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Abstract 
A sentence over a finite alphabet A, is a finite sequence of non-empty words over A. More generally, 
we define a graphical sentence over A by attaching a non-empty word over A to each arrow and 
each loop of a connected directed graph (digraph, for short). Each word is written according to the 
direction of its corresponding arrow or loop. Graphical sentences can be used to encode sets of 
sentences in a compact way: the readable sentences of a graphical sentence being the sentences 
corresponding to directed paths in the digraph. We apply combinatorial equations on enriched 
trees and rooted trees, in the context of combinatorial species and Pólya theories, to analyze pa-
rameters in classes of tree-like sentences. These are graphical sentences constructed on tree-like 
digraphs. 
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1. Introduction 
Figure 1 (left) shows a completely unlabelled1 connected digraph. We define a graphical sentence over a finite 
alphabet A by attaching a non-empty word over A to each arrow and each loop of a completely unlabelled con-
nected digraph. Each word must be written according to the direction of its corresponding arrow or loop, from 
source to target. Figure 1 (middle) shows a graphical sentence over alphabet {A, C, G, T} and Figure 1 (right) 
shows another over alphabet . 

Graphical sentences can be used to encode sets of ordinary sentences in a compact way: The readable sen-
tences of a graphical sentence being the sentences corresponding to directed paths in its digraph. For example,  

 

 

1In the sense that both its vertices, arrows and loops are unlabelled. 
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Figure 1. Unlabelled digraph and graphical sentences over alphabets {A, C, G, T} and . 

 
TTT C GCCTG CAT CAT GCAATT, is a readable sentence arising from the graphical sentence of Figure 1 
(middle). 

In the present paper we focus our attention on the structure of graphical sentences as combinatorial objects 
using methods from the theory of combinatorial species [1] [2] and classical Pólya theory [3]. We leave aside 
the generation of the readable sentences of a graphical sentence since this is easily done via the computation of 
powers of incidence matrices2. Of course, special sentences among the readable sentences can be selected by 
adding extra structure to graphical sentences (such as source points, sink points, STOP points, counters, exten-
sions of the alphabet by adding special characters such as , !, ?, etc). We also leave aside this aspect in our 
analysis of graphical sentences. 

Various descriptive parameters can be attached to each graphical sentence over a given alphabet A. For exam-
ple, the graphical sentence of Figure 1 (middle) is made of 7 vertices, 11 arrows, 2 loops, 52 letters, letter A 
appears 13 times, letter C appears 9 times, letter G appears 10 times and letter T appears 20 times. 

As usual in enumerative combinatorics, families of parameters associated to structures are conveniently en-
coded by weight-monomials. 

Definition 1.1. The weight of a graphical sentence s over an alphabet A is the (commutative) formal monomi-
al3 

( ) ( )#vertices in #arrows in #loops in #letters in a ss s s s

a A
s x y z t aν

∈

= ∏w                        (1) 

where ( )a sν  is the number of occurrences of letter a in s. 
In (1), each letter a A∈  is reinterpreted as a formal variable. For example, the weight of the graphical sen-

tence s of Figure 1 (middle) is given by 

( ) 7 11 2 52 13 9 10 20 .s x y z t A C G T=w                                 (2) 

Definition 1.2. Let   be any class of totally unlabelled connected digraphs and { }1,2,3,+⊆ =   . Let 
S  be the (countable) set of all graphical sentences over alphabet A arising from digraphs in  , the word on 
each arrow or loop having a length ∈ . The inventory of S  is the formal sum of the weights of all graphical 
sentences in S : 

( )( ) ( ), , , , .a A
s

x y z t a s
∈

∈

= = ∑
S

S Sw w w                              (3) 

As usual in enumeration problems, the (explicit or recursive) computation of an inventory of a class of struc-
tures provides a great deal of information about the structures to which it is associated. This information is ex-
tracted from the inventory through expansion, collection of terms, specialization/confluence of variables, alge-
braic/differential manipulations and coefficient extraction. 

For example, in the present situation, expanding and collecting terms in (3) gives, of course, 

( )( )
( )

( ), , , ,
, , , ,

, , , , ,a
a a A

a a A

m n p q
m n p qa A

m n p q
x y z t a c x y z t aνν

ν ∈
∈

∈
= Π∑Sw                    (4) 

 

 

2Entry (i, j) being defined as the word on the arrow or loop from vertex i to vertex j, etc. 
3Variables x, y, z and t are taken distinct from the letters in alphabet A. 
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where the coefficient ( ), , , , a a Am n p qc ν ∈
 is the total number of graphical sentences s∈S  having m vertices, n ar-  

rows, p loops, a total number of q letters, aν  of which are letter a, for each a A∈ . 
Assigning the value 1 to each letter a and collecting terms gives 

( )( ) , , ,
, , ,

, , , , 1 ,m n p q
m n p qa A

m n p q
x y z t b x y z t

∈
= ∑Sw                          (5) 

where , , ,m n p qb  is the number of s∈S having m vertices, n arrows, p loops and q letters. Letting 1x y z= = = , 
gives 

( )( )
( )

( ),
,

1,1,1, , ,a
a a A

a a A

q
qa A

q
t a d t aνν

ν ∈
∈

∈
= Π∑Sw                          (6) 

where ( ), a a Aqd ν ∈
 is the number of s∈S  made of q letters occurring with frequencies ( )a a A

ν
∈

. 

Letting 1x y z= = =  and assigning the value 1 to each letter a gives 

( )( )1,1,1, , 1 ,q
qa A

q
t e t

∈
=∑wS                                (7) 

where qe  is the number of s∈S  made of q letters. 
Let ,p qf  be the number of graphical sentences s∈S  made of p words (i.e., p is the total number of arrows 

and loops in s) and q letters. Then 

( )( ) ,
,

1, , , , 1 .p q
p qa A

p q
z z t f z t

∈
=∑wS                              (8) 

Moreover, if we let 1t =  in (8) and if S  is a finite set, then 

( )( )1, , ,1, 1 ,p
pa A

p
z z h z

∈
=∑wS                               (9) 

is a polynomial, where ph  is the number of s∈S  made of p words. Differentiation gives 

( )( )
( )( )

1

d 1, , ,1, 1
d Expected number of words in a random .

1, , ,1, 1

p
a A p

pa A
p

z

phz z
z s

hz z
∈

∈
=

 
 

= = ∈ 
 
 

∑

∑
w

w

S
S

S
       (10) 

Of course, a variety of other similar manipulations of the inventory ( )( ), , , , a Ax y z t a
∈

S  are possible. In Sec-  

tion 2 we apply methods from the theory of species and Pólya theory, to express inventories of general classes of 
graphical sentences in terms of cycle index series. Section 3 deals with specific classes of graphical sentences: 
linear sentences (corresponding to path-like digraphs) and general tree-like sentences (corresponding to classes 
of tree-like digraphs). We conclude (Section 4) by giving suggestions for possible extensions and generaliza-
tions of our results. Various explicit examples are given and to make the text easier to read, the proofs of the 
main results are collected in Section 5. In a previous paper, [4], we studied the distribution of runs in arbores-
cent words. 

We assume that the reader is familiar with Pólya theory [3] and with the basic concepts of the theory of com-
binatorial species [1] [2]. 

2. Inventory of Graphical Sentences via Cycle Index Series 
In order to give a rigorous meaning to the notion of a totally unlabelled digraph and to be able to take into ac-
count the possible symmetries within graphical sentences, we must recall first some definitions concerning la-
belled digraphs. A digraph on (or labelled by) a finite set V of vertices, a finite set 1V  of arrows, and a finite set 

0V  of loops is an ordered pair ( )0 1,g g g=  of injections, 

( )0 0 1 1: , : \ diag ,g V V g V V V V→ → ×                            (11) 

where ( ) ( ){ }diag , :V v v v V= ∈  and ( ) ( ){ }\ diag , : , ,V V V v w v V w V v w× = ∈ ∈ ≠ . Given any loop 0 0i V∈  
and any vertex v V∈ , the equality ( )0 0g i v=  means that 0i  is a loop at v in the digraph g. Given any arrow 
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1 1j V∈  and any ordered pair of distinct vertices ( ) ( ), \ diagv w V V V∈ × , the equality ( ) ( )1 1 ,g j v w=  means 
that arrow 1j  is going from v to w in the digraph g. In other words 

( ) ( ) ( ) 1

0

0 0 1 1in , , in .
i

jg i v v g g j v w v w g= ⇔ = ⇔ →


                    (12) 

Figure 2(a) shows a digraph on the sets { }1,2,3, ,8V =   of vertices, { }1 1 1 1 11 , 2 ,3 , ,12V =   of arrows and 
{ }0 0 01 , 2V =  of loops, with loop 01  at vertex 4 and loop 02  at vertex 1. Let ( )0 1,g g g=  be a digraph on 

( )1 0, ,V V V  and ( )0 1,g g g′ ′ ′=  be a digraph on ( )1 0, ,V V V′ ′ ′ . An isomorphism : g gθ ′→  from digraph g to di-
graph g′ , is an ordered triple, ( ), ,θ α β γ= , of bijections :V Vα ′→ , 1 1:V Vβ ′→ , 0 0:V Vγ ′→ , such that 

( )
( )0 0

in in ,
i i

v g v g
γ

α ′⇔
 

                                  (13) 

( ) ( ) ( )11 in in .jjv w g v w gβα α ′→ ⇔ →                          (14) 

If g g′=  then θ  is called an automorphism (or symmetry) of the digraph g. For example, the triple of 
permutations ( ), ,α β γ , defined (in cyclic notation) by 

( )( ) ( )( )( )1 1 1 1 1 13,8 7,6 , 4 ,12 9 ,1 2 ,5 , id,α β γ= = =                    (15) 

is an automorphism of the digraph of Figure 2(a). Note that labelled digraphs are elastic and not considered as 
embedded in the plane. Only the incidence relations between vertices, arrows and loops are taken into account. 
A totally unlabelled digraph (see Figure 2(b)), is simply an isomorphism class of labelled digraphs. The class of 
a labelled digraph g is denoted [g]; so that [g] is a totally unlabelled digraph with representative g. 

We now give a rigorous definition of the notion of a graphical sentence. 
Definition 2.1. Let A be a finite alphabet and 2 3A A A A+ = + + + , be the set of non-empty words over A. 

A graphical sentence over A is an equivalence class, s, of ordered triples, ( )0 1, ,g σ σ , where g is a connected 
labelled digraph on ( )1 0, ,V V V , and 0 0:V Aσ +→ , 1 1:V Aσ +→  are arbitrary functions assigning a non-empty 
word to each loop and each arrow of g. Two such triples ( )0 1, ,g σ σ  and ( )0 1, ,g σ σ′ ′ ′  being equivalent if there 
exists an isomorphism ( ), , : g gθ α β γ ′= →  such that 0 0σ γ σ′ =  and 1 1σ β σ′ = . We write ( )0 1, ,s g σ σ =   
to mean that s is a graphical sentence with representative ( )0 1, ,g σ σ . 

Now take any species   of connected labelled digraphs4. Our goal is to compute the inventory (3) of the 
class S  of all graphical sentences ( )0 1, ,s g σ σ =    where g∈ . To emphasize the fact that digraphs are 
made of three sorts of elements, vertices, arrows and loops, the given species   of digraphs can be written in 
the form ( ), ,X Y Z=  , where X is the sort of vertices, Y is the sort of arrows, and Z is the sort of loops5. Any 
digraph g∈  is called a  -structure for short. 

Following standard notations from the theory of species, the set of all  -structures on a set V of vertices, a 
set 1V  of arrows and a set 0V  of loops is denoted by [ ]1 0, ,V V V  (note the square brackets). Given bijections 

:V Vα ′→ , 1 1:V Vβ ′→ , 0 0:V Vγ ′→ , we denote by 

[ ] [ ] [ ]1 0 1 0, , : , , , , ,V V V V V Vα β γ ′ ′ ′→                            (16) 

the bijection ( )g g ′  that transforms (or transports) each digraph [ ]1 0, ,g V V V∈  into a corresponding 
isomorphic digraph [ ]1 0, ,g V V V′ ′ ′ ′∈ , as described above. Note that if V V ′= , 1 1V V ′=  and 0 0V V ′= , then 
[ ], ,α β γ  is a permutation of the set [ ]1 0, ,V V V  (i.e., a bijection of [ ]1 0, ,V V V  into itself). 
Many power series can be associated to any species  . An important one is the Pólya-Joyal cycle index se-

ries Z . In the context of a species ( ), ,X Y Z=   of digraphs, this is a power series in a triple infinity of 
variables, 1 2 3 1 2 3 1 2 3, , , ; , , , ; , , ,x x x y y y z z z   , defined by 

( )1 2 3 1 2 3 1 2 3, , , ; , , , ; , , ,x x x y y y z z z=    Z Z                                  (17) 

[ ] 3 3 31 2 1 2 1 2
1 2 3 1 2 3 1 2 3

, , , ,

1 fix , , ,
! ! ! m n pm n p S S S

x x x y y y z z z
m n p

α β γα α β β γ γ

α β γ
α β γ

∈ ∈ ∈

= ∑ ∑           (18) 

 

 

4This means that   is a class of connected digraphs on arbitrary finite sets, V of vertices, V1 of arrows and V0 of loops, which is closed un-
der arbitrary isomorphisms. 
5More precisely, X is the species of singleton vertices, Y is the species of singleton arrows and Z is the species of singleton loops. 
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(a)                                  (b) 

Figure 2. (a) A labelled digraph g; (b) [g] = totally unlabelled g. 
 
where, for each permutations mSα ∈ , nSβ ∈  and pSγ ∈ , [ ]fix , ,α β γ  is the number6 of all digraphs 

[ ]1 0, ,g V V V∈ , on the sets { }1,2, ,V m=   of vertices, { }1 1 1 11 , 2 , ,V n=   of arrows and { }0 0 01 , 2 , ,V p=   
of loops, for which ( ), ,α β γ  is an automorphism (i.e., [ ]fix , ,α β γ  is the cardinality (or total weight) of the 
set of fixed points of the permutation [ ], ,α β γ ). For a permutation kSσ ∈ , the notation iσ  is used to de-
note the number of cycles7 of length i in the cyclic decomposition of σ . 

The sequence of integers ( )1 2 3, , ,σ σ σ   is called the cyclic type of σ  and it is well known that the number 
of kSσ ∈  having cyclic type ( )1 2 3, , ,k k k= k , with 1 2 32 3k k k k+ + + = , is 

31 2
1 2 3

! , where 1 !2 !3 ! .kk kk k k k↓=
↓

k
k

                          (19) 

Note that each sequence k has a finite number of nonzero terms and will be considered, in the present text, as 
a finite sequence with ( ) { }max : 0jc c j k= = ≠k  components. By this convention, k can be viewed as a parti-
tion of the integer 1 22 ck k k ck= + + + , having ik  parts of length i, for 1, 2, ,i c= 

 and we use the classical 
notation8 

,kk                                       (20) 

to express this fact. Note also that [ ]fix , ,α β γ , in (18), only depends on the cyclic types of the three permuta-
tions , ,α β γ . Hence, every three permutations , ,α β γ  having given cyclic types ( )1 2 3, , ,m m m=m  , 

( )1 2 3, , ,n n n=n  , ( )1 2 3, , ,p p p=p   contribute to the same monomial 
3 3 31 2 1 2 1 2

1 2 3 1 2 3 1 2 3 ,m n pm m n n p px x x y y y z z z=m n px y t                            (21) 

in (18). In order to eliminate this redundancy, we regroup monomials which correspond to each of these types, 
and taking (19) into account we obtain the following more compact variant expression for the cycle index series 
of  : 

( ) [ ]
, ,

, , fix , , ,= =
↓ ↓ ↓∑

m n p

m n p

x y zZ Z x y z m n p
m n p                           (22) 

in which each monomial appears only once and [ ]fix , ,m n p  is the number (or total weight) of all  -struc- 
tures for which any given ( ), ,α β γ  of types ( ), ,m n p  is an automorphism. 

The following proposition is a consequence of general principles from the theory of species and Pólya theory. 
It shows that the computation of Z  is an essential step in the determination of the inventory series (3) of 
classes of graphical sentences arising from digraphs g∈ . 

Proposition 2.1. Let ( ), ,X Y Z=   be any species of connected digraphs, let +⊆  , and let  
, ,A= S S   be the set of all graphical sentences over alphabet A arising from  , the word on each arrow or 

loop having a length ∈ . Then, the inventory of S  is given by 

( )( ) ( )2 3 2 3 2 3
1 2 3 1 2 3, , , , , , , ; , , , ; , , , ,a Ax y z t a x x x y y y z z zλ λ λ λ λ λ

∈
=w Z   S              (23) 

 

 

6Or total weight, in the case of weighted digraphs. 
7Not to be confused with ( )iσ  which is the image of i under σ . 
8In particular, the empty sequence, 0, has no component and satisfies 0  0. 
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where ( )k k
k t aλ = Λ Σ , 1,2,3,k =  , ( ) i

iu u
∈

Λ =∑  , and k k
a Aa a
∈

Σ =∑  is the formal k-th power sum of 
the letters of the alphabet. 

Proof. See Section 5.                                                                    □  
Making use of the compact expression (22) for the cycle index series and collecting terms, inventory (23) can 

be rewritten in the following more explicit form. 
Corollary 2.2. The inventory, ( )( ), , , , a Ax y z t a

∈
=S Sw w , of the set , ,A= S S   of all graphical sentences 

arising from a species ( ), ,X Y Z=   of digraphs is given by 

( ), , 1 2 3
0, 0, 0

, , , ,m n p
m n p

m n p
x y zω λ λ λ

≥ ≥ ≥

= ∑ Sw                        (24) 

where ( )k k
k t aλ = Λ Σ , 1,2,3,k =  , ( ) i

iu u
∈

Λ = ∑  , and 

( ) [ ]
3 31 1 2 2

, , 1 2 3 1 2 3
, ,

fix , ,
, , , .n pn p n p

m n p
m n p

ω λ λ λ λ λ λ ++ +=
↓ ↓ ↓∑

m n p

m n p
m n p

 

  


              (25) 

□  
Note. If +=   in Proposition 2.1, then ( ) ( )1u u uΛ = −  and no restrictions are put on the lengths of the 

words in inventory (23). If { }1,3,5,=  , then ( ) ( )21u u uΛ = −  and the lengths of the words are all odd. If 
{ }1,2, , N=  , then ( ) ( ) ( )1 1 1N k N

ku u u u u
=

Λ = = − −∑  and the lengths of the words are bounded by N, etc. 

3. Analysis of Classes of Tree-Like Sentences 
As shown in the preceding section, the computation of the inventory of a class S  of graphical sentences can 
be reduced to the computation of the cycle index series Z  provided that S  arises from a 3-sort species 

( ), ,X Y Z=   of connected digraphs. However, the explicit or recursive computation of the cycle index series 
of most species of graphical structures is a very difficult (or intractable) task. For example, even in the ordinary 
one-sort case9, the complete cycle index series of the species of all ordinary plane digraphs and all transitive di-
graphs are still unknown10. 

For this reason, we focus our study on the following basic classes of graphical sentences: 
1) Linear sentences (arising from the species of path-shaped digraphs). 
2) General tree-like sentences (arising from various species of tree-like digraphs). 
Note that linear sentences are special kinds of tree-like sentences. Due to their close relationship with ordi-

nary sentences, we have chosen to present first a separate subsection devoted to their study. Our methods will 
use the fact that species of tree-like digraphs can be built from simpler species by making use of basic combina-
torial operations and that cycle index series behave well with respect to these operations. For example, if F, G 
and H are species, then 

( ) ( ) ( ),, , , , , etc,F G F G F G F G F G F G HF G F G H Z Z Z+ ⋅= + = ⋅ = =Z Z Z Z Z Z Z Z Z Z           (26) 

where   denotes the classical plethystic substitution of cycle index series (see [1]). 

3.1. Linear Sentences 
We say that a digraph ( )0 1,g g g=  is path-shaped if its underlying simple graph is a simple path. A graphical 
sentence is linear if it comes from a path-shaped digraph. Figure 3 shows a path-shaped digraph, together with 
its underlying simple path and a linear sentence over alphabet { }a,b,cA = . Note that a path-shaped digraph can 
have non-trivial automorphisms. For example, the 180˚ rotation, ( ), ,α β γ , where the cyclic decompositions of 
the permutations , ,α β γ  are given by 

( )( )( )( ) ( )( )0 0 0 03,8 5,2 6,4 1,9 , 3 ,4 5 ,1 ,α β= =                         (27) 

( )( )( )( )( )( )1 1 1 1 1 1 1 1 1 1 1 17 ,3 9 ,4 1 ,12 5 ,6 10 ,2 8 ,11 ,γ =                        (28) 

is an automorphism of the path-shaped digraph of Figure 3. 

 

 

9Where only the vertices are labelled. 
10However, for the 3-sort species ( )Dig , ,X Y Z  of all digraphs, ZDig can be computed explicitly (see Section 4). 
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Special kinds of linear sentences over an alphabet include ordinary sentences (Figure 4 top), corresponding 
to directed paths without loops, and ordinary sentences with (possible) loops (Figure 4 bottom), corresponding 
to directed paths with (possible) loops. 

For example, the sentence 
MY TAYLOR IS RICH RICH AND MY COUSIN IS POOR POOR POOR            (29) 

is one of the readable sentences in Figure 4 bottom. 
Proposition 3.1 Let   be the set of all ordinary sentences,  , the set of all ordinary sentences with loops, 

L , the set of all linear sentences without loops, and L , the set of all linear sentences with loops over an al-
phabet A and a set +⊆   of allowed word-lengths. Then, the following inventories hold 

( )
( )

1

1 1 1

1
, ,

1 1 1
z xx

xy z xy
λ

λ λ λ
+

= =
− − +

w w                            (30) 

( ) ( )
2 2

2
2 2 2

1 1 2 2

1 ,
2 1 2 1 2

x x yx
y xy y x y

λ
λ λ λ λ

 + = +
 − + − + 

Lw                      (31) 

( )
( )( )

( ) ( )
( )( )

2 2 2
1 2 21

2 2 2 2
1 1 1 2 2 2

1 111 ,
2 1 1 2 1 1 2

z x z x yz x
z y xy z y x y

λ λ λλ
λ λ λ λ λ λ

 + + ++ = +
 − + + − + + 

Lw              (32) 

where, ( ) ( )2 2
1 2,t a t aλ λ= Λ Σ = Λ Σ , ( ) i

iu u
∈

Λ =∑  . 
Proof. See Section 5.                                                                    □  
In view of (30)-(32), the alternate general inventory formula (24) in the case of any class of linear sentences, 

does not involve 3 4, ,λ λ  . We have the following explicit expansions. 
Corollary 3.2. For the classes , , ,L L    of linear sentences, we have 

1 1
1

1,0
,m p m m p

m p m

m
x y z

p
λ + − −

≥ ≤ ≤

 
=  

 
∑w                           (33) 

0
,

z=
=  w w                                    (34) 

( )

1
2 2

, , 1 , , 2 , , 1 2
, ,

,
n p n p

n p m n p
m n p m n p m n p

m n p W
a b c x y zλ λ λ λ

+ + −
+

∈

 
= + +  

 
∑Lw                 (35) 

 

 
Figure 3. Path-shaped digraph, its underlying simple path and a linear sentence. 

 

 
Figure 4. An ordinary sentence and an ordinary sentence with loops. 
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0
,

z=
=L Lw w                                    (36) 

where 

( ) ( ){ }, , 1, 1 2 1 ,0 ,W m n p m m n m p m= ≥ − ≤ ≤ − ≤ ≤                     (37) 

2 3
, ,

1
2 ,

1
m n

m n p

m m
a

n m p
− −−  

=   − +  
                             (38) 

2 2
2 2

, ,

1 1 1
2 2 2 22 2 ,

1
2 2 2 2

n nm m

m n p

m m m m

b
n m p n m p

− − − −

− −     −     
= +     

− + −          
     

                   (39) 

2
2

, ,

1 1
2 2 2 ,

1 1
2 2

nm

m n p

m m

c
n m p

− −

− −  
  

=   
− + −    

  

                            (40) 

using the convention 0
α
β
 

= 
 

 if α  and β  are not both integers. 

Proof. (Sketch) Formulas (34) and (36) are immediate since no loops are involved. Careful computations, 
starting from (30) and (32) using geometric series, the binomial theorem, and manipulation or indices lead to 
expansions (33) and (35).                                                                   □  

Sample of explicit examples of computations. 
Example 3.1. General shape of the inventory of the class Lw . 
The first few terms of Lw  read as follows 

( ) ( )
( ) ( )

2 2 2 3 2 2 2 2 2 3 2 2
1 1 1 1 1 2 1

4 2 2 2 2 2 3 2 3 3 2
1 2 1 2 1 1 2

4 2 3 2 2 5 2 3 2 3 3 3 3 4 3 3
1 2 1 1 2 1 1

5 3 3 2 6 3 3 3 4 2
1 1 1 2

1 12
2 2

1 1 2 6
2 2

6 2 2 6

1 16 2
2 2

x xz x y x yz x yz x y x y z

x y z x y x y z

x y z x y z x y x y z

x y z x y z

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

λ λ λ λ

 = + + + + + + + 
 

 + + + + + + 
 

+ + + + + +

+ + + +

Lw

3 4 5 2 3 4
1 1 2

6 3 3 4 2 7 3 3 4 3
1 2 1 1 2

3 1
2 2

3 1 1 1 .
2 2 2 2

x y x y z

x y z x y z

λ λ λ

λ λ λ λ λ

   + +   
   

   + + + + +   
   



           (41) 

The coefficients of m n px y z  in (41) are polynomials in 1λ  and 2λ  each having one or two terms, despite 
the fact that (35) suggests three terms. This is true for every m, n, p since , ,m n pb  and , ,m n pc  cannot be both non  

zero, due to the fact that 1
2

p −  and 
2
p  cannot be both integral in (39) and (40). 

Example 3.2. Counting linear sentences with given parameters. 
Corollary 3.2 is particularly useful when one wants to compute an individual term in the inventory of linear 

sentences. For example, consider the 3-letter alphabet { }a,b,cA =  and take +=  . This means that we im-
pose no restrictions on the lengths of the words that are assigned to each arrow or loop in linear sentences. Sup-
pose that we want to know the number of such linear sentences having 7m =  vertices, 10n =  arrows, 5p =  
loops which are made of 7 times the letter a, 6 times the letter b and 12 times the letter c. In this case, the coeffi-
cient of 7 10 5x y z  is given by 

15 7 15 7
1 1 2 1 1 2

6 7 3 3
2 630 9 ,

4 5 2 2
λ λ λ λ λ λ

     
+ = +     

     
                        (42) 
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where 

( )
( )

( )
( )

2 2 2 2

1 2 2 2 2 2

a b ca b c
, .

1 a b c 1 a b c

tt
t t

λ λ
+ ++ +

= =
− + + − + +

                        (43) 

The required number of linear sentences equals the coefficient of 25 7 6 12a b ct  in (42). Using Maple, this number 
is equal to 

11026064192581225368.                                 (44) 

If we take { }1,2= , then the words that are assigned to each arrow or loop in linear sentences are of length 1 
or 2. In this case, (43) is replaced by 

( ) ( ) ( ) ( )222 2 2 2 2 4 2 2 2
1 2a b c a b c , a b c a b ct t t tλ λ= + + + + + = + + + + +              (45) 

and (44) goes down to 16882686796464720. 
Example 3.3. Manipulating the inventory of linear sentences. 
As we have seen in Section 1, manipulations of inventories (specialization of variables, expansions, etc) can 

be made to analyze various parameters in graphical sentences. Proposition 3.1 is generally more suitable for 
such manipulations than Corollary 3.2. For example, let   be the number of letters in alphabet A, +=  , and 
assign the value 1 to x, y and to each letter a A∈  in wL  given by (31). Then ( )1 1t tλ = −  ,  

( )2 2
2 1t tλ = −  , and, by (7) 

( )2 2

2 2 2 2 4

11 1 ,
2 1 4 2 1 4 2

q
q

q

t t e t
t t t t

 − − + =
 − + − + 

∑




   

                        (46) 

where qe  is the number of linear sentences without loops that are made of q letters. Note that (46) is a rational 

function of t, so that the sequence ( ) 0q q
e

≥
 satisfies a linear recurrence with constant coefficients and the  

asymptotic expansion of qe , as q →∞ , can be established using standard classical methods. The first few 
terms in expansion (46) are given by 

( ) ( )
( ) ( )
( ) ( )

2 2 3 3 4 2 4 5 5

6 3 6 7 7 8 4 8 9 9

10 5 10 11 11 12 6 12

11 7 3 12 41 5 140
2

478 17 1632 5572 58 19024

64952 198 221760 757136 676 .

q
qe t t t t t t

t t t t

t t t

= + + + + + + +

+ + + + + +

+ + + + + +

∑       

     

     

           (47) 

Example 3.4. Fibonacci numbers versus ordinary sentences with loops. 
Consider now the class   of ordinary sentences with possible loops. Let y z=  and assign the value 1 to 

x and to each letter a A∈  in w  given by (30). Then we have 

( )( ) 1
2 1 ,2 2

0 , 01 1

11, , , , 1 ,
1

p p p q
p p qa A

p p q

zz z t F z f z t
z z
λ λ

λ λ +∈
≥ ≥

+
= = =

− − ∑ ∑w                 (48) 

where kF  are the Fibonacci numbers11 and ,p qf  is the number of ordinary sentences with possible loops made 
of p words and q letters. Now, fix 1q ≥  and consider the finite class q

  of all s∈   made of q letters. 
Since, ( )1 1t tλ = −  , then collecting the coefficient of qt  in (48) we have the polynomial inventory 

( )( ) , , 2
1

1
1, , ,1, 1 , .

1
p q

q p q p q pa A
p q

q
z z f z f F

p +∈
≤ ≤

− 
= =  − 
∑w 

                    (49) 

Finally, making use of (10) and invoking Binet’s formula 

( )1 ,
5

k k
kF φ ψ= −                                   (50) 

 

 

11
0 1 1 20, 1, k k kF F F F F− −= = = + , for 2k ≥  and ( )2

0
1 k

kk
z z z F z

≥
− − =∑ . 
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where 1 5
2

φ +
=  is the golden number, 1 5 1

2
ψ φ−

= = − , we find that the expected number of words in a 

random ordinary sentence with possible loops made of 1q ≥  letters is 

( ) 2

2 1

1 1 , .q

q

F qq q
F φ+

+ − →∞                               (51) 

The reader can check that if we do not allow loops, then (51) is replaced by ( )1 1
2

q + . 

A multitude of other similar examples can be obtained using Proposition 3.1 and Corollary 3.2. 

3.2. General Tree-Like Sentences 
We say that a digraph ( )0 1,g g g=  is tree-like if its underlying simple graph is a simple tree or a simple rooted 
tree. A graphical sentence is tree-like if it comes from a tree-like digraph. Figure 5 shows a tree-like digraph, its 
underlying simple tree and a tree-like sentence over alphabet { }0,1A = . 

The tree-like structures of Figure 5 are free in the sense that they are not restricted to be embedded in the 
plane and no other constraints are assumed on the vertices, arrows and loops. More generally, by allowing such 
constraints, one can consider, for example, the above linear sentences (see Figure 3 and Figure 4), one way free 
binary rooted tree sentences (see Figure 6 left), one way free full binary rooted tree sentences (see Figure 6 
right), plane tree sentences (see Figure 5 right) where, this time, the underlying tree is considered as being em-
bedded in the plane), etc. We shall deal with these cases in a uniform manner by adding extra structure on the 
underlying trees or rooted trees. More precisely, the underlying trees or rooted trees will be enriched according 
to the following definition. 

Definition 3.1. [5] Let ( )R R X=  be any given one-sort species. 
1) A R-enriched rooted tree is a rooted tree in which the set of immediate descendants (away from the root) of 

every vertex is equipped with a R-structure (see Figure 7 left, in which each dotted arc represents a R-structure). 
 

 
Figure 5. A tree-like digraph, its underlying simple tree, a tree-like sentence over A = {0, 1}. 

 

 
Figure 6. A one way free binary rooted tree sentence and a full one. 
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Figure 7. A R-enriched rooted tree and a R-enriched tree. 

 
2) A R-enriched tree is a tree in which the set of immediate neighbors of each vertex is equipped with a 

R-structure (see Figure 7 right, in which each dotted circle represents a R-structure). 
Lemma 3.3 [1] The species ( )R RA A X=  of R-enriched rooted trees is characterized recursively by the 

combinatorial equation 

( ) ,R RA XR A=                                    (52) 

and the species ( )R Ra a X=  of R-enriched trees satisfies the combinatorial equality12 

( ) ( ) 2
2 ,R R R RXR A E A a A′ ′ ′+ = +                              (53) 

where ( )R RA A X′ ′=  is the species of R'-enriched rooted trees (R' being the combinatorial derivative of the 
species R).                                                                               □  

It is easy to see that the species of ordinary rooted trees (resp. ordinary trees) corresponds to the species AR 
(resp. aR) with the choice R E= , the species of all finite sets. The species of binary rooted trees (resp. full bi-
nary rooted trees) corresponds to the species AR with the choice 21R X E= + +  (resp. 21R E= + ), where 1 
denotes, as usual, the species of the empty set and E2, the species of 2-element sets. The species of all plane trees 
corresponds to the species aR with the choice 1R C= + , where C is the species of cyclic permutations (see 
Example 3.8 below), etc. 

For the computation of the inventories of various classes of enriched tree-like graphical sentences, we will 
make use of the following 3-sort extension of Lemma 3.3 which includes a new extension, (56) below, of the 
dissymmetry formula (53). 

Lemma 3.4. The species ( ), ,R R X Y Z=
 

    of one-way R-enriched rooted trees and ( ), ,R R X Y Z=    
of R-enriched rooted trees on the sorts X of vertices, Y of arrows and Z of loops are characterized recursively by 
the combinatorial equations 

( ) ( ) ( ) ( )a) 1 , b) 1 ,R R R RZ XR Y Z XR= + = + Ω
 

                          (54) 

where ( ) 22Y Y YΩ =Ω = + . They can also be expressed explicitly in terms of the 1-sort species ( )RA X  as 
follows 

( )( ) ( )( )1 1a) 1 , b) 1 .R R R RA Z XY A Z X
Y

= + = + Ω
Ω



                      (55) 

The species ( ), ,R R X Y Z=a a   of R-enriched trees on sorts X of vertices, Y of arrows and Z of loops satisfies 
the combinatorial equality (extended dissymmetry formula) 

( ) ( ) ( ) ( ) ( )22
21 ,R R R RZ XR E Y Y Y′ ′ ′+ Ω + = + + ⋅a                          (56) 

where ( ), ,R R X Y Z′ ′=    is the species of R'-enriched rooted trees on sorts X, Y, Z. 
Proof. See Section 5.                                                                    □  
In our analysis of tree-like graphical sentences, we will use of the following useful compact “plethystic nota-

 

 

12Equality (53) is called the dissymmetry formula for trees. It is due P. Leroux [6] for R = E and to the first author [7] for general R. 
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tion” which is classical in the theory of species and cycle index series. 
Notation 3.5. Let ( )1 2 3, , ,v v v=S S   be a (formal) power series in the variables 1 2 3, , ,v v v  . For any in-

teger 1k ≥ , kS  denotes the series S in which each variable is raised to the power k: 

( ) ( )1 2 3 1 2 3, , , , , , .k k k
k k v v v v v v= =S S S                             (57) 

In particular, 1 =S S . Furthermore, given power series, 

( ) ( )1 2 3 1 2 3 1 2 3, , , , , , , ; , , , , ,s s s s s s t t t etc= =f f g g                        (58) 

( ) ( )1 2 3 1 2 3, , , , , , , , ,v v v v v v etc= =S S T T                           (59) 

then [ ]  f S , [ ];  g S T , etc, denote the series 

[ ] ( ) [ ] ( )1 2 3 1 2 3 1 2 3, , , , ; , , , ; , , , , ,f g etc   = =   f S S S S g S T S S S T T T                 (60) 

in the variables 1 2 3, , ,v v v  .                                                                □  
For example, taking the variables ( ), , , ,

a A
x y z t a

∈
 for the iv ’s, then formula (23) of Proposition 2.1 takes the 

compact form 

( )( ) [ ], , , , ; ; ,
a A

x y z t a x y zλ λ
∈

 =  w ZS                             (61) 

where ( )1 t aλ λ= = Λ Σ , ( ) i
iu u
∈

Λ =∑  , and a Aa a
∈

Σ =∑  is the formal sum of the letters in A. 
We now describe how to compute the inventory of classes of tree-like sentences. 
Proposition 3.6 Given an arbitrary species ( )R R X= , let 

be the set of one way -enriched rooted trees sentences with possible loops,R R


T            (62) 

be the set of -enriched rooted trees sentences with possible loops,R RT                (63) 

be the set of -enriched trees sentences with possible loops,R Rt                   (64) 

over an alphabet A and a set +⊆   of allowed word-lengths. Then, using Notation 3.5, the inventories Rw


T  
and RwT  can be computed recursively as follows 

( ) ( )1 ,R R Rz xZ yλ λ  = +   
w w
 

T T                               (65) 

( ) ( ) ( )1 2 ,R R Rz xZ y yλ λ λ  = + +  w wT T                            (66) 

They can also be expressed explicitly in terms of the cycle index series ( )1 2 3, , ,
RAZ x x x   of the 1-sort spe-

cies ( )RA X  by 

( )1 1 ,
RR AZ z xy

y
λ λ

λ
  = +  w



T                               (67) 

( ) ( )( )1 1 2 .
2 RR AZ z y xy

y y
λ λ λ

λ λ
  = + +  +

wT                        (68) 

where ( )t aλ = Λ Σ , ( ) i
iu u
∈

Λ =∑  , ( )1 2 3, , ,R RZ Z x x x=  . Moreover, let R' be the combinatorial derivative 
of the species R. Then, the inventory Rwt  has the form 

( ) ( ) ( ) ( ) ( ) ( )2 2
2 2

1 11 2 2 ,
2 2R R R R Rz xZ y y y y yλ λ λ λ λ λ′ ′ ′

  = + + − + +  w w w wt T T T             (69) 

In the case of the corresponding sets, R



T , RT , Rt , in which no loops are allowed, we have 

0 00
, , .R R R R R Rz zz = ==

= = =w w w w w w
 

T T T T t t                          (70) 

Proof. (sketch) Apply Proposition 2.1, taking into account Lemma 3.4. 
Note. When written explicitly, (65) takes the form 
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( ) ( ) ( ) ( )( )2 3
1 1 2 32 3

1 , , , ,R R R R Rz xZ y y yλ λ λ λ= +w w w w
   

T T T T                    (71) 

where ( )( ), , , ,R R a Ax y z t a
∈

=w w
 

T T  , ( ) ( )( )2 2 2 2 2

2
, , , ,R R a A

x y z t a
∈

=w w
 

T T  , ⋅⋅⋅, ( )1 a At aλ λ
∈

= = Λ ∑ ,  

( )2 2
2 ,a At aλ

∈
= Λ ∑  . Formulas (65) and (66) give rise to iterative schemes for the computation of the inven- 

tories Rw


T , RwT . See, for example, [7]-[10] for descriptions of efficient ways to do such computations, in-
cluding adaptations of quadratically convergent Newtonian methods. Formula (69) reduces the computation of 

Rwt  to that of R′wT . Recall that ( ) ( )1 2 3 1 2 3
1

, , , , , ,R RZ x x x Z x x x
x′
∂

=
∂

  . 

Sample of explicit examples of computations. 
Example 3.5. One way free binary rooted tree sentences. 
Consider the set 



B  of one way free binary rooted tree sentences without loops (Figure 6 left, shows such a 
tree-like sentence over the 26-letter alphabet { }a,b, ,zA =  ) and the set 



B  of such sentences where loops 
are allowed. These tree-like sentences correspond to R-enriched rooted trees with 21R X E= + + . Since  

( )2
1 1 21 2RZ x x x= + + + , formula (65) of Proposition 3.6 immediately gives the following recursive scheme for 

the computation of the inventory w


B  

( ) ( ) ( )( )22 2 2
2 2

11 1 ,
2

z x y y yλ λ λ λ = + + + + 
 

w w w w
   

B B B B                   (72) 

and, since 
0z=

=w w
 

B B , (70) leads to 

( ) ( )( )22 2 2
2 2

11 .
2

x y y yλ λ λ = + + + 
 

w w w w
   

B B B B                     (73) 

Of course, as many terms as we want in (72) and (73) can be computed using a computer algebra system. For 
a more specific application, let   be the number of letters in alphabet A and let ( ) ( )( )1,1,1, , 1

a A
f t t

∈
= w

 

B   

and ( ) ( )( )1,1,1, , 1
a A

f t t
∈

= w
 

B  as in (7). Then ( )1t tλ = −  , ( )2 2
2 1t tλ = −   and (72), (73) give, after 

some symbolic manipulation, 

( )
( )

( ) ( )
2 2 2

2 2
22 2 2

1 11
1 3 2 11

t t tf t f t f t
t t tt

  −   = + +
  − + −−  

  

  

  



                        (74) 

( ) ( ) ( )

( ) ( )

2 2 3 2 2 4

3 2 5 2 4 3 2 6

1 31 2 11 1 17 1 37 2 1
2 2

3 1125 7 2 5197 310 73 34 2 ,
2 8

t t t t

t t

= + + + + + + + +

+ + + + + + + + +

       

        

       (75) 

( )
( )

( ) ( )
2 2 2

2 2
2 2

1 11
1 2 2 11

t t tf t f t f t
t tt

  −   = + +
  − −−  

  

  

 



                             (76) 

( ) ( ) ( )

( ) ( )

2 2 3 2 2 4

3 2 5 2 4 3 2 6

1 1 11 5 1 13 1 35 3 2
2 2 2

1 197 9 2 1101 110 25 18 2 .
2 8

t t t t

t t

= + + + + + + + +

+ + + + + + + + +

       

        

          (77) 

The coefficient of qt  in (75) (resp. (77)) is the number of one way free binary rooted tree sentences with 
loops (resp. without loops) on a  -letter alphabet A that are made of q letters. As an illustration, for the usual 
26-letter alphabet { }a,b, ,zA =  , series (75) and (77) read as follows up to 10q = : 
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( ) 2 3 4 5

6 7 8

9 10

1 52 3731 299468 25415910 2232608976

201144059077 18486682363084 1726830972452898

163481547244045680 15652457718105041990 ,

f t t t t t t

t t t
t t

= + + + + +

+ + +

+ + +







             (78) 

( ) 2 3 4 5

6 7 8

9 10

1 26 1703 114582 8024120 578320704

42679370357 3210985966578 245445450450824

19011557820684416 1489108237113437148 .

f t t t t t t

t t t
t t

= + + + + +

+ + +

+ + +





               (79) 

Example 3.6. Ordinary tree and rooted tree sentences. 
Let ( ) ( )R R X E X= = , be the species of finite sets. Then, by Definition 3.1, the species ( )E EA A X=  of 

E-enriched rooted trees coincides with the species ( )A A X=  of ordinary (free) rooted trees and the species 
( )Ea X  of E-enriched trees coincides with the species ( )a a X=  of ordinary (free) trees. Lemma 3.3 produces 

the familiar combinatorial equations, 

( ) ( ) 2
2, ,A XE A A E A a A= + = +                              (80) 

the second equation being the classical dissymmetry formula of Leroux. Taking cycle index series in (80) and 
using R E E′ ′= =  and ( )1expE kkZ x k

≥
= ∑ , we obtain the classical formulas 

( ) ( )1 2 3

1 1exp
2 3A A A AZ x Z Z Z = + + + 

 
                                (81) 

( ) ( )

( )

2 2 3
1 1 1 2 1 1 1 2 3 1

4 2 2
1 1 2 1 3 2 4 1

1 13 8 3
2 3

1 125 54 16 15 6 ,
24

x x x x x x x x x x

x x x x x x x x

= + + + + + +

+ + + + + +
                   (82) 

( )2
2

1 1
2 2a A A AZ Z Z Z= − +                                            (83) 

( ) ( ) ( )

( )

2 2 4 2 2
1 2 1 2 1 1 1 2 1 3 2

4 2 2
1 1 2 1 3 2 4 1

1 1 11 4 3 2 3
2 2 6
1 25 18 8 15 6 ,
24

x x x x x x x x x x x

x x x x x x x x

= + + + + + + + +

+ + + + + +
           (84) 

from which ( )1 2 3, , ,AZ x x x   and ( )1 2 3, , ,aZ x x x   can be computed to arbitrary degree13. 
Now, let 

be the set of one way free rooted tree sentences with possible loops,


T               (85) 

be the set of free rooted tree sentences with possible loops,T                   (86) 

be the set of free tree sentences with possible loops,t                      (87) 

Then, by (67)-(69), 

( )1 1 ,AZ z xy
y

λ λ
λ

  = +  w


T                               (88) 

( ) ( )( )1 1 2 ,
2 AZ z y xy

y y
λ λ λ

λ λ
  = + +  +

wT                        (89) 

( ) ( ) ( )2 2
2 2

1 12 .
2 2

y y yλ λ λ= − + +w w w wt T T T                         (90) 

For more specific applications, let   be the number of letters in the alphabet and consider the specializations 

 

 

13Explicit expressions for the individual coefficients of ZA and of Za have also been obtained, see [9]. 
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( ) ( )( )1,1,1, , 1
a A

F t w t
∈

= T   and ( ) ( )( )1,1,1, , 1
a A

f t t
∈

= wt  . Then ( )1k k
k t tλ = −  , 1,2,k =  , and by 

(66) and (69) with R E= , we have 

( )
( )
( )

( )2
1

21 1exp
1 1

k k
k

kk

t t
F t F t

t k t≥

 − =  −  − 
∑

 





                              (91) 

( ) ( )

( )

( )

2 2 3

3 2 4

4 3 2 5

11 3 14 1 223 15 2
3

1 2539 198 50 3
6
1 75873 6790 1470 95 12 ,

30

t t t

t

t

= + + + + + +

+ + + +

+ + + + + +

     

   

     

               (92) 

( ) ( ) ( )
( )

( ) ( )
2

2 2
2 2

21 1
2 2 11

t t tf t F t F t F t
tt

−
= − +

−−

 







                         (93) 

( ) ( )

( )

( )

2 2 3

3 2 4

4 3 2 5

1 11 2 13 3 79 9 2
2 6

1 241 28 18 1
2
1 17993 2230 760 65 12 .

30

t t t

t

t

= + + + + + +

+ + + +

+ + + + + +

     

   

     

                 (94) 

The coefficient of qt  in (92) (resp. (94)) is the number of free rooted tree sentences (resp. free tree sentences) 
with loops on a  -letter alphabet A that are made of q letters. For example, in the case of a 4-letter alphabet, say 

{ }A,C,G,TA = , series (92) and (94) read as follows up to 9q = : 

( ) 2 3 4 5 6

7 8 9

1 12 228 4840 110578 2650928 65889652

1683125528 43926578519 1166284622820 ,

F t t t t t t t

t t t

= + + + + + +

+ + + +



               (95) 

( ) 2 3 4 5 6

7 8 9

1 8 110 1736 31890 634848 13484444

300435640 6950286407 165682482716 .

f t t t t t t t

t t t

= + + + + + +

+ + + +



                (96) 

Consider now the 2-letter alphabet { },A a b= , and make the substitutions 1x = , 1y = , 0z = , 1t = , then 

1
a b

a b
λ +
=

− −
, no loops are allowed, and (89)-(90) take the forms 

( )
( )( )

( )( )
( )

2

,2
0

1 2
,

2 1
i j

A i j
i j

a b a b a b
Z g a b

a b a b a b + >

  − − − − +
 =   =

− − +  − −   
∑wT                  (97) 

( )( )
( )

( )
( )
( ) ( )

2 2
2

,2 22 2
>0

2
,

2 12 1
i j

i j
i j

a ba b a b
h a b

a ba b +

+− − +
= − + =

− −− −
∑w w w wt T T T              (98) 

where ,i jg  (resp. ,i jh ) is the number of rooted tree sentences (respected tree sentences) without loops that 
contain exactly i times the letter a and j times the letter b. 

If we choose { }1,2=  (only words of length 1 or 2 are allowed), then ( ) ( )2 2a b a bλ = + + + , and (89)-(90) 
begin with the terms 

2 2 3 2 2 3

4 3 2 2 3 4 5 4

3 2 2 3 4 5

1 2 2 10 18 10 46 128 128 46

237 874 1291 874 237 1258 5870

11402 11402 5870 1258 ,

a b a ab b a a b ab b
a a b a b ab b a a b

a b a b ab b

= + + + + + + + + +

+ + + + + + +

+ + + + +

w



T

             (99) 
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2 2 3 2 2 3

4 3 2 2 3 4 5

4 3 2 2 3 4 5

1 5 7 5 15 39 39 15

66 218 327 218 66 276

1234 2366 2366 1234 276 ,

a b a ab b a a b ab b
a a b a b ab b a

a b a b a b ab b

= + + + + + + + + +

+ + + + + +

+ + + + + +

w



t

                (100) 

etc. Again, all the above series, and many variants, can be expanded to arbitrary orders. 
Example 3.7. Back to linear sentences. 
Since linear sentences are special kinds of tree-like sentences, it is interesting to look at the dissymmetry for-

mula (56) in the context of path-shaped graphs. Take the 1-sort species ( ) ( )21R R X X E X= = + + . Then a 
R-structure is either void, a singleton, or an unordered pair of singletons. This means that a R-enriched tree is a 
simple path (see Definition 3.1, Figure 7 right and Figure 3 middle). Hence, the 2-sort species ( ),P X Y  of all 
path-shaped digraphs without loops (see Figure 9) coincides with the 2-sort species ( ) ( ), , ,0R RX Y X Y=a a  of  
R-enriched trees. Moreover, since 1R X′ = + , a R'-enriched rooted tree is a simple path pointed at an extremity 
(see Definition 3.1 and Figure 7, left). Hence, the 2-sort species ( ),K X Y  of all path-shaped digraphs without 
loops pointed at an extremity (see Figure 9) coincides with the 2-sort species ( ) ( ), , ,0R RX Y X Y′ ′=    of 
R'-enriched rooted trees. In this setting, the dissymmetry formula (56), with 0Z = , becomes 

( )( ) ( ) ( )2 2
2 21 ,X K E K E YK P Y Y K⋅ +Ω + Ω + = + +                     (101) 

where ( ) 22 .Y Y YΩ = Ω = +  Now, using ( )1K X K= ⋅ +Ω , we can solve (101) for P as follows, 

( ) ( ) ( ) 2
2 2 1 .P K XE K E YK Y Y K= + Ω + − +                         (102) 

This formula coincides with formula (124) which is used in the proof of Proposition 3.1. 
Example 3.8. Plane tree sentences. 
A plane tree is a (unrooted) tree that is embedded in a plane. Such tree-structures have fewer automorphisms 

than free trees. Take any vertex p of a plane tree τ  and draw a vector starting at p which is perpendicular to the 
plane in which τ  is embedded. This gives an orientation to that plane and the vertices that are adjacent to p are 
cyclically turning around p according to that orientation (see Figure 7). In other words, the set of immediate 
neighbors of p is equipped with a ( )1 C+ -structure, where C is the species of non-empty oriented cycles (the 
empty set species, 1, corresponds to the special case where the tree is reduced to one point, { }pτ = , for which 
the the set of immediate neighbors of p is empty). Since p is arbitrary, this shows that the species planea  of plane 
trees coincides with the species 1 Ca +  of ( )1 C+ -enriched trees. 

Take 1R C= + , then ( )1 1 1R C X L′ ′ ′= + = − =  is the species of linear orders. The species LA  of L- 
enriched rooted trees coincides with the species oA  of linearly ordered rooted trees (the set of immediate des-
cendants, away from the root, of every vertex is linearly ordered). Using the classical formulas,  

( )
1 1

11 log
1R C k

k

k
Z Z

k x
φ

+ ≥

 
= = +  − 

∑  (where ( )kφ  denotes Euler function) and 
1

1 ,
1R LZ Z

x′ = =
−

 in Lem-

ma 3.3, we have 
( )
( )

1
1

1

2 2 !1 1 4
,

2 ! 1 !o

m
A

m

mx
Z x

m m≥

−− −
= =

−∑                           (103) 

( ) ( )plane 1 1 1 2
1

1 1 4 1 11 log 1 4 1 4 .
2 2 4

k
a

k

k x
Z x x x x

k
φ

≥

  + −
 = − + + − − −     

∑              (104) 

Using the expansion14 ( ) ( )
21

2 1 !1log 1 1 4
2 !

i
i

i
x x

i≥

− − + − = 
 

∑ , we get, from (68) and (69), the following  

explicit expressions for the inventory owT  (resp., planet ) of linearly ordered rooted tree sentences with loops 
(resp., plane tree sentences with loops) 

( ) ( )
( )
( )11 1 1 1

2 2 !1 1 4 1 ,
2 2 2 ! 1 !

m
o

m

m
y y y y m m
θ θ

λ λ λ λ ≥

−− −
= = ⋅

+ + −∑wT                     (105) 

 

 

14Which can be proved by taking the derivative of both sides. 
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( ) ( )
( ) ( )

2
plane 1 2

1 1 1 2

1 1 4 1 1 41 1 4 21 1 log ,
2 4 2 4 2

j

j

j
w z x

j y y y

θφ θθ δλ
λ λ λ≥

  + − − −− − −  = + − − +
   + +  

∑t            (106) 

( ) ( ) ( )
( )
( )

( )

( )
( )

( )
2

2 1
1 2 2

, 1 1 1 2

2 2 ! 2 2 !
2 1 ! ! 1 ! ! 1 !

1 1 ,
! 2 2 2 2

i i

i ii
j

i j

i i
i j i i i i

z x
i j y y y

θ θ
φ

λ θ
λ λ λ

≥ ≥

≥

− −
 − − −

= + + − + 
+ + 

∑ ∑
∑                 (107) 

where 

( )( ) ( )( )1 1 1 11 2 , 1 2 .j j j j
j j j jz y xy z y x yθ θ λ λ λ θ λ λ λ= = + + = + +                  (108) 

Note that since linearly ordered rooted tree structures are asymmetric structures, no kλ  except 1λ  appear in 
(105). As before, let   be the number of letters in alphabet A and let ( ) ( )( )1,1,1, , 1o a A

F t t
∈

= wT   and 
( ) ( )( )plane 1,1,1, , 1

a A
f t t

∈
= wt  . Then 

( ) 2 2 3 3 4 4 5 51 3 16 105 765 5951 ,F t t t t t t= + + + + + +     

                     (109) 

( ) ( ) ( ) ( )

( )

2 2 3 3 2 4

4 3 2 5

1 1 11 2 13 3 83 3 4 859 6 53 6
2 3 6

1 25667 30 205 30 48 .
30

f t t t t t

t

= + + + + + + + + + +

+ + + + + +

         

     



         (110) 

This time, the coefficient of qt  in (109) (resp. (110)) is the number of linearly ordered rooted tree sentences 
(resp. plane tree sentences) with loops on a  -letter alphabet A that are made of q letters. 

As a final illustration, fix 1m ≥  and consider the inventory ,o mwT  of linearly ordered rooted tree sentences 
without loops having exactly m vertices. Letting 0z =  in (105) and (108), we have 

( )
( ) ( ) 12 2

,

2 2 !
2 .

! 1 !
m m

o m
m

y y x
m m

λ λ
−−

= +
−

wT                           (111) 

Now, let   be the number of letters in the alphabet and assume that the length of the word on each arrow is 
at most k. Then, making the substitutions, 1x y= = , 1a = , a A∀ ∈ , we get 

( )( ) ( )
( ) ( ) 12

,
1 2 2

2 2 !
1,1,1, , 1 2 ,

! 1 !
m q

o m qa A
m q m

m
t t

m m
λ λ ν

−

∈
− ≤ ≤ −

−
= + =

− ∑wT                 (112) 

which is a polynomial in t, since 
( )1

1

k kt t

t
λ

−
=

−

 



 has k terms. Differentiation gives 

( )( )
( )( )

( )( )
( )

,

, ,
,

1 1

d d1,1,1, , 1 2 1 1
d d ,

21,1,1, , 1

qo m a A q
m k

qo m a A
q

t t

qt m
t t e

t

νλ λ

λ λ ν
∈

∈
= =

   − +   
= = =   +   

   

∑

∑
w

w 

T

T
            (113) 

where , ,m ke


 is the expected total number of letters in random m-vertex linearly ordered rooted tree sentence 
without loops on a  -letter alphabet in which the word on each arrow has at most k letters. Further computa-
tions give 

( )
( ) ( )( )
( )( )( ) ( )

1 1

, , 1

1 1 1 12 1 2 1 1 , .
1 1 2

k k k

m k k k

k k
e m k m

+ +

+

− − + +  = − ∼ − − → ∞ − − + −  


  





   

          (114) 

Again, all the above inventories can be manipulated in a great number of ways. 

4. Concluding Remarks 
It would be interesting to extend the above analysis to other classes of graphical sentences arising from other 
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families of 3-sort species of connected digraphs. As said before, this is generally a very difficult task. However, 
the analysis can be done, for example, for the class of cyclic graphical sentences (for which the underlying sim-
ple graphs are unoriented cycles) by making use of (3-sort) cycle index series related to subgroups of the dihe-
dral groups. The analysis can also be done for the whole class of all graphical sentences since the cycle index 
series of the 3-sort species, ( ), ,X Y Z=   , of all digraphs (with labelled vertices of sort X, arrows of sort Y 
and loops of sort Z) turns out to be tractable15. In fact, 

( ) ( )( ), , = 1 , ,X Y Z Z X Y+                             (115) 

where ( ),X Y=   is the 2-sort species of all digraphs with vertices of sort X, arrows of sort Y and no loop, 
which, in the spirit of [1] [11], can be expressed in terms of simpler species by making use of a 2-sort version of 
the more advanced operation, □ , called functorial composition of species. 

Another direction of investigation would be to replace digraphs by dimultigraphs (directed multigraphs) and 
study associated inventories of classes of multigraphical sentences. For example, in the case of the 3-sort (resp. 
2-sort) species ( ), ,X Y Z  (resp. ( ),X Y ) of all dimultigraphs, equation (115) must be replaced by 

( ) ( )( ), , ,X Y Z E Z X Y=   and operation □  can be used. 

5. Proofs of the Main Results 
Proof of Proposition 2.1. First, consider the weighted species ( ) ( ), , , ,X Y Z xX yY zZ=   of all  -struc- 
tures in which each vertex is given a weight x, each arrow a weight y and each loop a weight z. Then 

( ) ( )2 2 2
1 2 1 2 1 2 1 2 1 2 1 2, , ; , , ; , , , , ; , , ; , , .x x y y z z xx x x yy y y zz z z=Z Z      

         (116) 

Next, let ( ) k
kY Y
∈

Λ =∑   be the species of all k-lists of arrows, where k∈ . Figure 8(a) shows an unla-  

belled ( )YΛ -structure with 5k = . Now, define the 2-sort species,  ( ),X Y  by substituting ( )YΛ  for Y  
and for Z in ( ), ,X Y Z : 

 ( ) ( ) ( )( ) ( ) ( )( ), , , , , .X Y X Y Y xX y Y z Y= Λ Λ = Λ Λ                     (117) 

Figure 8(b) shows an unlabelled  ( ),X Y -structure of weight 4 6 2x y z  on a set of vertices and arrows. 
Taking the cycle index series of (117) we get 



( ) ( ) ( ) ( ) ( )( )2 2 2
1 2 1 2 1 2 1 2 1 2, , ; , , , , ; , , ; , , .x x y y xx x x y y y y z y z y= Λ Λ Λ ΛZ Z    

 
      (118) 

Next, assigning a weight ta , a A∈ , to every arrow of every  -structure, gives the species 

( ) , , ,
a A

X Y X ta Y
∈

  =   
  
∑                                (119) 

whose cycle index, ( )1 2 1 2, , ; , ,x x y yZ   , is obtained by the substitutions ( ) ( ): k k k k
k k ka Ay t a y t a y

∈
= = Σ∑ , 

1, 2,k = 
, in (118). Note that an unlabelled  -structure can be canonically identified with a graphical sen-

tence. So that (23) follows by the substitutions : 1, : 1, 1, 2,k kx y k= = =  , in Z  that unlabels the arrows and 
vertices in  -structures. 

Proof of Proposition 3.1. The inventories (30) of the two special kinds of linear graphical sentences,   and 
 , are very easy to compute since directed paths are sequences of very simple structures with trivial automor-

phism groups. More precisely, let ( ),D X Y  be the species of dipaths without loops and ( ), ,D X Y Z  be the 
species of dipaths with possible loops. Since XY-structures are of the form →  and ZXY-structures are of the  
form →


, we have 

( ) ( )
0

, ,
1

k

k

XD X Y XY X
XY≥

= =
−∑                             (120) 

 

 

15The cycle index series of the 1-sort species, ( )Dig X , of ordinary digraphs (labelled vertices only) is well known:  
( )( )gcd ,

Dig , 1
2 i ji j m m

i j
Z

≥
= ↓∑ ∑ m

m
x m , where ( )gcd ,i j  = greatest common divisor of i and j (see [1], for example). 
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( ) ( ) ( ) ( )
( )0

1
, , 1 ,

1 1
k

k

Z X
D X Y Z XY ZXY Z X

Z XY≥

+
= + + =

− +∑                   (121) 

and, since 1 1 1, ,X Y Zx y z= = =Z Z Z , Proposition 2.1 immediately gives (30). 
On the other hand, the inventories of the sets L  and L  of linear graphical sentences are more difficult to 

compute since a path-shaped digraph can have a nontrivial automorphism (as we saw above). We first analyze 
the species ( ),P X Y  of all path-shaped digraphs without loops (see Figure 9 top). Introduce the auxiliary spe-
cies ( ) ( )2 2Y Y Y Y Y YΩ =Ω = + + = + . An XΩ -structure is of the form 

or or .→ ←                                   (122) 

Let ( ),K K X Y=  be the species of all P-structures pointed at an extremity (see Figure 9 bottom). 
This pointing induces a global orientation to these pointed structures (see dotted arrow) and implies that the 

species K is a species of sequences: 

( ) ( )0
.

1 1 2
k

k

X XK X X
X Y Y X≥

= Ω = =
−Ω − +∑                        (123) 

As a consequence of the general dissymmetry formula (56) the species P can be expressed in terms of K and 
Ω  as follows (see details in Example 3.7) 

( ) ( ) ( ) 2
2 2 1 ,P K XE K E YK Y Y K= + Ω + − +                        (124) 

where 2E  denotes the species of 2-element sets. Formula (31) then follows from Proposition 2.1 by taking the 
cycle index series of (124) and using the fact that ( ) ( )2

2
1 2 2E X x x= +Z . Finally, let ( ), ,P P X Y Z=   be the 

species of all path-shaped digraphs possible with loops, then the following combinatorial equation holds 

( ) ( )( ), , 1 , ,P X Y Z P Z X Y= +                             (125) 

since every P -structure is obtained from a P-structure by adding a loop to each vertex (that is,  :  X ZX= ) or 
doing nothing to the vertex (that is, :X X= ). So that (32) follows by substituting ( )1 Z X+  for X in (124). 
The computations are elementary but long and are left to the reader.                                   □  

Proof of Lemma 3.4. Consider an R



 -structure τ  and look at its underlying R-enriched rooted tree t (see 
Figure 7 left). To reconstruct τ  from t, one must replace the root of t by adding a possible loop (that is by re-
placing the root by an ( )1 Z X+ -structure) and by replacing each edge adjacent to the root of t by an (outward)  
 

 
(a)                                   (b) 

Figure 8. (a) Unlabelled ( )YΛ -structure, (b) Unlabelled  ( ),X Y - 

structure (weight: 4 6 2x y z ). 
 

 
Figure 9. A ( ),P X Y -structure and a ( ),K X Y -structure. 
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arrow (that is, by replacing each such edge by an Y-structure). This establishes (54a). The proof of the combina-
torial Equation (54b) is similar, where, this time, each edge adjacent to the root of t is replaced by an outward 
arrow, an inward arrow or a double arrow (that is, by replacing each such edge by a ( )22Y YΩ = + -structure). 
To obtain the explicit formula (55a), multiply first both sides of (54a) by Y. This gives 

( ) ( )1 ,R RY Z XYR Y= +
 

                                 (126) 

But, by (52), the species ( )( )1RA Z XY+  also satisfies (126). Hence, by the unicity of solution in the implicit 
species Theorem of Joyal [2], we must have ( )( )1R RY A Z XY= +



 , and (55a) follows by factoring out Y. A 
similar argumentation can be used to prove (55b) from (54b). 

The dissymmetry formula (56) is much more difficult to establish since more automorphisms are involved in 
enriched trees. To prove this combinatorial equality, we express in two ways the auxiliary species  

( ), ,R R X Y Z=   of Ra
 -structures which are pointed either at a single vertex or at two adjacent vertices: 

( ) ( ) { }adj
.R R R

• ••
= +a a                                  (127) 

• The first expression for R  reads as follows 

( ) ( ) ( ) ( )( )2

21 .R R R RZ XR E Y Y′ ′ ′= + Ω + +                            (128) 

To prove it, consider a R -structure φ  and look at its underlying pointed or bipointed R-enriched tree, f. 
We have two cases to consider: 

1) If φ  is a ( )R

•
a -structure, then by Figure 10 we see that φ  is canonically equivalent to a  

( ) ( )1 RZ XR ′+ Ω  -structure since to recover φ  from f, the vertices of f must be replaced by ( )1 Z X+ -struc- 
tures and the edge adjacent to the pointed vertex (and subsequently, all other edges) must be replaced by an 
Ω-structure. 

2) If φ  is a ( ) { }adj

R

••
a -structure, then Figure 11 shows that φ  is canonically equivalent to a  

( ) ( )( )2

2 R RE Y Y′ ′+   -structure since to recover φ  from f, the edge of f between the two adjacent pointed  

vertices must be replaced either by a double arrow (i.e., φ  is equivalent to a ( )2 RE Y ′
 -structure) or by a sin-

gle arrow (i.e., φ  is equivalent to a ( )2

RY ′
 -structure). This establishes (128). 

• The second expression for R  reads as follows 

( ) ( )222 .R R RY Y ′= + + ⋅a                                 (129) 

To prove it, we first split the species R  into two subspecies according to whether the pointing(s) coincides 
exactly with the center or not: 

( ) ( )pointing s center pointing s center .R R R
= ≠= +                             (130) 

Since the center of a tree is a canonical object, pointing a tree exactly at its center is naturally equivalent to 
doing nothing to the tree and we have 

( )pointing s center
R R R

≠= +a                                     (131) 

( ) ( ) { }( )center adj center
.R R R

•≠ •• ≠
= + +a a a                          (132) 

Now, consider a R -structure φ  that is not pointed at its center. We have two cases to consider: 

1) If φ  is an ( ) center

R

•≠
a -structure, then Figure 12 shows that φ  is canonically equivalent to a  

( ) ( )222 RY Y ′+ ⋅  -structure 1φ . Indeed, the pointing induces an orientation on the edge from the pointed vertex 
of f in the direction of the center (see dotted arrow) giving rise to an ordered pair of rooted trees. Moreover, to  
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Figure 10. Underlying structures for ( ) ( ) ( )1R RZ XR
•

′= + Ωa  . 

 

 

Figure 11. Underlying structures for ( ) { } ( ) ( )adj 2

2R R RE Y Y
••

′ ′= +a    . 

 

 

Figure 12. Underlying structures for ( ) ( )( )center 222R RY Y
•≠

′⊂ +a  . 

 
recover φ  from f, that edge must be replaced by an arrow going in same direction, or in the opposite direction 
of the dotted arrow, or by a double arrow. That is, the edge must be replaced by a Ω-structure. Note that 1φ  is 
not an arbitrary ( ) ( )222 RY Y ′+ ⋅  -structure, since the global center is on the side pointed by the dotted arrow. 

2) If φ  is an ( ) { }adj center

R

•• ≠
a -structure, then Figure 13 shows that φ  is canonically equivalent to a  

( ) ( )222 RY Y ′+ ⋅  -structure 2 1φ φ≠ . Indeed, the bi-pointing induces an orientation on the edge between the 
pointed vertices of f in the direction opposite to the center (see dotted arrow) giving rise to an ordered pair of 
rooted trees. To recover φ  from f, that edge must be replaced, as above, by an Ω-structure. Note that 2φ  is not  
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Figure 13. Underlying structures for ( ) { } ( )( )adj center 222R RY Y
•• ≠

′⊂ +a  . 

 
an arbitrary ( ) ( )222 RY Y ′+ ⋅  -structure, since the global center is now on the side of the source of the dotted 
arrow. 

This establishes (129) since any ( ) ( )222 RY Y ′+ ⋅  -structure is either of the form 1φ  or of the form 2φ . The 
general 3-sort dissymmetry formula (56) follows by cancelleing the common term ( )2

RY ′⋅   in the right-hand- 
sides of the expressions (128) and (129) for R .                                                □  
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