )1, 1, 2, 2,
0 0 0 0; ;

2 2 2 2
R L R LL V L VJ x ev N N J x ev N N−   = − = − = = = −   

   
. v is then electron velocity in both leads,  

1, 1,
0 0

R LN N−  is the current density in the left (1) lead, and 2, 2,
0 0

R LN N−  is the current density in the right lead (2) 
[15]. In order to compute the current, we will compute the Green’s functions. The Green’s function will be 
computed perturbatively using the effective coupling to the leads ( ).effH t  given in Equation (16). ( ).effH t  is 
represented in terms of one dimensional fermions given in Equation (17) we have for each lead ( )1 2,R Rright  
and ( )1 2,L Lleft  fermions. The perturbation theory is controlled by the coupling constant g2. We will compute  

perturbatively the Green’s function 1, , ;
2

R eVE ω 
 
 

G , 1, , ;
2

L eVE ω 
 
 

G  (left leads) and 2, , ;
2

R eVE ω − 
 

G , 

2, , ;
2

L eVE ω − 
 

G  (right leads) (the index 1 and 2 represent the leads and L and R represents the left and right  

fermions). This Green’s function contains the contributions of the particles-holes, particles-particles, and 
holes-holes in the same and opposite leads. From the Green’s function we extract the self energies for each 
lead and each mover, ( ), ω1 RΣ , ( ), ω1 LΣ  and ( ), ω2 RΣ , ( ), ω2 LΣ . We find, to order 4g , the self energies: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

4 4
,

0 0

4 4
,

0 0

0 22
0 0

21
2 , Ln 2 ,

21

21
2 , Ln 2 ,

21

1,

eV

g gT i T
eVv v

eV

g gT i T
eVv v

T

ω

ω ω ω ω ω ω
ω

ω

ω ω ω ω ω ω
ω

ω ω
ω ω

 − 
+ Λ = − +

 − − 
 Λ 
 − 
+ Λ = − −

 − − 
 Λ 

=
Γ + +

1 R

1 L

Σ sgn

Σ sgn                 (20) 

where Λ  is the band with, 0Γ  is a damping factor which is induced at high momenta, and 0 0ω =   is the 
Majorana energy. The imaginary part of the self energy obeys ( ) ( ), ,. .Im Imω ω= −1 L 1 RΣ Σ  and the real part 
of the self energy obeys ( ) ( ) ( )ω ω ωℜ = ℜ ≡1,L 1,R 1Σ Σ Σ . The Green’s funtions are given in terms of the self 
energies: 

( )

( )

1
1, ,

1
1, ,

, ;
2 2

, ;
2 2

R

L

eV eVE E

eV eVE E

ω ω ω

ω ω ω

−

−

    = − − −    
    

    = + − −    
    

1 R

1 L

G Σ

G Σ

                        (21) 

The real part of the self energy is used to compute the wave function renormalization function Z . 

( )( )

( )
( )

1

0

1

4 4
0

2 2
0 0

1

ˆ 11
1

2
4 0, 4ˆ

eV

T g g
v v

ω ω
ω

ω ω

ω

−

=

−

− ∂ =

 
 Γ

= + Λ −
 Λ 

=
Γ = =

Γ +

1Σ Z

Z                             (22) 
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The tunneling current at the left leads will be given by ( ) ( )1, 1,R LI V ev N N= −  (which replaces  
( ) ( )1, 1,

0 00 R LI V ev N N= = −  the expression for zero voltage) in terms of the renormalized Green’s function. 

( ) ( )

( ) ( ) ( )

( ) ( )

1, 1,

0dd e
2π ˆ ˆ

2 2

ˆ ˆ
2 2

R L

i

I V ev N N

e i E
eV eVh E i E i

eV eVE i E i

ω ω ωω

ω ω

ω ω

ω ω

+Λ ∞

−Λ −∞

= −

 
 Θ Θ −

= − + 
 − − − Γ − + + Γ  

 
 Θ Θ −

− +  
 − − + Γ − + − Γ  

∫ ∫
Z Z

Z Z Z Z Z Z

Z Z

Z Z Z Z Z Z

          (23) 

We will use ( ) ( )1, 1,R LI V ev N N= −  to evaluate the differential conductance for the Crossed Andreev  

reflection 
( )d

d
I V

V
. Due to the nonlinearity of the effective action, we will use the scaling equations [12] [15]-[18]  

for the coupling constant g2. The scaling of g2 determines the width Γ̂ . We find the Renormalization Group  

equation for the width Γ̂ , 2
ˆd ˆconst

dl
Γ
= − ⋅Γ  with 1logl

eV

 
 

=  
 
 Λ 

. The solution ( )ˆ VΓ  as a function of  

( )ˆ 0VΓ =  is given by: 

( ) ( )
2

ˆ 0ˆ
21 const Log

V
V

eV

Γ =
Γ =

 Λ  + ⋅    

                             (24) 

This solution will be used in Equation (23), where Γ̂  is replaced by ( )ˆ VΓ . Substituting ( )ˆ VΓ  gives us  

the result for the differential conductance 
( )d

d
I V

V
, 

( )
( ) ( )

( )

( )( ) ( )( )

( )

2

. . . .22

2

2 2
2 2

2

ˆd d dd
d 2π d 2 2ˆ

ˆ ˆ1 ( )d
2π ˆ ˆ

2 2

1 ArcTan 1 ArcTa
π 2

F D F D

I V e eV eVf f
V h

Ve V
h eV eVV V

e eV
h V

Λ ∞

−Λ −∞

Λ

−Λ

 
Ω Γ      = Ω + + Ω−      Ω     Ω − + Γ  

 
 Γ Γ ≈ +
    − + Γ + + Γ    
    

 Λ  = + +  Γ Λ   

∫ ∫

∫

Z

Z

Z Z Z
Z






 

( )
n 1

2
eV

V
  Λ  −   Γ Λ     

       (25) 

We find that for a pair of vortices the Andreev crossed reflectioion obeys 
( ) 2

0

d
d

V

I V e
V h

→

→ . Figure 1 shows 

the differential d
d

I
V

 v conductivity for the Andreev crossed reflection as a function of the voltage difference 

between the two leads. We observe that in the limit 0V →  the maximum value for the conductance is obtained. 
This result follows from the scaling equation for the width given in Equation (24). 

Comparing the diferential conductivity with the experiments [13] one observes that the perfect quantization is  
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Figure 1. d
d

I
V

 the differential conductivity for the Andreevv crossed reflection. 

 
not achieved this suggest the possibility that the width is controlled by additional operators causing ( )ˆ VΓ  not 
to flow to zero when 0V → . 

5. Conclusion 
In this paper we have introduced a new method for computing the conductance in the presence of the Majorana 
Fermions. We map the problem of Majorana fermions to regular fermions for which a path integral and the Ber-
ry phase are obtained. This allows us to integrate out the Majorana fermions and allows us to obtain the  

scattering matrix S as a Dyson series ( ).de effi t H tT
∞
−∞ ′ ′− ∫ =   

S . Using this method we have computed the differential  

conductance for different cases, Achiral Majorana fermion coupled to leads with and without an additional vor-
tex and studied the Andreev crossed reflection for a pair of Majorana coupled to two leads. We have computed  

the differential d
d

I
V

 v conductivity for the Andreev crossed reflection as a function of the voltage difference  

between the two leads. We observe that in the limit 0V →  the conductance reaches the maximum value. 
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