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Abstract

The theory of Schur complement plays an important role in many fields such as matrix theory,
control theory and computational mathematics. In this paper, some new estimates of diagonally,
a-diagonally and product a-diagonally dominant degree on the Schur complement of matrices are
obtained, which improve some relative results. As an application, we present several new eigen-
value inclusion regions for the Schur complement of matrices. Finally, we give a numerical exam-
ple to illustrate the advantages of our derived results.
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1. Introduction
Let C™ denote the set of all nxn complex matrices, N ={1,2,,n} and A=(a;)eC™"(n>2). We

write
Ri(A)=§|aij|, Ci(A)=§|aji|, ieN,

N, (A)={i||la;|> R (A),ie N}, N (A)={il]a;| > C,(A).ieN}.
We know that A is called a strictly diagonally dominant matrix if
la;| >R (A), VieN.
A is called an Ostrowski matrix (see [1]) if
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lai[[ag| > R (AR (A), Vi, jeN,i=].

SD, and OS, will be used to denote the sets of all nxn strictly diagonally dominant matrices and the sets
all nxn Ostrowski matrices, respectively.

As shown in [2], for 1<i<n and a<[01], we call [a;|-R/(A), [a;|-aR (A)~(1-a)C;(A) and
|ag|-[R (A)]"[C;(A)]* the i-th diagonally, a-diagonally and product a-diagonally dominant degree of A,
respectively.

For BN, denote by || the cardinality of fand B =N/B.If B,y N, then A(B,y) isthe subma-
trix of A with row indices in # and column indices in . In particular, A(f, /) is abbreviated to A(f). If
A(p) isnonsingular,

A=A AB)= AB)-A(BA)LAB] A(B.5),

is called the Schur complement of A with respectto A(S).
The comparison matrix of A, u(A)= ) is defined by

()
) |, ifi=1j,
] i

A matrix A:(aij)e(C“X” is called an M-matrix, if there exist a nonnegative matrix B and a real number
s> p(B), where p(B) is the spectral radius of B, such that A=sl —B. It is known that A is an h-matrix if
and only if y(A) is an m-matrix, and if A is an m-matrix, then the Schur complement of A is also an m-matrix
and det A>0 (see [3]). We denote by H, and M, the sets of h-matrices and m-matrices, respectively.

The Schur complement of matrix is an important part of matrix theory, which has been proved to be useful
tools in many fields such as control theory, statistics and computational mathematics. A lot of work has been
done on it (see [4]-[8]). We know that the Schur complements of strictly diagonally dominant matrices are
strictly diagonally dominant matrices, and the Schur complements of Ostrowski matrices are Ostrowski matrices.
These properties have been used for deriving matrix inequalities in matrix analysis and for the convergence of
iterations in numerical analysis (see [9]-[12]). More importantly, studying the locations for the eigenvalues of
the Schur complement is of great significance, as shown in [2] [6] [13]-[18].

The paper is organized as follows. In Section 2, we give some new estimates of diagonally dominant degree
on the Schur complement of matrices. In Section 3, we present several new eigenvalue inclusion regions for the
Schur complement of matrices. In Section 4, we give a numerical example to illustrate the advantages of our de-
rived results.

2. The Diagonally Dominant Degree for the Schur Complement

In this section, we present several new estimates of diagonally, a-diagonally and product a-diagonally dominant
degree on the Schur complement of matrices,

Lemmal. [3]If AcH,, then [u(A)]" =|A7|.

Lemma2. [3]If AeSD, or A€OS  then AeH,, ie, u(A)eM,.

Lemma 3. [6] If AeSD or AeOS and Sc N, then the Schur complement of A is in SD or OS

where g =N-p isthe complement ofﬁmNand |/i’| is the cardinality of 3. -
Lemmad4. [16] Let a>b, ¢>b, b>0 and 0<a <1.Then
a“c™ 2 (a-b)” (c—b)l’“ +b.
Theorem 1. Let A=(a;)eC™ , A={i,i,,~i}=N (A)#z¢, B={iJp i}, 1sk<n and
A/B=(a;). Thenforall 1<t<lI
|an|_ (A/B)=a;; |-R; (A)+38, =]a;,; |-R; (A), (1)
and
|att|+RI A/ﬂ ‘ Jtlt‘ Rit(A)_5it S‘ajtit‘+Rjt (A)’ (2)
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where

|
k |ai i |— PI (A) |aiviv|z|aivju |
vly y u=1
altv| r

5, :Z| . , T'=max :
= la, | Lsvsk .
|aiviv|‘ )y |aiviu| R,
u=l=v

P (A)=rR , 1<v<k.

Iy

Proof. Since SN, (A)#¢, then A(S)eH, and u(A(B))eM,. From Lemma 1 and Lemma 2, we
have

[u(A(B)] " =[AB)T"

Thus, forany ¢>0 and 1<t<I, we obtain

|at’t|_Rt(A/ﬂ)

)

s#t

& i a,j,

B (aw"vawk)[A(ﬂ)Jl[ J

&,

&, i, J

> oy | s | 2o (A8

ajtik

a

K | B iy Js
:|ajljt|_Rh (A)+VZ:;|ajtiV|+(5jt _g)_(5jt —g) _SZ:;( ajtil ’”"|ajtik |)|:'u(A(ﬂ)):| 1{| : J
a,
) Ik J
szi|ajtiv|_5j[ d _|ajti1| _|ajtik|
|
1 DIy
=la,; [-R, (A)+06, —& +——————=det il
T ) l; u(A(B)
|
_; aikj
Forany j, €4, denote
X ~| @ — &,
|
DI
Bt = v=1
: 1(A(5))
|
DI
v=1
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then there exists sufficiently small positive number ¢, such that

x>i|ajliv|[w+go} @)
a

v=1

iviy
Construct a positive diagonal matrix X = diag (X, X,,-, X, ) , where
1, if t=1

_lp (A
X |'1-1—()+50, ift=23,-- k+1
ail—lil—l

Let B=BX =(b,).For p=1,by(3), we have
~ ~ - o P (A
Bl (8) -S| x| e -0

P, (A) _
Andfor p=2,3,--,k+1,by ———=<r, 1<v<k, we obtain

P_(A K P (A !
[ |p—1( )+SOJ_ Z ai y [ IV( )+‘90J_Z
& v#p-1 P a v=1
p-1'p-1
|:)I

k k (A) I
= Pipfl (A) + .S'O [‘aiplipl _v§1 aip—liv J_V¢Zpl i;kliv Va . _; aip—ljv
k k k Piv (A)
=& (&, i, |~ > a | [+r > ‘aipfliv - a >0.
vap-1 v#p-1 v#p-1 iyiy
Thus, BeSD,,,andso B, € H,,,. Notethat B, =u(B,)eM,,,, then
det B, > 0. (4)
Kk
Let x be Z|ajtiv|—5jt +¢& in B,.Then
v=1
: < R(A)
Z|""jtiv | —0j te- Z|ajtiv :
v=1 v=1 aiviv
K k a'iviv B I:)iv (A) : I:’-v (A)
= Z|ahiv _z|aitiv —_z|aitiv I +&>0.
v=l v=1 a v=1 a,

Wiy Wiy

Since det[y(A(,B))J >0, by (4), we have
lai|-R(A/B)> |ailjt|_Rj[ (A)+5, —e.
Let ¢ — 0. Then we obtain (1). Similarly, we can prove (2). [J
Remark 1. Note that
P (A)<R (A),1<v<k

v

This shows that Theorem 1 improves Theorem 2 of [17] and [2], respectively.
Next, we present some new estimates of a-diagonally and product a-diagonally dominant degree of the Schur

complement.
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Theorem 2. Let A= a])e(C”x", B={iip i <N (AN (A) 2, B={i.dp 0}, 1<k<n
and A/f=(a;).Thenforall 1<t<l, 0<a<1,

la| (R (A/B))"(C (A/ﬂ)) A j (Rjt(A)_@)a(cjt(A)_@T)l_aa ®)
and
3]+ (R (A/B))" (C.(A/B)) ™ < M‘+(Rjt(A)—@)Q(CR(A)—@T)M, (©)
where for any 1<v<Kk,
T St L bt
& ™ [| - v2|aiwiv|jRiw(A)
||a -Q (A)’ 2| 2 |

R, (A)=nR, (A), Q,(A)=£C, (A).
Proof. By Lemma 1 and Lemma 2, we have [y(A(ﬂ))T1 > [A(,B)]fl‘. Thus, forall 1<t<I, 0<a <1,

we have

2]~ (R (A/8)) (C(A/B))

a .

hlt

_ahh(ahw‘“'amk)[A(ﬁ)}1{ T

a.

i Jt

12

S#I

ailjt
T J

|ahh| ( i 0 R )[/“(A(ﬁ))]_l | zl:'|ahJ| ( ity th)[ﬂ(A(ﬂ))]l{ E J
X g |ajth|+(|ajsll|1"'1|ajslk|)|:ﬂ(A(ﬂ)):|l{| |

Let

(|a],1|

J'k

)[u<A<ﬂ>>T[| J-

Similar as the proof of Theorem 1, we can prove
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&),
| -1
> |""us +(|ani1 ""'|aitik )[ﬂ(A(ﬂ))J fOER(A)-6 ¢
S#t aikjs
Similarly, we have
ailjt
Z} Ay, +( 8y |- |aJ 'k|) /‘(A(ﬁ))T =G (A)-8 =<
|aikjt|
By Lemma 4, we have
Jag] (R, (A/ﬁ))“ (C(A/ﬂ))“
= |ahh| g)a( (A)-5] _4)17(1
Z|altlt| l: é‘t)a (Cj[ (A)_é;T )1_a _§:|
|aJ1Jt| (Ch (A)_é‘tT )Pa
Hence, (5) holds. Similarly, we can prove (6).
Remark 2. Note that
P, (A)< R, (A), Q, (A)< C, (A).

This shows that Theorem 3 improves Theorem 4 of [2].
Similar as the proof of Theorem 2, we can prove the following theorem immediately, which improves Theo-
rem 2 of [2]. B
Theorem 3. Let A—(a)e(C”X", B={ipip i <N (AN (A) =4, B={iyJp 0}, 1<k<n
and A/p=(a )Thenforal 1<t<l, 0<a<1,
lag|—aR, A/ﬂ) (1-a)C (A/B)
_|a | aR, (A)-(1-a)C, (A)+as, +(1- a)s!
2|a | aR, (A)-(1-«a
and
g+ aR (A/B)+(1-a)C, (A/B)
£|ajtjt|+aRj‘(A)+(l a)C, (
S|aj:jt|+aRjt(A)+(l a)C; (

3. Eigenvalue Inclusion Regions of the Schur Complement

In this section, based on these derived results in Section 2, we present new eigenvalue inclusion regions for the
Schur complement of matrices. B

Theorem 4. Let A=(a;)eC™", B={ini, i} <N, (A)#¢, B={j. b J}, 1<k<n and
A/p=(a;) and 1 be eigenvalue of A/S.Then there exists 1<t<I such that

‘/I—ajtjt‘SRh(A)—é‘h <R, (A). @)

Proof. By Gerschgorin Circle Theorem, we know that there exists 1<t<| such that |/1—a1’l| <R (A/B).
Thus, by Lemma 1 and Lemma 2, we have

648
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0>|1-a|-R (A/B)
B | B
=A= alth+(ajti1’m’al'tik)[A(ﬂ):| : _S;ﬂ aitis_<ahi1""’aitik)[A( :| E
& )| a,j,
| | B ai1js
Z|’1_aj,jt|_s§tt|am| ;(|am ' | Jt'k)[‘u(A(ﬂ))] :
| |aiki
. 2,5
=[1-a;,|-R, )ZIa,. |+, =9, Z(Ia,l.l la )a(AB)] |
&, j,
|,1 ahh| R, (A)+5, .
ie.,
|/1 ahh| R, (A)-5, <R, (A).

Thus, (7) holds.
Lemma 5. [2] Let A= (aij ) eC™ and 0<a<1.Then forany eigenvalue u of A, there exists 1<t<n

such that
u=a]<(R(A))" (C.(A)
Theorem 5. Let A=(a;)eC™, B={i,i, i} N, (A)NN ( A=, B=1{iip i}, 1<k<n,
A/p=(a;) and A be eigenvalue of A/A.Thenforany 0<a<1,thereexists 1<t<I such that
[-a,, [<(R, (A)-8)"(c, (A)-o7 ) " <(R, (A)"(c, (A) " ®)
Proof. By Lemma 5, we know that there exists 1<t <[ such that
[2-ai|<(R (A/B)) (C.(A/B))
Therefore,
0=|1-a|-(R(A/p))" (C.(A/B))
aait \ . a, )|
= /I_ajth_< TR Jt'k)|:A ﬂ)] Z ajds+(ajti1’m‘aitik)|:A(ﬁ):| E
a'k it o aik Is
1-a
| it
x s;t ajsjﬁ(ajsil : uk)[A ] 5
' B
. ailjt | ailjs -
|ﬂ“ ahh| 11'1 m’aj‘ik)[A(ﬂ)] : B Zﬁ |ajxjs|+(alt'1 jlik)l:A( :| :
&, _ 8

| B

x| 2

s=1,#t

|ajsjt|+(aisi1 ’ Jlk)[A ]1{ :

a.

i Jt

|
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Similar as the proof of Theorem 2, we can prove

ailjt
(e;mjtil,...,aj‘ik)[A(ﬂ)]’l :
aikjt
. S
+ S;t |ajljs +(aiti1""'aitik)[A(ﬂ)] :
o aikjs
: l-a
! 1 ai%jt
X S;t aj (ajsiv' 'ajsik)[A(ﬂ)}
- &,

Thus, we have
0=[2-a|-(R (/)" (C.(A/A))
> |l_ajth |_(RJ} (A)-8)(C; (A)-4)

l-a

Further, we obtain (8).

4. A Numerical Example

In this section, we present a numerical example to illustrate the advantages of our derived results.
Example 1. Let

20 2 5 1 4
2 15 2 4 1

A=|2 3 17 2 1| p={13
4 3 4 8 1
5 1 3 312

By calculation with Matlab 7.1, we have that
R(A)=12; R,(A)=9; R,(A)=8; R,(A)=12; R;(A)=12
C,(A)=13; C,(A)=9; C,(A)=14; C,(A)=10; C;(A)=T;
5, = 2.1800; 5, = 4.3600; 5, = 4.2500; 6, =1.4550;5, =0.8404;5; =1.7813.
Since BN, (A), by Theorem 4, the eigenvalue inclusion set of A/S is
I, ={1||4-15<6.8200} L { |1 -8| < 7.6400} U { || 4 -12| < 7.7500}.
From Theorem 4 of [2], the eigenvalue inclusion set of A/g is
I} ={||4-15/<7.1412} U{A||1-8| <8.2824} L {11 -12| < 8.4118}.

We use Figure 1 to illustrate T, < T';. And the eigenvalues of A/A are denoted by “+” in Figure 1. The
blue dotted line and green dashed line denote the corresponding discs T', and T respectively.
Meanwhile, since BN, (A)nN_(A), by taking «=0.5 in Theorem 5, the eigenvalue inclusion set of

A/B is
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Figure 1. The blue dotted line and green dashed line denote
the corresponding discs T', and T, respectively.

Figure 2. The blue dotted line and green dashed line denote
the corresponding discs I', and I, respectively.

I, ={]|4-15/<7.1733} U { ]| 18| <8.3654} L{1||4 -12| < 6.3596}.
From Theorem 5 of [2], the eigenvalue inclusion set of A/f is
Iy ={A||4-15|<7.4492} U{1||1 -8 <8.7751} U {A||1-12| < 6.7544].

We use Figure 2 to illustrate T, = I';,. And the eigenvalues of A/f are denoted by “+” in Figure 2. The
blue dotted line and green dashed line denote the corresponding discs I', and I", respectively. It is clear that
I¢r, and I, ¢T,.
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