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Abstract 
From Lagrangian formalism as in Classical Field Theory and within the theoretical scheme of the 
Hamilton-Type Variational Principle, the mass-energy equivalence principle for any fluid is ob-
tained. 
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1. Introduction 
In the relativistic formulation of particle mechanics, it is demonstrated that the energy of a free particle does not 
vanish when its speed goes to zero. Instead, it reaches a finite value called the energy at rest of the particle. This 
is one of the best known, spectacular and important results of the Special Theory of Relativity of A. Einstein. 
The E = mc2 Equation expresses the fact that mass and energy are equivalent, that is, they conform a single in-
variant denominated the mass-energy relation. It has been confirmed through multiple practical applications and 
according to Einstein its validity extends to the whole Universe. As a consequence, it is natural to state that this 
result can also be derived from the Hamilton-Type Principle of Fluid Mechanics within the theoretical scheme 
of Lagrange’s Analytical Mechanics. 

2. The Mass-Energy Relation 
Consider any fluid confined within an arbitrary region R of the three-dimensional Euclidian space. It is desired 
to obtain the mass-energy equivalence principle for this continuous system with the help of the Lagrange for-
malism. In the analytical treatment of fluid dynamics [1], an action functional which is a space-time integral 
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2

1

d d
t

t R

W V t= ∫ ∫                                        (1) 

of a Lagrangian density 

( );gradJ J=


                                       (2) 

is commonly used. In this case the Lagrangian density is a function of the Jacobian J and its first gradient [1] [2]; 
which implies that it is a geometric Lagrangian density. According to the Hamilton-Type Principle, the action 
integral remains invariant for continuous infinitesimal geometric variations with respect to a set of continuous 
time independent geometric parameters {α}, from which the field variables and coordinates depend; that is [1] 

0WWδ δα
α

∂
= =
∂

.                                    (3) 

Furthermore, the following boundary condition of general character is imposed on the coordinates 

( ) ( )1 2 0i ix t x tδ δ= = .                                   (4) 

It can be shown that the local variation of the action integral (1) and the application of the Hamilton-Type Prin-
ciple provide as a direct consequence the following result [1] 

2

1

d d 0
t

t R

V tρδ λ =∫ ∫ ;                                     (5) 

where 

( );gradJ Jλ λ=                                      (6) 

is the specific Lagrangian. The Lagrangians (2) and (6) are related as follows [3] [4] 

ρλ= ;                                        (7) 

where ( ),x tρ  is the mass density. According to the functionality of λ given in (6) is it evident that 

J J
J J
λ λρδλ ρ δ ρ δ∂ ∂

= + ∇
∂ ∂∇

.                              (8) 

It can be demonstrated that [1] 

( )divJ J xδ δ=                                      (9) 

and 

( )grad i
iJ J x

x
δ δ∂
∇ =

∂
. 

In that case, the following result can be obtained from (8): 

i i
i iJ J x J J x

J J J Jx x
λ λ λ λρδλ ρ δ ρ δ∂  ∂ ∂  ∂  ∂ ∂    = +∇ − +∇      ∂ ∂∇ ∂ ∂∇∂ ∂      

;              (10) 

where integration by parts has been performed. If the first term of the right hand side of (10) is used in (5) and the 
Green’s theorem is applied, the following result is obtained 

2

1

d d
t

i
i

t S

J J x a t
J J
λ λρ δ∂ ∂ +∇ ∂ ∂∇ ∫ ∫ ;                            (11) 

where S is the surrounding area of region R and da is the differential of area. The surface integral is null due to 
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the following. Consider a continuous medium contained within a region R which is not deformed at infinity and 
the integration surface extended to infinity, where J = 1, in such a way that ∇J = 0 and the integral vanishes. The 
substitution of the second term of the right hand side of (10) into (5) provides the following result 

2

1

d d 0
t

i
i

t R

J J x V t
J Jx
λ λρ δ

   ∂ ∂ ∂ +∇ =   ∂ ∂∇∂     
∫ ∫ .                          (12) 

As the local variations of x are arbitrary and linearly independent among them, and dV as well as dt are com-
pletely arbitrary increments and therefore different from zero, the previous equation is satisfied only if the inte-
grand vanishes; that is 

grad grad 0J J J J
J J J J
λ λ λ λρ ρ∂ ∂ ∂ ∂   +∇ + +∇ =   ∂ ∂∇ ∂ ∂∇   

                      (13) 

where the derivative has been calculated. Nevertheless, it can be seen in the first term of (13), that 

2 0i i i

J J
J Jx x x
λ λ λρ ρ∂ ∂ ∂∇ ∂ ∂ + = = ∂ ∂∇∂ ∂ ∂ 

;                             (14) 

where the chain rule has been used to obtain the result. The term is zero because λ, ∂λ/∂J and ∂λ/∂∇J are not 
explicit functions of x. As grad ρ ≠ 0, it follows from (13) that 

1 grad 0J
J J J
λ λ∂ ∂
+ =

∂ ∂∇
.                                   (15) 

This is the field differential equation for the mass density in terms of the specific lagrangian. Let 

i
o ik k k k

JJ u u
x

λ ε ∂ = Γ + ∂ 
                                  (16) 

be the explicit form of the specific Lagrangian [1] [2]. Where, ε0 is the constant equilibrium value of the internal 
specific energy, i i

ik kiΓ = Γ  is the contracted Christoffel symbol and u(x) is the displacement vector [1] [5] [6]. 
Hence, using (16) in (15) produces 

( ), gradox t u J
J
ρ

ρ = ⋅                                     (17) 

as by definition [1] [2] 

( ), .i
ik k

o

x t
u

ρ
ρ

Γ = −                                      (18) 

Equation (17) is the scalar equation for the mass density [1] [2]. On the other hand, within the theoretical 
scheme of the Hamilton-Type Variational Principle, it is demonstrated that the action integral (1) remains inva-
riant to an infinitesimal continuous transformation with respect to time; thus, 

0Wδ + =                                          (19) 
with 

( ) ( )d
d

t
t

δ δ+ +≡                                       (20) 

being the time variation definition [1]. Besides, the temporary variations are subject to the following general 
boundary condition [1] 

1 2 0t tδ δ+ += = .                                      (21) 

Hence, the invariance condition (19) applied to the action integral (1) provides the following as a general result 
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1

d d d 0
d

t

t R

t V t
t

δ δ+ + − = 
 ∫ ∫



 .                               (22) 

According to the functionality of  given in (2) 

J J
J J

δ δ δ+ + +∂ ∂
= + ∇
∂ ∂∇
 

 .                               (23) 

Besides and by the definition in (20), it follows that 

d div
d
JJ t J v t
t

δ δ δ+ + += = ;                                (24) 

where the Euler relation [1] 

d div
d
J J v
t
= ,                                     (25) 

has been considered. Moreover, it is clear that [1] 

( ) ( )grad grad divJ J v tδ δ+ += ;                              (26) 

and hence 

1 grad divJ J v t
J J J
λ λδ ρ δ+ +∂ ∂ = + ∂ ∂∇ 

 . 

In that case 0δ + = , because the field Equation (15) is contained within the square bracket, and that term is 
zero. Therefore, (22) becomes 

2

1

d d d 0
d

t

t R

t V t
t
δ + =∫ ∫
 ,                                  (27) 

which is satisfied only if the integrand vanishes [1]. Indeed, as the temporary variations δ+t are arbitrary and li-
nearly independent among them, and dV as well as dt are arbitrary increments and therefore different from zero, 
it follows that 

d 0
dt

=
 ;                                       (28) 

which is the mass balance equation. Effectively, it can be demonstrated (see Appendix) that the relativistic la-
grangian density for any fluid free of forces is 

2
2

21 vc
c

ρ= − − . 

In the case of a fluid at rest, 2cρ= − , and according to (7), 2cλ = − ; in such a way that neither , and of 
course nor λ are functions of the velocity field; so that 

2d div
d

c v
t

ρ=
 .                                    (29) 

From the hydrodynamics derivative definition [7] and taking in to account the relationship (7) it is easy to ob-
tain that 

( )d div div
d

v v
t t t

ρ λλ ρ ρ λρ∂ ∂ = + + − ∂ ∂ 

 ;                          (30) 
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where an integration by parts was made, and it was considered that λ is not an explicit function of x. Finally, 
from (29) and (30), the following result is obtained 

( )div 0v
t t
ρ λλ ρ ρ∂ ∂ + + = ∂ ∂ 

.                            (31) 

Time uniformity has as a consequence that the specific Lagrangian does not become an explicit function of 
time; so that ∂λ/∂t = 0, and then in (31) we have that 

( )div 0v
t
ρ ρ∂
+ =

∂
;                                 (32) 

because λ ≠ 0. This is the mass balance equation. 
Furthermore, the invariance of the action under transformations with respect to the evolution parameter and 

due to the uniformity of time, more than the mass balance equation, the energy balance equation should be ob-
tained from Equation (28). As a consequence from the obtained result, it seems natural to assume that in the 
field of fluid dynamics there is a close relationship between the densities of mass and energy of any continuous 
medium. To prove the previous assumption, consider the general definition of the hamiltonian density [1] [4] 

i
i v

v
∂

= −
∂


H ;                                  (33) 

here vi is the ith-component of the velocity field. As for the present case the geometric lagrangian density (2) 
does not depend on the velocity field, it holds that = −H  and therefore from (28) the following result can be 
obtained 

constant=H .                                   (34) 
Assume that 

2ρβ=H ,                                     (35) 

with ρ again as the mass density and β2 as a constant with units of velocity squared that has the purpose of ba-
lancing dimensions in Equation (35). It will be shown in the appendix that β2 = c2, being c the velocity of light 
in vacuum space. Furthermore 

2 21
o

v c

ρ
ρ =

−
;                                  (36) 

where ρo is the mass density at rest and v the magnitude of the flow velocity. Using the previous definitions, it 
follows that 

2

2 21
oc

v c

ρ
=

−
H ;                                  (37) 

and the condition imposed in (34) is satisfied because the flow rate is constant. The previous equation shows that 
in the domain of relativistic dynamics, the kinetic energy of a fluid does not vanish when its flow rate vanishes, 
since for such case H  has the following value as it can be seen from (37) 

2
ocρ=H .                                     (38) 

This is the equation for the energy density of a continuous at rest medium. It expresses the equivalence be-
tween energy and mass densities in the field of fluid dynamics. It is clear that as H  is the energy per unit vo-
lume and ρo the mass of fluid also per unit volume, Equation (38) reduces to the well known Einstein Equation 
of relativistic mechanics, E = moc2; except that here mo is not the mass of a free particle at rest, but the mass of 
the continuous medium at rest, free of forces. 

Furthermore, for low flow rates when 1v c , Equation (37) can be expanded into a power series of v/c to 
obtain 
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2 21
2

c vρ ρ≈ +H .                                  (39) 

The form of the previous equation is due to the fact that when v/c → 0, ρ → ρo. This is the Newtonian limit of 
the general equation for the relativistic mass density ρ. Except for the energy at rest, the previous equation is the 
expression for the kinetic energy density of the continuous medium under study. It is clear from Equation (36) 
that the relativistic relationship between mass and velocity is satisfied [8]; that is 

2 21
om

m
v c

=
−

,                                   (40) 

where mo is the mass of the fluid at rest and v the magnitude of the flow velocity. Finally, from the total deriva-
tive of Equation (35) with respect to time and as ρβ2 ≠ 0, it can be directly obtained that 

div 0v = .                                      (41) 

This is the continuity equation for the case in which the mass density is referred to the system at rest. The 
previous relation is identically satisfied because the system under consideration is not in motion, and so the flow 
velocity is zero. In addition, as the kind of fluid contained in R has not been specified anywhere, the mass- 
energy relation is valid for any continuous medium, and so are the rest of the results obtained. 

3. Conclusions 
The theoretical scheme of the Hamilton-Type Variational Principle provides the methodology required to obtain 
the mass-energy equivalence principle for any fluid. The problem is enclosed within the Lagrange formulation 
of theoretical mechanics, in such a way that the required methodology is configured with the help of the action 
integral and a Lagrangian density depending only on purely geometric entities. The local variation of the action 
integral and the usage of appropriate boundary conditions within the Hamilton-Type Principle scheme produce 
as a result of the field equation for the mass density. The scalar equation for the mass density is obtained using 
the explicit form of the specific Lagrangian. As a result of the temporary variation of the action integral, the re-
ferred Hamilton-Type Principle and the corresponding boundary conditions, the mass balance equation is ob-
tained. 

Finally, from the mass balance equation and the general definition of the Hamiltonian density, the equivalence 
principle between the mass and energy densities in fluid dynamics is obtained. Furthermore, the relationship 
between the mass density and the flow velocity is provided, and the corresponding continuity equation for the 
case of mass density referred to a continuous medium at rest is obtained. 
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Appendix 
Let R be a region in the three-dimensional Euclidian space containing any fluid. Let  be the lagrangian density 
such that the classic lagrangian has the following value 

d
R

L V= ∫  ;                                     (A-1) 

where dV is the volume element. According to relativistic dynamics, the classic lagrangian for a free particle [6] 
of mass m in motion with a constant velocity v is 

2
2

21 vL mc
c

= − − .                                  (A-2) 

Never the less, the previous relationship also holds for an extended body; in particular, it must be valid for any 
continuous medium whose total mass is given by 

( ), d
R

m x t Vρ= ∫ ;                                   (A-3) 

where ρ(x, t) is the mass density. Substituting (A-3) in (A-2) and comparing the result with (A-1), it follows that 

2
2

21 vc
c

ρ= − − .                                  (A-4) 

In the newtonian limit of relativistic mechanics; that is, when v/c → 0, (A-4) yields  → −ρc2. In that case and 
since H = −, β2 = c2, the assumption made after Equation (35) is satisfied. Besides, according to the Lorentz 
contraction [6] the proper volume of the continuous medium under consideration is 

2

21o
vV V
c

= − .                                    (A-5) 

Since V = m/ρ and Vo = m/ρo, Equation (36) is satisfied. 
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