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Abstract 
 
This paper provides a detailed outline of a mathematical research exploration for use in an introductory high 
school or college Calculus class and is directed toward teachers of such courses. The discovery is accom-
plished by introducing a novel method to generate a polynomial expression for each of the Euler sums, 

. The described method flows simply from initial discussions of the Riemann sum definition 

of a definite integral and is readily accessible to all new calculus students. Students investigate the Bernoulli 
numbers and the interesting connections with Pascal's Triangle. Advice is offered throughout as to how the 
project can be assigned to students and offers multiple suggestions for additional exploration for any moti-
vated student. 
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1. Introduction 
 
During the initial discussion of a Riemann sum in a two 
year high school or one year college Calculus sequence, 
the Riemann definition of a definite integral,  
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 is a partition of the closed 
interval ,a b , kx

 1 ,k kx x  
 is the length of the  subin- 

terval  
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and P  is the norm of the partition  (the largest 
subinterval width), is one of our first lessons once we 
begin the topic of integral calculus [1]. This definition 
naturally leads to a broad discussion of several common 
summations, including  
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We shall refer to these as the first three Euler sums. 
This connection between the Riemann sum and the Euler 
sums provides an opportunity to explore some interesting 
mathematics that students probably have not been 
exposed to, but is highly accessible and relevant to them 
from this direction. The exploration connects the topics 

of limits, integral calculus, linear algebra, the binomial 
coefficient, and number theory in a cohesive manner. 
The project gives the students motivation to learn the 
mathematics of these various areas. The purpose of the 
exercise described in this paper is to provide a chance for 
high school or college students to discover and validate 
for themselves the view that mathematics is a beautiful 
thing and is an incredibly rewarding achievement of 
mankind that is continuing to be created.  

 An overarching theme for the entire paper is this 
work can be used by calculus teachers to provide a 
highly motivating example to explore the various fields 
of introductory mathematics by presenting a single 
problem illustrating the many connections among several 
branches of mathematics. A common experience will be 
to start the project with students who have no concept 
whatsoever as to what mathematical research even means, 
nor how to begin, and end the project with students who 
will not know how to stop their discovery. Along the 
way, the beauty in mathematics cannot help but shine 
bright. Examples, proofs, and explanations provided in 
this paper are presented in great detail to assist the fellow 
high school or college teacher in implementing the 
project.  

This paper is organized as follows: In Section 2 a 
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,
novel method to generate a polynomial expression for all 
of the Euler sums, 

=0
 from the Riemann 

definition of a definite integral is developed. In Section 3 
the historical method developed by Jakob Bernoulli 300 
years ago to generate the same polynomial expressions 
for these sums is outlined [2]. In Section 4 a connection 
is developed between the Riemann sum method and 
Bernoulli’s. The two methods are quite distinct, yet 
connections exist that will be explored. In Section 5 the 
developed Riemann sum method is shown to indepen- 
dently produce each of the Bernoulli numbers and each 
Euler sum with a simple recursive formula. Section 6 
concludes the paper with a few final remarks.  
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2. The Riemann Method 
 
By requiring students to work through finding  
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a
f x x  

for simple functions such as    = 1,f x   = ,f x x  or 
  2= ,f x x  using the Riemann definition of the definite 

integral from (1), an interesting connection between the 
definite integral and the Euler sums develops, illustrated 
by the following series of examples:  

First, let  It is known [3] that    = 1.f x
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terminate form. However, since we know its value is 1, 
the form of the summation inside the limit is determined. 
Clearly, 

=1k
 must be of the form 0,0  where 

0,0  is a constant yet to be calculated. By choosing a 
specific value of  (e.g., ), the constant  
can easily be evaluated to find . So,  
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which will be no surprise to any of the students.  
Next, let   = .f x x  It is known [3] that  
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where we have used Equation (2) and have evaluated the 
second limit. Using similar logic as in the previous 
example, 
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N

k
k  must be of the form  
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1
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2
N a N a   where  and  are constants  1,1a 1,0a

to be determined. By choosing specific values of  
(e.g., ) the constants 1,1a  and 1,0  can easily 
be evaluated with a small system of equations  
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to find 1,1

1
=

2
a  and  The students are asked to  1,0 = 0.a

evaluate this system of equations by hand. So,  
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a well known formula that the students will more than 
likely have previously seen [4], but found in a rather 
unique and back door manner that students find 
intriguing.  

This analysis can be repeated by letting   2=f x x  to 
determine  as follows:  2
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but, from (1) we know  
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where we have used (2) and (3) in the last line above to 
simplify the limits. Therefore,  must be of the  2
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are asked to evaluate this system of equations by hand as 
well. By doing so, many students begin to see the 
patterns that develop even within these systems. They 
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The recursive expressions above define the  row 
and the  column of the three matrices 
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 To serve as another example, with  students 
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4,0 = 0a . Without question, this method becomes cum- 
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bersome for large values of 1 Students quickly realize 
when solving the larger systems that the last column of 

.n

 A  in the above system is not necessary as the ,0n  
coefficient is easily shown to always be zero and does 
need to be calculated. This is trivial for , as 

,0=0
 for N . Once this is realized, the 

system size drops by one and greatly simplifies the larger 
systems. However, we have found that it is best to let the 
students discover this on their own.  

a

1n 
= 0 = ,n

nk a

= 1,2n

N

k = 0

nk

n

In this manner, all 
=0k

 Euler sums can be ge- 
nerated for  However, once n  grows to 
be in the ballpark of 10 or greater, the resulting matrices 
become badly scaled and ill-conditioned [6]. This idea is 
well beyond a student new to calculus, but by solving the 
systems of equations using these matrices one-by-one on 
a computer for larger and larger values of n  the 
students learn for themselves that the computer’s results 
begin to become inaccurate and are suspect. This is 
especially true when using software packages such as 
Matlab where the coefficients are all treated as real 
numbers. This discovery process is highly educational 
for the students as this may be their first situation in 
which the limits of a computer are very clear. Euler sums 
with very large values of  will require a recursive 
relation which we develop in Section 5.  

N
.,3,

The students are next asked to generate the first ten 

Euler sums with this technique. splitting up the res- 
ponsibilities or using a computer as time requirements 
demand. They are also asked to show , ,0 = 0na 1n   

and 1

1
=

1na
n .


 Then, by carefully organizing their  

results the students are challenged to extract patterns and 
investigate them to develop ideas on what is going on. 
They are encouraged to understand the structure and 
develop a way to predict higher order sums without the 
need to solve the larger and larger systems of equations. 
The students are given a hint by asking them to organize 
and present their results aligned in columns as shown 
below (See (5)). 

From this form of presentation, the students will 
recognize many patterns right away. The first term is  

always 
1

,
1n 

 the second term is always 
1

,
2

 every  

other column is zero, the nonzero columns after the 
second column alternate in sign, the expressions all end 
with the  term for  even, and end with the  
term for  odd. These patterns generate interest and 
motivation to understand what is generating them. It is 
fun for the students to experience this directly, and for 
the teacher to watch the students discover these many 
patterns. 
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    (5)

         
1After solving the  case by hand, the students solve the remaining systems of equations with the aid of a computer; hence, the amount o= 3n f 

 
computation time required to analyze the large systems is reduced to how long it takes to enter the coefficients of the  A  and  b  matrices. This 
also reduces the amount of frustration exhibited by the students as large progress is made quickly. 
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Many open questions remain for the students to 
ponder at this point. Why are the zero columns being 
produced? Why is the sign alternating between the 
nonzero columns? These open questions provide ample 
opportunity for any motivated student to take this 
analysis as deeply as they desire. The students are 
challenged to find a general form for ,n j  that may not 
require the solution of an  system of equations.2  

a
n n

This project provides the students a universal view of 
mathematics - seeing how linear algebra comes into play, 
how calculus and simple number theory are connected. 
They quickly begin to see patterns forming which leads 
to various hypotheses about the structure of the con- 
nections. The intricate beauty that we all know is 
inherent in mathematics is demonstrated to the student 
with this exercise. Depending on one’s time constraints, 
the project could be ended at this point. However, a great 
many connections with history and other mathematical 
topics lie right around the corner.  
 
3. The Bernoulli Method 
 
This exercise provides a way to introduce another topic 
rarely visited by high school or new college students –  
the Bernoulli polynomials and the Bernoulli numbers. It 
is fun for the students to step away from the text book for 
a breather now and then to gain a more global view of 
mathematics. We have found that providing connections 
between the various fields of mathematics gives students 
a more unified view of mathematics versus the common 
conception that most of what they learn over the years is 
a long series of unconnected material.  

Our investigation into the Bernoulli numbers begins  

by explaining what the Bernoulli polynomials are and by 
giving one way in which they are commonly defined [7]. 
Let  0 = 1.B x  The students are asked to find the poly- 
nomial,  1 ,B x  satisfying the following conditions: 1)  

    1 0=xD B x B x , and 2) . They quick-   1

10
d = 0B x x

ly discover  1

1
=

2
B x x  . The students are then asked  

to find the polynomial,  satisfying the condi-   2 ,B x

tions: 1)     2 1=xD B x B x ,  and 2)    1

20
d = 0.B x x

They are asked to continue this process to generate these 
special polynomials up through  All of these 
polynomials have the general properties  

 10 .B x

that     1 =x n nD B x B x ,  and  The   1

0
d = 0.nB x x

first few of these polynomials are listed below (See (6)). 
The polynomials the students generate are today 

known as one form of the Bernoulli polynomials, in 
honor of their discoverer, Jakob Bernoulli around the 
year 1700 [2]. In addition to the interesting properties 
discussed above which are used to generate them, they 
have an incredibly far reaching influence into the 
calculus and number theory. To begin to investigate a 
small part of their role, the students initially list the 
constant terms of the first few Bernoulli polynomials, 

 0B x  through  10 ,B x

nB

 by evaluating each polynomial 
at . These constant terms are then used to calculate 
a new set of numbers,  using the relationship  

= 0x
,

 = 0n nB B n !.                 (7) 

In this manner, the students find what are known as 
the first few Bernoulli numbers:  

 

 

 

 

 

 

 

 

 

0

1

2
2

3 2
3

4 3 2
4

5 4 3
5

6 5 4 2
6

7 6 5 3
7

= 1

1
=

2
1 1 1

=
2 2 12
1 1 1

=
6 4 12
1 1 1 1

=
24 12 24 720
1 1 1 1

=
120 48 72 720

1 1 1 1 1
=

720 240 288 1440 30,240

1 1 1 1 1
= .

5040 1440 1440 4320 30, 240

B x

B x x

B x x x

B x x x x

B x x x x

B x x x x x

B x x x x x

B x x x x x x



 

 

  

  

   

   

                      (6)

     

   
2This question is revisited in Section 5. 
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0 1 2 3 4 5

6 7 8 9 10

1 1 1
= 1, = , = , = 0, = , = 0,

2 6 30
1 1 5

= , = 0, = , = 0, = .
42 30 66

B B B B B B

B B B B B

 


 

Notice that  refers to the  Bernoulli poly- 
nomial and n  refers to the  Bernoulli number, 
different quantities, but related through (7). The students 
generally notice that our original Riemann sum method 
is able to produce these Bernoulli numbers independently. 
One of the many interesting occurrences of the earlier 
method is that the ,1na  coefficients of the Riemann 
method are each one of the Bernoulli numbers. In other 
words, ,1n n

3 This sparks great interest in the 
students and they get a huge kick out of this.  

 nB x
B

= .B

thn
thn

a

The Bernoulli polynomials are especially easy to use 
when written in terms of the Bernoulli numbers. The first 
few polynomials are written below in this manner:  

 

 

 

 

 

 

 

0 0

1
1

2
1 2

2

3 2
31 2

3

4 3 2
31 2 4

4

5 4 3 2
3 51 2 4

5

6 5 4 3 2
31 2 4

6

=

=
1! 1!

=
2! 1! 1! 2!

=
3! 1! 2! 2! 1! 3!

=
4! 1! 3! 2! 2! 3! 1! 4!

=
5! 1! 4! 2! 3! 3! 2! 4! 1! 5!

=
6! 1! 5! 2! 4! 3! 3! 4! 2!

B x B

Bx
B x

B Bx x
B x

BB Bx x x
B x

BB B Bx x x x
B x

B BB B Bx x x x x
B x

BB B Bx x x x x
B x



 

  

   

    

   

 

5 6

7 6 5 4 3
31 2 4

7

2
5 6 7

            
5! 1! 6!

=
7! 1! 6! 2! 5! 3! 4! 4! 3!

            .
5! 2! 6! 1! 7!

B Bx

BB B Bx x x x x
B x

B B Bx x

 

   

    (8) 

The standard compact form of the Bernoulli poly- 
nomials when written in this form is  

 
=0

1
=

!

n
n p

n
p

n
B x B x

pn
 

 
 

 ,p        (9) 

where 
 

!
=

! !

n n

p p n p

 
   

,  is the standard binomial co-  

efficient, but students generally need to be reminded of 
this notation.  

Next, a connection between the Bernoulli Polynomials 

and the Euler Sums will be investigated. To begin, the 
students are gently guided through Bernoulli's important 
proof of a useful theorem.  

Theorem: Let ,n N   or zero, and let  nB x  
denote the  Bernoulli Polynomial, then  thn

 1

0
=0

= ! d .
N Nn

n
k

k n B x x


         (10) 

Proof. We recall  

       1 1

1 10 0
0 = d = d = 1 0 ,n n n nB x x B x x B B     1  

by definition and by the Fundamental Theorem of 
Calculus. Therefore,  

  1 11 = 0 ,n nB B  



           (11) 

for any  Writing (9) with  instead of  
produces  

.n  1n  n

   
1

1
1

=0

11
= .

1 !

n
n p

n p
p

n
B x B x

pn


 



 
   

  

Combining this result with (11) and evaluating at 
 yields  = 1x

     

   

1
1

1
=0

1

1
=0

11
1 = 1

1 !

11
           = = 0 .

1 !

n
n p

n p
p

n

p n
p

n
B B

pn

n
B B

pn


 







 
   

 
   




 

However, using (7) leads to  

   
1

1 1
=0

1
=0

1
= 0 1 ! =

1
       = ,

n

n n
p

n

n p
p

n
B B n B

p

n
B B

p



 



 
   

 
 

  
 





p

 

which is easily shown by expanding the summation. 
Hence,  

=0

1
= 0.

n

p
p

n
B

p

 
 
 

             (12) 

This is a recursive relationship that allows one to 
generate the Bernoulli numbers starting with   0

Next, an important lemma will be proven that will be 
used to connect the Bernoulli polynomials with the Euler 
sums. The proof allows the students an opportunity to 
practice their induction techniques.  

= 1.B

Lemma:    1 11 =
!

n

n n .
x

B x B x
n     

Proof. We will prove this lemma with a simple 
application of induction. Let  From (8),  = 0.n3Except 1B . 
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   1
1

1 1
1 = = 1 = ,

1! 1! 2 2

Bx
B x x x


   

1
  

and  

  1
1

1
= =

1! 1! 2

Bx
B x x  ,  

which agrees with (6). Therefore,  

   
0

1 11 = 1 =
0!

,
x

B x B x   

which verifies our base case. Now, assume as our in- 
duction hypothesis that  

    1 11 =
!

k

k k ,
x

B x B x
k    

for some integer  such that  We need to show  k 0.k 

      
1

2 21 =
1 !

k

k k

x
B x B x

k



  


.  

Recall the manner in which the Bernoulli polynomials 
are defined, namely,  

    2 1= .x k kD B x B x   

Therefore,  

    

   

2 2

1 1

1

= 1 =
!

x k k

k

k k

D B x B x

,
x

B x B x
k

 

 

 

 
 

by hypothesis. So,  

     
1

2 21 =
1 !

k

k k

x
B x B x C

k



   


,  

where  is a constant of integration. However, when 
 we have  

C
= 0x

       2 2 2 21 0 =  and  1 =k k k kB B C B B    0  

from (11). Therefore,  And so,  = 0.C

     
1

2 21 =
1 !

k

k k

x
B x B x

k



  


,  

which is what we were trying to show. Hence, by the 
Principle of Mathematical Induction,  

   1 11 = ,
!

n

n n

x
B x B x n

n   0.     

This completes the proof of the lemma.  
The result of this lemma can alternatively be written as  

   1 1= ! 1 .n
n nx n B x B x           (13) 

Recall,     1 =x n nD B x B x ,  and so, by the Funda- 
mental Theorem of Calculus,  

    
    

1 1

10 0

1

1 10

d = d

= = 1

N N

n x n

N

n n n

B x x D B x x

B x B N B

 





   

 
1 0 .

     (14) 

Finally, using (13) with = 0,1, 2, ,x N  and some 
fixed , one generates  n

       
       

   

=0

1 1 1 1

1 1 1 1

1 1

= 0 1 2 3

       = ! 1 0 ! 2 1

          ! 3 2 ![ 4 3 ]

           ! 1 ,

N
n n n n n n

k

n n n n

n n n n

n n

k N

n B B n B B

n B B n B B

n B N B N

   

   

 

    

        
     
     

 



 

which telescopes to produce  

   1 1
=0

= ! 1 0 .
N

n
n n

k

k n B N B      

Now, using (14) we find our result:  

 1

0
=0

= ! d ,
N Nn

n
k

k n B x x


   

which completes the proof of the main theorem.  
The instructor may make as much of the previous 

section as they desire, perhaps making it a one day class 
driven proof after a detailed homework assignment from 
the previous evening. It certainly is a manageable proof, 
but just as certainly is not trivial. It has been our 
experience that initially the proof appears somewhat 
daunting, but once complete, the students are quite proud 
of their accomplishment and have gained considerable 
confidence in their abilities.  

We then use the result of the theorem, (10), to gene- 
rate the Euler sums in terms of the Bernoulli numbers. 
As an example, consider  = 7 :n

 

 

 
       

7 6 5 4 3 2
1 17 3 5 6 71 2 4

70 0
=0

1 7 6 5 4 3 2
1 2 3 4 5 6 70

8 7 6 5

1 2 3

= 7! d = 7! d
7! 1! 6! 2! 5! 3! 4! 4! 3! 5! 2! 6! 1! 7!

       = 7 21 35 35 21 7 d

1 7 35
       = 1 1 1 7 1

8 2 4

N N N

k

N

B B B BB B Bx x x x x x x
k B x x x

x B x B x B x B x B x B x B x

N B N B N B N B

 



 
       

 

      

       

  



      4 3 2

4 5 6 7

7
1 7 1 1 1

2
N B N B N B N .      
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Combining like terms yields  

   

 

7 8 7 6
1 1 2 1 2

=0

4
1 2 3 4

3
1 2 3 4 5

2
1 2 3 4 5 6

1 7 7
= 1 7 7 21 21 7

8 2 2

35 105 35
           35 35

4 2 4

           7 35 70 70 35 7

7 105 105 7
           21 70 21

2 2 2 2

  

N

k

k N B N B B N B B B N

B B B B N

B B B B B N

B B B B B B N

          
 

      
 

     

        
 



 

5
3

1 2 3 4 5 6 7

1 2 3 4 5 6 7

         1 7 21 35 35 21 7

1 7 35 7
           7 7 .

8 2 4 2

B B B B B B B N

B B B B B B B

       

         
 

          (15) 

 
We work through these integrals by hand, splitting up 

the work as necessary, and employing software such as 
Maple to help simplify the resulting expressions. The 
students get a nice practice session with simple integrals 
and are challenged with elementary algebra by trying to 
keep all of their terms consistent and organized. This 
process also reminds them that all of this work is 
intimately related to and connected with the calculus.  

At this point in the project, the students have 
generated the first ten Euler sums with both the Riemann 
sum and the Bernoulli methods. The two sets of 
expressions are similar in that they are both sets of 
polynomials, however, they look quite distinct from one 
another. As an example, compare (5) for  with 
(15).  

= 7n

Next, we investigate some of their many connections.  
 
4. A Connection between the Riemann Sum  

Method and the Bernoulli Method 
 
Comparing our initial Riemann sum form for the  

=0
 sums from (5) to these new Bernoulli forms, as 

in (15), creates a set of incredible relationships that 
ignites the imagination. Notice that by comparing the 
new expressions, as in (15), to those generated using the 
Riemann sum idea, as in (5), a relationship between the 

,n j  coefficients and the Bernoulli numbers is 
determined. To illustrate, we write the first few Riemann 
sum method results in a more general form in terms of 
the  coefficients:  

N n

k
k

a

,n ja
 

2
1,1 1,0

=0

2 3 2
2,2 2,1 2,0

=0

3 4 3 2
3,3 3,2 3,1 3,0

=0

4 5 4 3 2
4,4 4,3 4,2 4,1 4,0

=0

5 6 5 4 3 2
5,5 5,4 5,3 5,2 5,1 5,0

=0

6

=0

1
= ,

2

1
= ,

3

1
= ,

4

1
= ,

5

1
= ,

6

1
=

7

N

k

N

k

N

k

N

k

N

k

N

k

k N a N a

k N a N a N a

k N a N a N a N a

k N a N a N a N a N a

k N a N a N a N a N a N a

k N

 

  

   

    

     











 7 6 5 4 3 2
6,6 6,5 6,4 6,3 6,2 6,1 6,0

7 8 7 6 5 4 3 2
7,7 7,6 7,5 7,4 7,3 7,2 7,1 7,0

=0

,

1
= .

8

N

k

a N a N a N a N a N a N a

k N a N a N a N a N a N a N a N a

      

       

          (16) 

 
Comparing all of the results for  

generated as was done in the previous section (i.e., (15)), 
with the corresponding expressions from the new 

Riemann method in (16), leads to a series of relationships 
between the ,n j  coefficients and the Bernoulli numbers 
by equating coefficients term-by-term. As an example, 

= 0,1,2, ,10n 
a
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for   = 7 :n

7,7 1

7,6 1 2

7,5 1 2 3

7,4 1 2 3 4

7,3 1 2 3 4 5

7,2 1 2 3 4 5 6

7,1 1 2 3 4 5 6 7

7,0

= 1 ,

7 7
= 7 ,

2 2
= 7 21 21 7 ,

35 105 35
= 35 35 ,

4 2 4
= 7 35 70 70 35 7 ,

7 105 105 7
= 21 70 21

2 2 2 2
= 1 7 21 35 35 21 7 ,

1
=

8

a B

a B B

a B B B

a B B B B

a B B B B B

a B B B B B

a B B B B B B B

a B



 

  

   

    

     

      



,B

1 2 3 4 5 6 7

7 35 7
7 7

2 4 2
B B B B B B      .

                          (17) 

Notice how (17) can be rewritten as  

 

 

 

 

 

 

7,7 1

7,6 1 2

7,5 1 2 3

7,4 1 2 3 4

7,3 1 2 3 4 5

7,2 1 2 3 4 5 6

7,1 1 2 3 4 5

= 1 1 ,

7
= 1 2 1 ,

2
= 7 1 3 3 1 ,

35
= 1 4 6 4 1 ,

4
= 7 1 5 10 10 5 1 ,

7
= 1 6 15 20 15 6 1 ,

2
= 1 7 21 35 35 21 7

a B

a B B

a B B B

a B B B B

a B B B B B

a B B B B B B

a B B B B B B

 

   

     

       

         

           

            6 7

7,0 1 2 3 4 5 6 7

1 ,

1 7 35 7
= 7 7 ,

8 2 4 2

B

a B B B B B B B

 

        
 

                (18) 

 
from which most students clearly see the Pascal Triangle 
coefficients emerging from the coefficients in the first 
seven lines of (18). This connection allows us to fully 
discuss the Pascal Triangle connections, the beautiful 

interplay that exists. As an example, compare the 7,1  
coefficients in (18) with the  row of Pascal’s Triangle 
[8]:  

a
8th

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

1 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 1
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,j

  
Clearly, the general form for the polynomial repre- 

sentation of the Euler sums derived through the 
previously described Riemann method is:  

1

,
=0 =0

=
N n

n
n j

k j

k a N


             (19) 

where the ,  coefficients are related to the Bernoulli 
numbers by:  

n ja

 
1

,
=0

1!
=

! 1 !

n j

n j p
p

n jn
a

pj n j

    
    

 ,B    (20) 

for  with  ,1 nj 

 ,0 , 1
=0

11
= = 0,  and = ,

1 1

n

n p n n
p

n
a B a

pn n

 
   

 1

,

 (21) 

for  and  respectively. All of which the 
students are asked to verify. Astute students will 
recognize that the first relation in (21) is (12). By 
introducing the binomial coefficient in this manner, 
students get a clear understanding of the meaning of the 
odd notation that is used to represent the factor. The 
patterns that are evident in (19) through (21) allows one 
to predict future coefficients in terms of higher order 
Bernoulli numbers as will be demonstrated in the next 
section.  

= 0j = 1j n 

This is another natural stopping point for the project. 
However, we have found many students feel compelled 
to follow the unfolding ideas more deeply. As an 
example, some may want to investigate on their own 
whether the polynomials we develop:  

 
1

,
=0

=
n

j
n j

j

CPA x a x


            (22) 

have special properties as do the Bernoulli polynomials. 
Students will investigate whether the Riemann sum idea 
can be used to generate the Euler sums for negative va-  

lues of  such as ,n
2=1 =1

1
,  ,

N N

k kk k
  1

 and 
3=1

1N

k k
   

formulas as well. They ponder why the 1  number does 
not seem to fit the general form for the generation of the 
Bernoulli numbers from the Riemann sum concept. 
Students develop explanations as to why the  co- 
efficient requires a separate definition from jn  for 

 They investigate the origin of the patterns 
generated throughout their work, such as why the 
coefficients in front of the Bernoulli equations agree with 
the coefficients in the ,0n  equations term-by-term. 
Why do the zero columns in (5) exist? What causes the 
sign to alternate between nonzero columns? It has been 
our experience that students genuinely want to move in 
multiple directions at once and have a difficult time 
moving away from the investigation with questions left 

unanswered. We have succeeded in sparking their in- 
terest in mathematical research.  

B

,0na
a ,

1 j n 

 
5. Independent Generation of the Bernoulli  

Numbers and Euler Sums 
 
The students have already been encouraged to convince 
themselves, and prove that the ,0n  term is always 
zero.4 By knowing ,0  they are able to generate 
all of the Bernoulli numbers from the Riemann sum 
method, a method very different from the initial 
construction of the Bernoulli numbers given by (12). 
They also see the recursive manner in which the Euler 
sums can be generated. To illustrate, several examples 
are detailed.  

a
= 0,na

First, since 1,0  the first Bernoulli number, 1  
is generated by taking the 1,0  coefficient from the 
equivalent set of (18) expressions for  Using (21) 
with  they find:  

= 0a ,B
a

= 1.n
= 1n

 1,0 0 1 1

1

1! 1
= 0 = 2 = ;

0! 2! 2
1

therefore,  = .
2

a B B

B

 




B
 

Recalling from (20) that  

  1,1 1 1

1!
= 1 = 1

1! 1!
a B 


 ,B  or 1,1

1
= ,

2
a  and so,  

2

=0

1 1
= .

2 2

N

k

k N N  

The students next see that using (21) with  the 
second Bernoulli number,  can be determined in a 
similar manner:  

= 2,n

2 ,B

 2,0 0 1 2 1 2

2

2! 1
= 0 = 3 3 = ;

0! 3! 3
1

therefore,  = .
6

a B B B B

B

   


B
 

Again, recalling from (20) that  

  2,2 1 1

2!
= 1 = 1

2! 1!
a B 


 ,B  the students find  

2,2

1
= .

2
a  Also from (20),  

  2,1 1 2 1 2

2!
= 1 2 = 1 2

1! 2!
a B B B   


.

a

 ,B  and so,  

2,1 2

1
= =

6
a B .  Hence,  

2 3 2

=0

1 1 1
= .

3 2 6

N

k

k N N  N  

4
See Section 2. 
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The third Bernoulli number,  is found next. From 
(21) with   

3 ,B
= 3,n

 3,0 0 1 2 3

1 2 3 3

3!
= 0 = 4 6 4

0! 4!
1 3

     = ;  therefore,  = 0.
4 2

a B B B B

B B B B

  


  
 

From (20),   3,3 1 1

3!
= 1 = 1

3! 1!
a B 


;B  hence,  

3,3

1
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2
a  Also,  

  3,2 1 2 1 2

3! 3
= 1 2 = 1 2
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a B B B   


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2 4
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.  Lastly,  
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yielding  Therefore,  3,1 3= = 0a B

3 4 3 2

=0

1 1 1
= .

4 2 4

N

k

k N N N   

Now, so that the recursive method used to generate the 
Bernoulli numbers and the Euler sums from this new 
approach is clear, the  case will also be shown in 
detail below and can be used as a template for even 
higher order Euler sums and Bernoulli numbers. From 
(21), with   

= 4n

= 4,n

 4,0 0 1 2 3 4

1 2 3 4

4!
= 0 = 5 10 10 5

0! 5!
1

     = 2 2 ;
5

a B B B B

B B B B

   


   

B
 

therefore, 4

1
=

30
B  .  The next step is to determine the  

= 4n  Euler sum by generating the ,n ja  coefficients 
one-by-one. Recall from (20) the following several 
results:  
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Hence,  
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This method is continued one  at a time to find the 
next several Bernoulli numbers and Euler sums and can 
be used to generate them all. Following this idea, in 
general the required Bernoulli numbers are found from  

n

1

=0

11
= ,

1

n

n p
p

n
B B

pn

  
    

         (23) 

which are then used with (19) through (21) to generate 
Euler sums for any  Some students will notice that 
this technique to determine the Bernoulli numbers is 
essentially (12), but developed in a novel and inde- 
pendent manner that is readily accessible to new calculus 
students and intimately related to the integral.  

.n

Given our general form from (19) through (21), we 
can predict the values of higher order Bernoulli numbers 
through this recursive relationship without using (12). In 
fact, given this general recursive relationship, the 
students soon realize that each of the Euler sums, along 
with their respective set of ,n j  coefficients, can be 
generated without the need to solve the earlier described 
system of equations which were becoming troublesome 
due to their large dimensions.  

a

The students are asked to look up the known values of 
the Bernoulli numbers to validate their own independent 
generation of them. They are also asked to double check 
their generated formulas for the more complex Euler 
sums by hand with a few sample values for . As an 
example, with  they will find, using the Rie-  

N
= 12,n

mann sum method, 12

691
=

2730
B   and the Euler sum to  

be:  

12 13 12 11 9 7

=0

5 3

1 1 11 22
=

13 2 6 7

33 5 691
           .

10 3 2730

N

k

k N N N N N

N N N

   

  


 

 ,B
  

It is a rewarding moment for all when the students 
validate their hard won expressions. This process solidly 
instills the importance of the unique set of Bernoulli 
number values and the interplay that exists. We doubt 
that any student who works through this exercise 
carefully will ever forget the Bernoulli number idea.  
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6. Concluding Remarks 
 
The generation of the Euler sums from the Riemann 
definition of a definite integral provides an excellent 
vehicle to demonstrate the interplay of limits, integral 
calculus, number theory, linear algebra, binomial co- 
efficients, recursive relationships, and Pascal’s Triangle. 
The project allows for discovery and a study of some 
interesting historical characters. It provides students a 
chance to experiment with mathematical research and 
allows them an opportunity to understand the importance 
of notation, how solving systems of equations is relevant, 
and how the Masters came onto these discoveries for 
themselves. It gives new students an opportunity to just 
“do some mathematics” and explore.  

We feel the experience may give the students a taste of 
what  or even  century mathematics might 
have been like to actually live. They develop a sense of 
how a great deal of mathematical progress was made and 
many discoveries were uncovered by first looking for 
relationships and then digging in to explain and 
understand them.  

18th 19th

This exercise would serve as an excellent ongoing 
“Math Club” type problem in which a motivated group 
of students may work on a bit of the problem each week 
and gradually discover many of the features of this 

problem on their own. This reasonably short excursion 
from a standard high school or introductory college 
calculus class will introduce the student to a wide array 
of new ideas and should aid in reinforcing the relevance 
of many past topics. 
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