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Abstract 
We study the asymmetric nuclear matter in a nonperturbative manner. The bulk nuclear matter 
studied by the consistent exchange of σ, ω and π mesons is used to investigate its stability. The 
equation of state (EOS) at zero temperature is considered to study the symmetry energy, curva-
ture parameter of symmetry energy and asymmetry energy. The effect of the density dependence 
of the symmetry energy on instability property is investigated and analyzed using proton fraction 
in the nuclear matter. Here a microscopic density-dependent model of the nucleon-meson coupl-
ing is used to reexamine the instability of asymmetric nuclear matter. 
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1. Introduction 
The characteristics of dense nuclear matter are very much interesting for particle physics, astrophysics, as well 
as nuclear physics [1]-[7]. The nuclear equation of state, especially its stability, is an important item for the 
study of dynamic evolution of the early Universe, the stability of the neutron stars and the pattern of change of 
nuclear matter properties below the saturation density. Nuclear matter is predicted to exhibit phase transition 
between Fermi liquid and nucleonic gas at saturation density and elevated temperature. Analysis of nuclear mul-
tifragmentation [8] supports the idea that the mixed phase of neutron and proton matter may be formed [9]-[11]. 
Since these nuclei are made of neutrons and protons, the nuclear liquid-gas phase transition is a binary system 
where one has to deal with two independent proton and neutron chemical potentials for baryon number and 
charge conservation. There are experiments showing that the formation of highly excited compound nuclei in 
equilibrium is interpreted as the two coexisting phases of liquid and gas in the frame work of hydrodynamics. 
The liquid-gas phase transition is also useful for the study of core of compact stars in the range of the densities 
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from ρ = 0.03 fm−3 to saturation density ρ0 = 0.15 fm−3. It is observed that the phase transition leads to an isospin 
distillation phenomenon [8] (isospin content of each phase is different). In fact, the information coming from the 
experiments with heavy ions in intermediate and high energy collisions [8] shows that the equation of state 
(EOS) depends not only on the energy beam but also sensibly on the proton fraction py . The symmetry-energy, 
which describes the single nucleonic energy or nuclear matter changes as one, replaces protons with neutrons in 
the system. It determines the birth of neutron stars and supernova neutrinos and also plays the crucial role in the 
evolution of core collapse of supernovae. 

Understanding of the properties of the hot nuclear matter at normal and low density regions is of crucial im-
portance for explaining the stability and structure of nutron stars after the supernova explosion. The experiments 
with unstable nuclear beams and relativistic heavy ions are the potential tools in determining the best equation of 
state (EOS) which may be derived from either relativistic or potential model. The problem of dense nuclear 
matter therefore has been a hot bed of investigations for the past few years and was looked by Walecka [12], and 
others [13] [14] known as the Non Linear Walecka Model (NLWM). They consider the nucleon-neutral scalar 
field interactions with σ and ω in a nonperturbative method, treating these scalar fields as elementary. They re-
produce correct bulk modulus of dense nuclear matter [15]. However, several open questions still remain un-
answered. One of the basic questions is the microscopic nature of σ-field which is unclear in Walecka model 
since σ cannot be interpreted as the physical particle as it has not been discovered. Secondly, one cannot have 
the nonrelativistic limit of the model in a straight forward way. Since the points are playing a crucial role in 
neutron matter in terms of pion-nucleon interaction, it is the essential ingredient for studying such neutron stars. 
It is worth mentioning here that pion-nucleon interaction was a basic ingredient to study the nuclear processes 
[16] in the past with pion as elementary particle, and might play a crucial role in nucleon matter in terms of 
pion-nucleon interaction and enhance the nuclear matter properties. The σ ω−  model with further inclusion of 
mesons like π, ρ etc. [14] [17] was taken to study its properties. Being motivated, we try to study and understand 
the stability and the symmetry energy of nuclear matter with pion dressing [18] in the present work. In fact it is 
known that the introduction of σ and ρ mesons in the constant coupling model leads to stability of the nuclear 
matter which is not oblivious for density-dependent models. 

The article is organized as follows. In Section 2, we review the formalism of asymmetric dense nuclear matter 
taking nonrelativistic pion nucleon interaction and determine the symmetry energy Esym, symmetry energy slope 
L and curvature parameter of symmetry energy Ksym and their effects on stability of nuclear matter. In Section 3, 
we study the stability condition using stability matrix eigen vectors dependence on densities. In Section 4, we 
analyze our results which agree with other works [19] in this field. 

2. Formalism  
We consider the effective Hamiltonian for pion nucleon interaction [18] and [20] [21] as 

( ) ( ) ( ) ( ) ,N int M= + +x x x x                                (1) 

where ( )N x , ( )int x  and ( )M x  are the Hamiltonians for the free nucleon part, the pion-interaction part 
and the free meson part respectively. Here ( )N x  is given by 

( ) ( ) ( )†   ,N I x Iψ ε ψ=x x x                                 (2) 

and the effective Hamiltonian ( )int x  for pion nucleon Nπ  interaction part [22] is given by 

( ) ( ) ( )
2

† 2 .
2 2int I I

x x

iG Gψ ϕ ϕ ψ
 

= − ⋅ + 
 

x x p x
 
σ                        (3) 

We have taken ( )1 22 2
x xM= − ∇ , with M as the mass of the nucleon. The free meson part of the Hamilto-

nian is given by 

( ) ( ) ( )2 2 21 ,
2M i i i imπϕ ϕ ϕ ϕ = + ⋅ + x  ∇ ∇                           (4) 

where mπ  denotes the mass of the meson and i iϕ τ ϕ= . The pion field expansion in Equation (4) in terms of 
annihilation and creation operators is given by 
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( ) ( ) ( )( ) ( ) ( ) ( )( )† †1 and ,
2 2

x
i i i i i i

x

x a x a x x i a x a xωϕ ϕ
ω

= + = −                (5) 

with ( )1 22 2
x xmω = −∇ . 

The two pions constitute a scalar-isoscalar interaction of nucleons and thus could simulate the effects of σ- 
mesons. The bare nucleon states however can get dressed with pions. These states are necessary for the correct 
description of nuclear matter. We now proceed to introduce a “meson” dressing of nuclear matter through the 
state [18] 

( )†

e .
B B

f U vac vac
−

= =                                (6) 

where the two pion creation operator †B  is constructed with the creation and annihilation operators in mo-
mentum space as 

( ) ( ) ( )† † †1  d ,
2 i iB f a a= −∫ k k k k                              (7) 

and the free nucleon energy density becomes 

( )
3 2

2
,

3ˆ ,
106π

f f
f N N

p n

k k
h f tr f M

M

τ τ

τ

γ
ρ

=

 
= = +      

 
∑x                     (8) 

where the spin degeneracy factor 2γ =  for proton and neutron. The density ρ and the Fermi momentum fkτ  
are related by the equation 

3

2
,

.
6π

f

p n

kτ

τ

γ
ρ

=

= ∑                                    (9) 

With the meson field operator expansion as in Equation (5) we may write Equation (4) as 

( ) ( ) ( )† .M i x ia aω=x x x                              (10) 

Using Equation (10), we now obtain kinetic energy density due to the mesons as 

( )
( )

( ) ( )2
3

3 d  sinh ,
2π

k Mh f f fω= = ∫x k k k                     (11) 

where ( ) 2 2mω = +k k . We next proceed to evaluate from Equation (3) which is the interaction energy den-
sity, with x M , 

( ) ( ) ( )
2

ˆ : : .
2int N int i i
Gh f tr f f f

M
ρρ ϕ ϕ=    x x x                 (12) 

In the non-relativistic limit and using Equation (7), the kinatic energy density (12) becomes 

( ) ( )
( ) ( )

2
2

3

sinh23 d sinh .
2 22π

int

fGh f
M
ρ

ω
 

= ⋅ + 
 

∫
kk k

k
                  (13) 

The meson energy density thus is given as 
.m int kh h h= +                                   (14) 

Now extremising Equation (14) with respect to ( )f k , we obtain the solution 

( )
( )

2

2
2

1tanh2 .
2

2

Gf
M G

M

ρ
ρω

= − ⋅
+

k
k

                         (15) 

where , , and n pρ ρ ρ  are the densities of nuclear matter, neutron matter and proton matter respectively. We 
note that Equation (15) is not acceptable since the energy density diverges. This happens because we have taken 
the pions to be point like and assumed that they can approach as near each other as they like which is physically 
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not correct. If we bring two pions close to each other, there will be an effective force of repulsion because of 
their composite structure. We thus assume a phenomenological term corresponding to meson repulsion as 

( )
( )

2 22
3

3 sinh  e d ,
2π

R kR
m

ah f π= ∫ k k                               (16) 

where a and Rπ  are two parameters to be determined later. So the Equation (15) is modified with the addition-
al term in denominator as 

( )
( ) ( )

2 2

2

2
2

1tanh2 .
2 e

2
R k

Gf
M G a

M
π

ρ
ρω ω

= − ⋅
+ +

k
k k

                      (17) 

In place of Equation (14) we now obtain the expression for mh  as 

( )

22

3

3 1  ,
2 22π

R
m k int m n n p p

Gh h h h I I
M

ρ ρ ρ
 

 = + + = − +   
 

                    (18) 

where the terms nρ  and pρ  represent the neutron and proton densities repectively and the integrals Iτ  (with 
τ = n for neutrons and p for protons) are given by 

( ) ( )2 2 2 2 2 2

2

2 1 20 2 21 2

4π d 1 ,

e e e
2

fk

R k R k R k

I
G Ga
M M

τ

π π π

τ ω ρ ρω ω ω
ω ω

 
 
 = ⋅  

  + + + + + +    

∫
k k            (19) 

where ( )ω ω= k . Finally we have to include the energy of repulsion which may arise from vector meson inte-
raction and/or from finite size of the nuclei. We shall here parametrize the effect of such a repulsion contribution 
by the simple form 

2 ,hω ωλ ρ=                                      (20) 

where the parameter ωλ  corresponds to the repulsive ω-meson interaction between the nucleons fixed from 
phenomenology and can arise from local potential ( )Rv x  [18] [21], when density is constant, in fact, we have 

( )d .Rvωλ = ∫ x x                                    (21) 

Similarly, we have to include the repulsion energy from the ρ-mesons [20] [21] 
2
3 ,hρ ρλ ρ=                                      (22) 

where ( )3 n pρ ρ ρ= −  and coefficient ρλ  is to be evaluated self consistently as described below. We next mi-
nimise the energy per nucleon as given by 

,BE M
ρ

= −
                                     (23) 

where the total energy density   is given from (8), (18), (20) and (22) as 

( )

2 3 22
2 2

33 2
,

3 1 3 .
2 2 106π2π

m f

f f
n n p p

p n

h h h h

k kG I I M
M M

ω ρ

τ τ

ω ρ
τ

γ
ρ ρ ρ λ ρ λ ρ

=

= + + +

  
 = − + + + +         

∑



           (24) 

The total density ρ  and the asymmetric parameter t are given in terms of neutron density nρ  and proton 
density pρ  as 

( )
( )

and n p
n p

n p

t
ρ ρ

ρ ρ ρ
ρ ρ

−
= + =

+
                             (25) 
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respectively. Now the expression for pressure is given by the equation 

( )2 2 .BEP
ρ

ρ ρ
ρ ρ

∂∂
= =

∂ ∂


                                (26) 

The symmetry energy parameter symE  in the expansion of the nuclear binding energy is given by [18] [20] 
[21] 

2

2
0

1 .
2

B
sym

t

EE
t

=

∂
=

∂
                                   (27) 

The symmetry energy slope is defined by 

03 .symE
L ρ

ρ
∂

=
∂

                                    (28) 

The curvature parameter of symmetry energy slope is 
2

2
0 29 ,sym

sym

E
K ρ

ρ
∂

=
∂

                                  (29) 

and the curvature parameter of the asymmetry energy is 

6 .asy symK K L= −                                    (30) 

In the next section we study the stability condition considering the above properties of nuclear matter. 

3. Stability Condition 

Now the proton fraction is introduced to study the stability conditation as ( )1 1
2py t= −  where t is asymmetry 

parameter (25). Here the free energy density is given by 

p p n nF µ ρ µ ρ= − −                                  (31) 

where 

2 2
3

1
2p p pk m ω ρµ λ ρ λ ρ= + + +                              (32) 

and 

2 2
3

1
2n n nk m ω ρµ λ ρ λ ρ= + + −                              (33) 

In the above, pµ  and nµ  are chemical potential of proton and neutron respectively. 
The stability conditation for asymmetric nuclear matter at constant temperature and constant volume are 

obtained from the free energy density   imposing that it is a convex function of density pρ  and nρ  [23]- 
[25] i.e. the symmetric stability matrix [19] [26] 

2

const.

0ij
i j T

ρ ρ
=

∂
= >
∂ ∂


                                (34) 

is positive-definite with i and j run for proton and neutron respectively. We note here that the equivalent condi-
tion for convex function [26] 

( )
( )

,
0   and    0,

,
p np

p p n

µ µµ
ρ ρ ρ

∂∂
> >

∂ ∂
                            (35) 

where we use 
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,

.
j i

i
i T ρ

µ
ρ

≠

∂
=
∂


 

The two eigenvalues of the 2 2×  stability matrix are given by 

( ) ( ) ( )21 4
2

Tr Tr Detλ±  = ± −  
                            (36) 

and the eigenvectors δρ±  by 

, , , .jji

jij

i j p n
λδρ

δρ

±
±

±

−
= =




                              (37) 

Both the eigenvalues of stability matrix as above should be positive to guarantee the stability of the system. 
Since the symmetry energy is dependent on the quadratic function of the asymmetry parameter (27) and a posi-
tive increasing symmetry energy with the total density (28), it ensure that only one eigenvalue can become nega-
tive. In principle λ+  will always be positive in isospin asymmetric nuclear matter. λ−  can only become nega-
tive and the eigenvector associated with this negative eigenvalue implies instability. Therefore, if Equation (36) 
is violated, or equivalently λ−  is negative for isospin asymmetric nuclear matter, then the system will be in the 
unstable region of a phase transition [26]. 

4. Results and Discussions 
The model presented here contains four parameters, namely the phenomenological strength and length scale pa-
rameters of meson repulsion a and Rπ  (37) respectively and the strength parameters of the effective ω and ρ 
meson interactions namely, ωλ  (20) and ρλ  (22) respectively. In our calculations, we evaluate all these pa-
rameters variationally. The first three of these four parameters are evaluated by constraining the binding energy 
per nucleon (23) ( ) ,BE Mρ≡ −  the pressure P and the compressibility K of the symmetric nuclear matter to 
the respective saturation values, i.e. 16 MeV

satBE = − , 0satP =  and   270 MeVsatK =  [27]. The fourth para-
meter ρλ  of our calculation is evaluated by fixing the value of symE  to the standard value of 31 MeV [27]. 

We now discuss the results obtained in the calculations. Firstly the parameters are fixed using the saturation 
properties of the nuclear matter i.e. EB = −16 MeV and ρ0 = 0.15 fm−3 MeV. The pion-nucleon coupling constant 
is as 2 4π 14.6G =  and a = 115.264 MeV, Rπ = 1.061 fm, λω = 3.164 fm2 and λρ = 0.650 fm2. Then the discus-
sion for results from the following figures shows the nature of variation and the effect of pion dressing of nuc-
lear matter. 

In Figure 1, the symmetry energy variation is studied as the function of density. The variation of symmetry 
energy with density agrees with results of Non Linear Walecka Model (NL3) [28], Quark Meson Coupling model 
(QMC) [29] and density-dependant relativistic Hadron model (TW) [30], while our symmetry energy is relatively 

 

 
Figure 1. The symmetry energy Esym as a function of nucleon 
density ρ. 
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less above density 0.2 fm−3. It is due to the effect of pion dressing as it is negative relative to fh  and Rh  in 
the expression of total energy density   in the higher densities. 

In Figure 2, variation of the curvature parameter of the symmetry energy with density in the present study for 
both the compressibilities K = 270 and 290 coincides. Again our results agree almost with results of QMC [29] 
and agree nearly with that of NL3 [28]. It appears that the pion dressing of the nuclear matter in the present case 
hopefully gives better results. 

The variation of slope of symmetry energy with density in Figure 3 shows that it starts decreasing in the very 
low densities i.e. up to 0.02ρ =  and beyond this density the variation becomes relatively smooth and stabiliz-
es at 90 MeV. It appears that the pion dressing of the nuclear matter improves over the results of TW and NL3. 

In Figure 4, we show how the ratio of the proton and neutron density fluctuation changes with densities cor-
responding to the unstable mode. This also shows that the instability exits for the different proton fractions, al-
though small, in the asymmetric nuclear matter (ANM). In Figure 4(a), for the proton fraction 0.05py =  cor-
responding to the asymmetry parameter t = 0.9, it is observed that the variation of ratio of the proton and neutron 
density fluctuation with density does not agree at higher values but decreases rapidly and goes to zero at about 
0.085 fm−3. In Figure 4(b), for the proton fraction 0.1py =  which corresponds to the asymmetry parameter t = 
0.8, the variation of ratio of proton and neutron density fluctuation with density agrees with results of TW [30]. 
In Figure 4(c), for the proton fraction 0.3py =  corresponding to the asymmetry parameter t = 0.4, the varia-
tion of ratio of the proton and neutron density fluctuation with density agrees and the saturation is relatively 
lower than that of TW [30]. In all the figures, it appears that the pion dressing of ANM has an effect which is 
much more pronounced and the ratio of density fluctuation of proton and neutron decreases with increase of to-
tal density. This trend is also observed in TW [30]. 

We show in Figure 5 that the variation of ratio of proton and neutron density fluctuation with proton fraction 
yp for a given density ρ = 0.06 fm−3 has an upward trend and reaches the value 1 at 0.5py = . This also happens  
 

 
Figure 2. The curvature parameter of symmetry energy ksym as a 
function of nucleon density ρ. 

 

 
Figure 3. The slope parameter L as a function of nucleon density 
ρ. 
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Figure 4. The instability (eigenvector of negative eigenvalue) as 
a function of nucleon density ρ calculated for different values of 
the proton fraction yp = 0.05, 0.1 and 0.3. 

 

 
Figure 5. The variation of negative eigenvector with the proton 
fraction yp for the value of ρ = 0.06 fm−3. 

 
in all models ((NL3) [28], (QMC) [29] and (TW) [30]). Baring some differences, we note that the pion dressing 
of ANM is a need to understand to some extent its stability at zero temperature. 
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