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Abstract 
 
We provide a new simple approach to stochastic dynamic optimization. In doing so, we derive the existing 
(standard) results using a far simpler technique than the duality and the variational methods. 
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1. Introduction 

Previous studies in stochastic optimization relied on the 
duality approach and/or variational techniques such as 
using the Feynman Kac formula and the Hamilton- 
Jacobi-Bellman partial differential equations. Examples 
include [1-3], among many others. 

In this paper, we offer a new simple approach to 
stochastic dynamic optimization. That is, we prove the 
previous results using a simpler method than the duality 
or the Hamilton-Jacobi-Bellman partial differential 
equations methods. We apply our method to the standard 
investment model. Our approach is based on dividing the 
time horizon into sub-horizons and applying Stein’s 
lemma. 

2. The Portfolio Model 

We use the standard investment model (see, for example, 
[3], among many others). Similar to previous models, we 
consider a risky asset and a risk-free asset. The risk-free  

asset price process is given by  where 

 is the rate of return. 
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The dynamics of the risky asset price are given by 

d = d d ,s s sS S s W           (1) 

where   and   are the deterministic rate of return 
and the volatility, respectively, and sW  is a standard 
Brownian motion. 

The wealth process is given by 
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where x  is the initial wealth,    is the risky  πs t s T 

portfolio process with . The trading strategy  2π d <
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The investor’s objective is to maximize the expected 
utility of the terminal wealth 
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where  .V  is the (smooth) value function,  .U  is 
continuous, bounded and strictly concave utility function, 
and  is the filtration. 

We rewrite (2) as 
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Substituting the above equation into (3) and dif- 
ferentiating with respect to  (and setting the 
derivative equal to zero) yields 

πu
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By Stein’s lemma  
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Substituting this into (5) yields 

   
 

   
 22

. .
π = =

..
u u t u u x

u
u xxu t

r E U r V

VE U

 



    

  




.   (7) 

This solution can be generalized to any point on time s 
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This is exactly the solution obtained by the previous 
literature, but its derivation is far simpler. Furthermore, 
this approach can be applied to many other stochastic 
models. 
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