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Abstract 
We discuss the fact that there is a crucial contradiction within Von Neumann’s theory. We derive a 
proposition concerning a quantum expected value under an assumption of the existence of the 
orientation of reference frames in N spin-1/2 systems (1 ≤ N < +∞). This assumption intuitively 
depictures our physical world. However, the quantum predictions within the formalism of Von 
Neumann’s projective measurement violate the proposition with a magnitude that grows expo-
nentially with the number of particles. We have to give up either the existence of the directions or 
the formalism of Von Neumann’s projective measurement. Therefore, Von Neumann’s theory can-
not depicture our physical world with a violation factor that grows exponentially with the number 
of particles. The theoretical formalism of the implementation of the Deutsch-Jozsa algorithm relies 
on Von Neumann’s theory. We investigate whether Von Neumann’s theory meets the Deutsch-Jozsa 
algorithm. We discuss the fact that the crucial contradiction makes the quantum-theoretical for-
mulation of Deutsch-Jozsa algorithm questionable. Further, we discuss the fact that projective 
measurement theory does not meet an easy detector model for a single Pauli observable. Espe-
cially, we systematically describe our assertion based on more mathematical analysis using raw 
data. We propose a solution of the problem. Our solution is equivalent to changing Planck’s con-
stant () to a new constant ( )2 . It may be said that a new type of the quantum theory early 

approaches Newton’s theory in the macroscopic scale than the old quantum theory does. We dis-
cuss how our solution is used in an implementation of Deutsch’s algorithm. 
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1. Introduction 
Von Neumann introduces the Hilbert space and he tries to present axiomatic system for quantum mechanics [1]. 
He introduces projective measurement theory. For example, the values of the result of quantum measurements 
are ±1 (in 2  unit) in spin-1/2 system. An important note here, Von Neumann’s theory does not say that we 
can measure non-commuting observables, simultaneously. Therefore, each value of measurement depends on 
time even though we do not indicate any suffix concerning time. The detail argument can be seen in Ref. [2] 
where we indicate a suffix concerning time. Von Neumann’s theory is necessary to perform a quantum computer. 
It is said that there is not any quantum computer without Von Neumann’s theory. 

A quantum computer is a device for computation that makes direct use of quantum mechanical phenomena, 
such as superposition and entanglement, to perform operations on data. Quantum computers are different from 
digital computers based on transistor gates. Whereas digital computers require data to be encoded into binary 
digits (bits), quantum computation utilizes quantum properties to represent data and perform operations on these 
data [3]. A theoretical model is the quantum Turing machine, also known as the universal quantum computer. 
Quantum computers share theoretical similarities with non-deterministic and probabilistic computers, like the 
ability to be in more than one state simultaneously. The field of quantum computing was first introduced by Ri-
chard Feynman in 1982 [4] [5]. 

As a famous physical theory, the quantum theory (cf. [1] [6]-[10]) gives approximate and at times remarkably 
accurate numerical predictions. Much experimental data approximately fit to the quantum predictions for the 
past some 100 years. We do not doubt the correctness of the quantum theory. The quantum theory also says new 
science with respect to information theory. The science is called the quantum information theory [10]. Therefore, 
the quantum theory gives us very useful another theory in order to create new information science and to explain 
the handling of raw experimental data in our physical world. 

As for the foundations of the quantum theory, Leggett-type non-local variables theory [11] is experimentally 
investigated [12]-[14]. The experiments report that the quantum theory does not accept Leggett-type non-local 
variables interpretation. As for the applications of the quantum theory, implementation of a quantum algorithm 
to solve Deutsch’s problem [15] on a nuclear magnetic resonance quantum computer is reported firstly [16]. Im-
plementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is also reported [17]. There are 
several attempts to use single-photon two-qubit states for quantum computing. Oliveira et al. implement 
Deutsch’s algorithm with polarization and transverse spatial modes of the electromagnetic field as qubits [18]. 
Single-photon Bell states are prepared and measured [19]. Also the decoherence-free implementation of 
Deutsch’s algorithm is reported by using such single-photon and by using two logical qubits [20]. More recently, 
a one-way based experimental implementation of Deutsch’s algorithm is reported [21]. 

To date, the quantum theory seems to be a successful physical theory and it looks to have no problems in or-
der to use it experimentally. Several researches address [1] the mathematical formulation of the quantum theory. 
It is desirable that the quantum theory is also mathematically successful because we predict unknown physical 
phenomena precisely. Sometimes such predictions are effective in the field of elementary particle physics. We 
endure much time in order to see the fact by using, for example, a large-scale accelerator. Further, Rolf Landau-
er says that information is physical [10]. We cannot create any computer without physical phenomena. This fact 
motivates us to investigate the Hilbert space formalism of the quantum theory. Especially, Von Neumann’s 
theory is accepted widely. Here we ask: Does Von Neumann’s theory depicture our physical world? Unfortu-
nately, it is not so even in both the macroscopic scale and the microscopic scale. The theoretical formalism of 
the implementation of the Deutsch-Jozsa algorithm [15] [22] relies on Von Neumann’s theory. Therefore, we 
cannot implement the Deutsch-Jozsa algorithm by using Von Neumann’s theory. 

We discuss the fact that there is a crucial contradiction within Von Neumann’s theory [2] [23]-[27]. We de-
rive a proposition concerning a quantum expected value under an assumption of the existence of the orientation 
of reference frames in N spin-1/2 systems (1 ≤ N < +∞). This assumption intuitively depictures our physical 
world. However, the quantum predictions within the formalism of Von Neumann’s projective measurement “vi-
olate” the proposition with a magnitude that grows exponentially with the number of particles. We “have to give 
up” either the existence of the directions or the formalism of Von Neumann’s projective measurement. There-
fore, Von Neumann’s theory cannot depicture our physical world with a violation factor that grows exponen-
tially with the number of particles. The theoretical formalism of the implementation of the Deutsch-Jozsa algo-
rithm relies on Von Neumann’s theory [15] [22]. We reexamine the quantum-theoretical formulation of the 
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Deutsch-Jozsa algorithm as the earliest quantum computer. We result in the fact that the formulation is ques-
tionable despite the fact that we indeed have raw experimental data. 

We know that a theory means a set of propositions. Unfortunately, we have to abandon that the quantum 
theory satisfies consistency, which is necessary in order to have axiomatic system. This implies that there is no 
axiomatic system for the quantum theory. A theory K may be said to be consistent if any proposition, A K∈ , 
belonging to the theory K and the negation of the proposition, A¬ , are not derived, simultaneously. Otherwise, 
the theory K may be said to be contradictory. Our discussion says that, surprisingly, the quantum theory is a 
contradictory physical theory in order to explain the handling of raw experimental data. 

We propose the solution of the problem. Our solution is equivalent to changing Planck’s constant ( )  to a 
new constant ( )2 . It may be said that a new type of the quantum theory early approaches Newton’s theory 
in the macroscopic scale than the old quantum theory does. 

On the other hand, the double-slit experiment is an illustration of wave-particle duality. In it, a beam of par-
ticles (such as photons) travels through a barrier with two slits removed. If one puts a detector screen on the oth-
er side, the pattern of detected particles shows interference fringes characteristic of waves; however, the detector 
screen responds to particles. The system exhibits the behaviour of both waves (interference patterns) and par-
ticles (dots on the screen). 

If we modify this experiment so that one slit is closed, no interference pattern is observed. Thus, the state of 
both slits affects the final results. We can also arrange to have a minimally invasive detector at one of the slits to 
detect which slit the particle went through. When we do that, the interference pattern disappears [28]. An analy-
sis of a two-atom double-slit experiment based on environment-induced measurements is reported [29]. 

We try to implement double-slit experiment. There is a detector just after each slit. Thus interference figure 
does not appear, and we do not consider such a pattern. The possible values of the result of measurements are ±1 
(in 2  unit). If a particle passes one side slit, then the value of the result of measurement is +1. If a particle 
passes through another slit, then the value of the result of measurement is −1. This model is an easy detector 
model for Pauli observable. 

It is discussed [2] [23] [24] that the expected values of two spin observables xσ  and yσ  cannot be 
measured by using projective measurement theory. And it is discussed that new measurement theory covers the  

problem. Let us follow the argumentations. Assume a pure spin 1/2 state. We have ( )22

max
1x yσ σ+ =  from 

the wave functional analysis of quantum mechanics. On the other hand, we have ( )22

max
2x yσ σ+ =  if pro-  

jective measurement theory is true. Hence the expected values of two spin observables xσ  and yσ  can-  

not be measured by using projective measurement theory. But, we have ( )22

max
1x yσ σ+ =  when the new  

quantum measurement theory is true. The different point is that the values of the result of quantum measure-
ments are 1 2± . 

It is also discussed [25] [27] that the expected value of a spin observables xσ  cannot be measured by using 
projective measurement theory. Let us follow the argumentations. Assume a pure spin 1/2 state in the z-di-  
rection. We have ( )2

max
0xσ =  from the wave functional analysis of quantum mechanics. On the other hand, 

we have ( )2

max
1xσ =  if projective measurement theory is true. Hence the expected value of a spin obser-  

vables xσ  cannot be measured by using projective measurement theory. 
We consider whether projective measurement theory meets an easy detector model for Pauli observable. We 

try to implement double-slit experiment. There is a detector just after each slit. Thus interference figure does not 
appear, and we do not consider such a pattern. We assume that a source of spin-carrying particles emits them in 
a state, which can be described as an eigenvector of Pauli observable zσ . We consider a single expected value 
of Pauli observable xσ  in the double-slit experiment. A wave function analysis says that the quantum expected 
value of it is zero. However, the quantum predictions within projective measurement theory cannot coexist with 
the value of the expected value of 0xσ = . Hence, such projective measurement theory does not meet the easy 
detector model. We propose a solution of the problem by considering a macroscopic system. We discuss how 
our solution is used in an implementation of Deutsch’s algorithm. Especially, we systematically describe our 
assertion based on more mathematical analysis using raw data. 
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At this stage we are in the following situation. 
1) We cannot measure an expected value of a single spin observable by using projective measurement theory. 
2) New measurement theory covers the problem mentioned above. 
3) We can use new measurement theory for an implementation of Deutsch’s algorithm. 
Our discussion is very important. The reason is that our discussion reveals that we need new physical theories 

in order to explain our physical world informationally, to create new information science, and to predict new 
unknown physical phenomena efficiently. What are new physical theories? We cannot answer it at this stage. 
However, we expect that our discussion in this paper could contribute to creating new physical theories in order 
to explain our physical world, to create new information science, and to predict new unknown physical pheno-
mena efficiently. 

Throughout this paper, we confine ourselves to the two-level (e.g., electron spin, photon polarizations, and so 
on) and the discrete eigenvalue case. 

Our paper is organized as follows. 
In Section 2, we provide the notations and preparation to show a contradiction within Von Neumann’s theory. 
In Section 3, we discuss the fact that there is a problem within the mathematical formulation of Von 

Neumann’s theory. 
In Section 4, we review Deutsch’s algorithm along with Ref. [10]. 
In Section 5, we discuss a problem of Deutsch’s algorithm. 
In Section 6, we show that Von Neumann’s theory does not meet our physical world. 
In Section 7, we modify Von Neumann’s projective measurement theory. 
In Section 8, we propose a new type of the Deutsch-Jozsa algorithm along with our modification of Von 

Neumann’s measurement theory. 
In Section 9, we consider the relation between double-slit experiment and projective measurement theory. We 

cannot measure a single spin observable by using the projective measurement theory. 
In Section 10, we consider many double-slit experiments. And we propose a solution of the problem concern-

ing projective measurement theory. 
In Section 11, we discuss how our solution is used in an implementation of Deutsch’s algorithm. 
Section 12 concludes this paper. 

2. Notations and Preparation to Show a Contradiction within Von Neumann’s 
Theory 

We consider a two-dimensional space H. Let N denote a set of the numbers 

{ }1,2, ,+∞                                      (2.1) 

that contains the countably infinite. Let S be { }1± . We assume that every result of measurements lies in S. We 
assume that every time t lies in N. Let N1 denote a set of the numbers 

{ }1,5,9, ,+∞                                     (2.2) 

that contains the countably infinite. Here we introduce 1 1t ∈N . Let N2 denote a set of the numbers 

{ }2,6,10, ,+∞                                    (2.3) 

that contains the countably infinite. Here we introduce 2 2t ∈N . Let N3 denote a set of the numbers 

{ }3,7,11, ,+∞                                    (2.4) 

that contains the countably infinite. Here we introduce 3 3t ∈N . Let N4 denote a set of the numbers 

{ }4,8,12, ,+∞                                    (2.5) 

that contains the countably infinite. Here we introduce 4 4t ∈N . Let σ  be 

( ), , ,x y zσ σ σ                                     (2.6) 
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the vector of Pauli operators. The measurements (observables) of ⋅n σ  are parameterized by a unit vector n 
(its direction along which the spin component is measured). Here, ∙ is the scalar product in R3. One measures an 
observable ⋅n σ . We define a notation ( )tθ  which represents one result of measurements at time t. We as-
sume that measurement of an observable ⋅n σ  at time t for a physical system in a state ψ  yields a value  
( ), , t Sθ ψ ⋅ ∈n σ . 
We consider the following propositions: 
Proposition: M (measurement outcome), 

( ), , .t Sθ ψ ⋅ ∈n σ                                    (2.7) 

Proposition: E (quantum expected value), 

[ ]
( )

1
, ,

Tr lim .

m

t

m

t

m

θ ψ
ψ =

→∞

⋅
⋅ =

∑ n
n

σ
σ                             (2.8) 

Lemma: T 
if 

[ ]
( )

1
, ,

Tr lim ,

m

t

m

t

m

θ ψ
ψ =

→∞

⋅
⋅ =

∑ n
n

σ
σ                             (2.9) 

then 

[ ]
( ) ( )

1 2

1 2

1 2

1 2
1 2

1 2

, , , ,
Tr lim lim

m m

t t

m m

t t

m m

θ ψ θ ψ
ψ = =

→∞ →∞

⋅ ⋅
⋅ = =

∑ ∑n n
n

σ σ
σ                  (2.10) 

and 

[ ]
( ) ( )

3 4

3 4

3 4

3 4
3 4

3 4

, , , ,
Tr lim lim .

m m

t t

m m

t t

m m

θ ψ θ ψ
ψ = =

→∞ →∞

⋅ ⋅
⋅ = =

∑ ∑n n
n

σ σ
σ                  (2.11) 

3. Whether Von Neumann’s Theory Can Be Almighty 
In this section, we investigate if Von Neumann’s theory can be almighty. 

3.1. The Existence of the Orientation of Reference Frames 
We assume a pure spin-1/2 state ψ  lying in the x-y plane. Let σ  be ( ), ,x y zσ σ σ , the vector of Pauli opera-
tors. The measurements (observables) on a spin-1/2 state lying in the x-y plane of ⋅n σ  are parameterized by a 
unit vector n (its direction along which the spin component is measured). Here, ∙ is the scalar product in R3. 

We have a quantum expected value QM , 1, 2kE k =  as 

[ ]QM Tr , 1, 2.k
kE kψ≡ ⋅ =n σ                               (3.1) 

We have ( )1≡x x , ( )2≡y x , and ( )3≡z x . They are the Cartesian axes relative to which spherical angles are 
measured. We write two unit vectors in the plane defined by ( )1x  and ( )2x  in the following way: 

( ) ( )1 2cos sin .k k kθ θ= +n x x                               (3.2) 

Here, the angle kθ  takes only two values: 

1 2
π0, .
2

θ θ= =                                     (3.3) 
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We derive a necessary condition for the quantum expected value for the system in a pure spin-1/2 state lying 
in the x-y plane given in (3.1). We derive the possible values of the scalar product 

( )
2 2

QM QM QM
1

.k k

k
E E E

=

× ≡∑                                (3.4) 

QM
kE  is the quantum expected value given in (3.1). We see that 

22 2
QM .x yE σ σ= +                                 (3.5) 

We use the decomposition (3.2). We introduce simplified notations as 

( )Tr i
iT ψ = ⋅ x σ                                   (3.6) 

and 

( ) ( )1 2, cos ,sin .k k k kc c θ θ=                                (3.7) 

Then, we have 
22 2 22 2

QM
1 1 1

1,i
i k i

k i i
E T c T

= = =

 = = ≤ 
 

∑ ∑ ∑                            (3.8) 

where we use the orthogonality relation 
2

,
1
 .k k

k
c cα β

α βδ
=

=∑                                    (3.9) 

From a proposition of the quantum theory, the Bloch sphere (the orientation of reference frames) with the value 
of 

2
2

1
i

i
T

=
∑                                       (3.10) 

is bounded as 
2

2

1
1.i

i
T

=

≤∑                                     (3.11) 

The reason of the condition (3.8) is the Bloch sphere 

( )( )3 2

1
Tr 1.i

i
ψ

=

 ⋅ ≤ ∑ x σ                               (3.12) 

Thus we derive a proposition concerning a quantum expected value under an assumption of the existence of the 
orientation of reference frames (in a spin-1/2 system). The proposition is 

2
QM 1.E ≤                                    (3.13) 

This inequality is saturated and iff ψ  is a pure state lying in the x-y plane. That is, 

( )( )2 2

1
Tr 1.i

i
ψ

=

 ⋅ = ∑ x σ                               (3.14) 

Hence, we derive the following proposition concerning the existence of the orientation of reference frames when 
the system is in a pure state lying in the x-y plane 

2
QM max

1.E =                                   (3.15) 



K. Nagata, T. Nakamura 
 

 
880 

3.2. The Existence of Measurement Outcome 
We assign the truth value “1” for Proposition M and Proposition E. Let Ak be k ⋅n σ . We assume four gedanken 
experiments in the same state ψ. The value of ( )1 1, ,A tθ ψ  is independent of ( )1 2, ,A tθ ψ . We note that the 
measurement time is different from each other. Here, we assume 1 1t ∈N  and 2 2t ∈N . The value of 
( )2 3, ,A tθ ψ  is independent of ( )2 4, ,A tθ ψ . We note that the measurement time is different from each other. 

Here, we assume 3 3t ∈N  and 4 4t ∈N . The values of ( )1 1, ,A tθ ψ , ( )1 2, ,A tθ ψ , ( )2 3, ,A tθ ψ , and 
( )2 4, ,A tθ ψ  are independent of each other. We note that the measurement time is different from each other. We 

assume that the number of each of quantum measurements is the countably infinite. We know that a sum of 
“four” countably infinite is the countably infinite. We do not have to assign definite values to non-commuting 
observables in the same time. 

From Proposition E and Lemma T, the quantum expected value in (3.1) ( )1k = , which is the average of the 
results of measurements, is given by 

( )
1

1

1

1 1
11

QM
1

, ,
lim .

m

t

m

A t
E

m

θ ψ
=

→∞
=

∑
                              (3.16) 

From Proposition M, the possible values of the actually measured result ( )1 1, ,A tθ ψ  are ±1. 
From Lemma T, the same quantum expected value is given by 

( )
2

2

2

1 2
21

QM
2

, ,
lim .

m

t

m

A t
E

m

θ ψ
=

→∞
=

∑
                             (3.17) 

From Proposition M, the possible values of the actually measured result ( )1 2, ,A tθ ψ  are ±1. From Lemma T, 
we see 

( ){ } ( ){ }
( ){ } ( ){ }

1 1 1 1 1 2 2 2 1 2

1 1 1 1 1 2 2 2 1 2

, , 1 , , 1 ,

, , 1 , , 1 .

t t A t t t A t

t t A t t t A t

θ ψ θ ψ

θ ψ θ ψ

∈ ∧ = = ∈ ∧ =

∈ ∧ = − = ∈ ∧ = −

N N

N N
              (3.18) 

From Proposition E and Lemma T, the quantum expected value in (3.1) ( )2k = , which is the average of the 
results of measurements, is given by 

( )
3

3

3

2 3
32

QM
3

, ,
lim .

m

t

m

A t
E

m

θ ψ
=

→∞
=

∑
                             (3.19) 

From Proposition M, the possible values of the actually measured result ( )2 3, ,A tθ ψ  are ±1. 
From Lemma T, the same quantum expected value is given by 

( )
4

4

4

2 4
42

QM
4

, ,
lim .

m

t

m

A t
E

m

θ ψ
=

→∞
=

∑
                            (3.20) 

From Proposition M, the possible values of the actually measured result ( )2 4, ,A tθ ψ  are ±1. From Lemma T, 
we see 

( ){ } ( ){ }
( ){ } ( ){ }

3 3 3 2 3 4 4 4 2 4

3 3 3 2 3 4 4 4 2 4

, , 1 , , 1 ,

, , 1 , , 1 .

t t A t t t A t

t t A t t t A t

θ ψ θ ψ

θ ψ θ ψ

∈ ∧ = = ∈ ∧ =

∈ ∧ = − = ∈ ∧ = −

N N

N N
             (3.21) 

We derive a necessary condition for the two quantum expected values for the system in a pure spin-1/2 state 
lying in the x-y plane given in (3.16) and (3.19). We derive the possible values of the scalar product 

2
QME  of 

the two quantum expected values, QM
kE  given in (3.16) and (3.19). We have 
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( ) ( ) ( ) ( )

( ) ( )

31 2 4

31 2 4

1 2 3 4

1 2

31 2

1 2 3

2 31 1 1 2 2 4
2 31 2 4

QM
1 2 3 4

1 2
1 1 1 2

1 2

, ,, , , , , ,
lim lim lim lim

lim lim , , , , lim

mm m m

tt t t

m m m m

m m

tt t

m m m

A tA t A t A t
E

m m m m

A t A t
m m

θ ψθ ψ θ ψ θ ψ

θ ψ θ ψ

== = =

→∞ →∞ →∞ →∞

= =

→∞ →∞ →∞

  
  
  = × + ×
  
  

   
 
 
 = ⋅ +
 
 
 

∑∑ ∑ ∑

∑ ∑
( ) ( )

( ) ( ) ( ) ( )

3 4

4

4

31 2 4

31 2 4

1 2 3 4

1

1

1 2

3 4
2 3 2 4

3 4

31 2 4
1 1 1 2 2 3 2 4

1 2 3 4

1

1

lim , , , ,

lim lim , , , , lim lim , , , ,

lim lim

m m

t

m

mm m m

tt t t

m m m m

m

t

m m

A t A t
m m

A t A t A t A t
m m m m

m

θ ψ θ ψ

θ ψ θ ψ θ ψ θ ψ

= =

→∞

== = =

→∞ →∞ →∞ →∞

=

→∞ →

 
 
 ⋅
 
 
 
  
  
  ≤ ⋅ + ⋅
  
  

   

= ⋅

∑ ∑

∑∑ ∑ ∑

∑
32 4

32 4

3 4

32 4

2 3 4

lim lim 2.

mm m

tt t

m mm m m
== =

∞ →∞ →∞

  
  
   + ⋅ =
  
  

   

∑∑ ∑

 (3.22) 

From Proposition M, we have 

( ) ( ) ( ) ( )1 1 1 2 2 3 2 4, , , , 1, , , , , 1.A t A t A t A tθ ψ θ ψ θ ψ θ ψ= + = +                 (3.23) 

The above inequality (3.22) is saturated when 

( ) ( ) ( ) ( )1 1 1 2 2 3 2 4, , , , 1, , , , , 1.A t A t A t A tθ ψ θ ψ θ ψ θ ψ= =                   (3.24) 

This implies 

( ) ( ) ( ) ( )1 1 1 2 2 3 2 4, , , , , , , , , .A t A t A t A tθ ψ θ ψ θ ψ θ ψ= =                    (3.25) 

The above condition (3.25) can be possible since, as we have said, 

( ){ } ( ){ }
( ){ } ( ){ }

1 1 1 1 1 2 2 2 1 2

1 1 1 1 1 2 2 2 1 2

, , 1 , , 1 ,

, , 1 , , 1 .

t t A t t t A t

t t A t t t A t

θ ψ θ ψ

θ ψ θ ψ

∈ ∧ = = ∈ ∧ =

∈ ∧ = − = ∈ ∧ = −

N N

N N
              (3.26) 

and 

( ){ } ( ){ }
( ){ } ( ){ }

3 3 3 2 3 4 4 4 2 4

3 3 3 2 3 4 4 4 2 4

, , 1 , , 1 ,

, , 1 , , 1 .

t t A t t t A t

t t A t t t A t

θ ψ θ ψ

θ ψ θ ψ

∈ ∧ = = ∈ ∧ =

∈ ∧ = − = ∈ ∧ = −

N N

N N
             (3.27) 

Thus we derive a proposition concerning the two quantum expected values under an assumption that we assign 
the truth value “1” for Proposition M and Proposition E, (in a spin-1/2 system). The proposition is 

2
QM 2E ≤ . 

This inequality can be saturated. Hence we derive the following proposition concerning Proposition M and 
Proposition E: 

2
QM max

2.E =                                   (3.28) 

We cannot assign the truth value “1” for two propositions (3.15) (concerning the existence of the orientation of 
reference frames) and (3.28) (concerning Proposition M and Proposition E), simultaneously, when the system is 
in a pure state lying in the x-y plane. We do not assign the truth value “1” for three propositions: 

1) Proposition M; 
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2) Proposition E; 
3) The existence of the orientation of reference frames simultaneously. In other words, we do not assign the 

truth value “1” for two propositions: 
a) The existence of measurement outcome; 
b) The existence of the orientation of reference frames simultaneously. 

4. Quantum Computation 
In this section, we review Deutsch’s algorithm along with Ref. [10]. 

Quantum parallelism is a fundamental feature of many quantum algorithms. It allows quantum computers to 
evaluate the values of a function ( )f x  for many different values of x simultaneously. Suppose 

{ } { }: 0,1 0,1f →                                    (4.1) 

is a function with a one-bit domain and range. A convenient way of computing this function on a quantum com- 
puter is to consider a two-qubit quantum computer which starts in the state 

, .x y                                        (4.2) 

With an appropriate sequence of logic gates it is possible to transform this state into 

( ), ,x y f x⊕                                    (4.3) 

where ⊕  indicates addition modulo 2. We give the transformation defined by the map 

( ), ,x y x y f x→ ⊕                                 (4.4) 

a name, fU . 
Deutsch’s algorithm combines quantum parallelism with a property of quantum mechanics known as interfe-

rence. Let us use the Hadamard gate to prepare the first qubit 

0                                         (4.5) 

as the superposition 

( )0 1 2 ,+                                    (4.6) 

but let us prepare the second qubit as the superposition 

( )0 1 2 ,−                                    (4.7) 

using the Hadamard gate applied to the state 

1 .                                         (4.8) 

The Hadamard gate is as 

( )1 0 1 1 0 0 0 1 1 .
2

H = + + −                          (4.9) 

Let us follow the states along to see what happens in this circuit. The input state 

0 01ψ =                                     (4.10) 

is sent through two Hadamard gates to give 

1

0 1 0 1
.

2 2
ψ

 +   − 
=    
   

                             (4.11) 

A little thought shows that if we apply fU  to the state 
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( )0 1 2x −                                  (4.12) 

then we obtain the state 

( ) ( ) ( )1 0 1 2 .f x x− −                               (4.13) 

Applying fU  to 1ψ  therefore leaves us with one of the two possibilities: 

( ) ( )

( ) ( )
2

0 1 0 1
if 0 1

2 2

0 1 0 1
if 0 1 .

2 2

f f

f f

ψ

  +   − 
± =    
    = 

 −   − ± ≠   
   

                    (4.14) 

The final Hadamard gate on the first qubit thus gives us 

( ) ( )

( ) ( )
3

0 1
0 if 0 1

2

0 1
1 if 0 1 .

2

f f

f f

ψ

  − 
± =  
  = 

 − ± ≠ 
 

                       (4.15) 

Realizing that ( ) ( )0 1f f⊕  is 0 if ( ) ( )0 1f f=  and 1 otherwise, we can rewrite this result concisely as 

( ) ( )3

0 1
0 1 ,

2
f fψ

 − 
= ± ⊕  

 
                          (4.16) 

so by measuring the first qubit we may determine ( ) ( )0 1f f⊕ . This is very interesting indeed: the quantum 
circuit gives us the ability to determine a global property of ( )f x , namely ( ) ( )0 1f f⊕ , using only one eval-
uation of ( )f x ! This is faster than is possible with a classical apparatus, which would require at least two 
evaluations. 

5. Problem of Deutsch’s Algorithm 
In this section, we suggest a problem of Deutsch’s algorithm. We see that the implementation of Deutsch’s algo-
rithm is not possible if we give up either observability of a quantum state or controllability of a quantum state. 

We introduce the following quantum proposition concerning controllability: 

0 0 1, 1 1 1, 0 1 0, and 1 0 0.= = = =                         (5.1) 

We may consider the following non-quantum-theoretical proposition: 

0 0 1, 1 1 1, 0 1 0, and 1 0 0.= − = − = =                        (5.2) 

The proposition (5.2) implies the validity of Proposition M and Proposition E (observability and the existence of 
measurement outcome). The proposition (5.2) implies 

2 2 2 2
0 0 1, 1 1 1, 0 1 0, and 1 0 0.= = = =                      (5.3) 

Thus, 

Tr 0 0 0 0 1, Tr 1 1 1 1 1,

Tr 0 0 1 1 0, and Tr 1 1 0 0 0.

  =   =   
  =   =   

                      (5.4) 

However, the validity of Proposition M and Proposition E does not imply the proposition (5.2). We see that the 
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proposition (5.1) is not equivalent to Proposition M and Proposition E (observability and the existence of mea-
surement outcome). From Truth Value Table 1, we can assign the truth value “1” for the proposition (5.2), 
Proposition M, and Proposition E (observability and the existence of measurement outcome) and we can assign 
the truth value “0” for the proposition (5.1) concerning controllability. 

On the other hand, the proposition (5.1) implies that 
22 2

QM 1x yE σ σ= + =                               (5.5) 

when the system is in a pure state lying in the x-y plane. The reason is as follows: Assume a pure state lying in 
the x-y plane as 

0 e 1
2

iφ

ψ
〉 +

=                                   (5.6) 

where φ  is a phase. Let us write 

0 1 1 0xσ = +                                   (5.7) 

and 

0 1 1 0 .y i iσ = − +                                 (5.8) 

Then we have 

( )cosxψ σ ψ φ=                                  (5.9) 

and 

( )sin .yψ σ ψ φ=                                 (5.10) 

Therefore, we see 

( ) ( )2 2 2 2cos sin 1.x yψ σ ψ ψ σ ψ φ φ+ = + =                     (5.11) 

We thus see the proposition (5.1) implies the existence of the orientation of reference frames in the Hilbert space 
formalism of the quantum theory. 

From the discussion presented in Section 3, we see that the quantum proposition (5.1) concerning controlla-
bility (the existence of the orientation of reference frames) cannot coexist with the validity of Proposition M and 
Proposition E (observability and the existence of measurement outcome), which states 

2
QM max

2,E =                                   (5.12) 

when the system is in a pure state lying in the x-y plane. 
 

Table 1. Truth value table: A implies a proposition (5.1) con- 
cerning controllability. B implies a non-quantum-theoretical 
proposition (5.2). A ∨ B implies a proposition (5.3) of dis-
junction of A and B concerning observability. 

A B A ∨ B 

1 1 1 

1 0 1 

0 1 1 

0 0 0 



K. Nagata, T. Nakamura 
 

 
885 

Deutsch’s algorithm shows the importance of the ability of the Hadamard gate (controllability and the exis-
tence of the orientation of reference frames) for quantum computation. The ability of the Hadamard gate is valid 
only when we assign the truth value “1” for the proposition (5.1) (the existence of the orientation of reference 
frames). We see that the quantum state 

( )0 1 2±                                    (5.13) 

is a pure state lying in the x-y plane. We can assign the truth value “1” for the ability of the Hadamard gate (con-
trollability and the existence of the orientation of reference frames) 

0 1 0 1
0 , 1

2 2
H H
 +   − 

= =   
   

                         (5.14) 

only when we assign the truth value “1” for the proposition (5.1) concerning controllability (the existence of the 
orientation of reference frames) and we give up the validity of Proposition M and Proposition E (observability 
and the existence of measurement outcome). The validity of the proposition (5.1) implies that 

2 .H I=                                      (5.15) 

Thus applying H twice to a quantum state does nothing to it if we assign the truth value “1” for the proposi-
tion (5.1). When we assign the truth value “1” for the proposition (5.1), we have 

0 1 0 1
0 , 1 .

2 2
H H

+ −
= =                           (5.16) 

We conclude that the step in which transforms the state 0ψ  into the state 1ψ , namely the step saying 
from (4.10) to (4.11) is possible only when we assign the truth value “1” for the proposition (5.1) (concerning 
controllability and the existence of the orientation of reference frames) and we give up the validity of Proposi-
tion M and Proposition E (concerning observability and the existence of measurement outcome). The step saying 
from (4.14) to (4.15) is also so. Therefore we question what makes observability if we assign the truth value “1” 
for the ability of the Hadamard gate (controllability and the existence of the orientation of reference frames). We 
also question what makes controllability if we assign the truth value “1” for Proposition M and Proposition E 
(observability and the existence of measurement outcome). 

6. Von Neumann’s Theory Does Not Meet Our Physical World 

Assume that we have a set of N spins 1
2

. Each of them is a spin-1/2 pure state lying in the x-y plane. Let us as-  

sume that one source of N uncorrelated spin-carrying particles emits them in a state, which can be described as a 
multi spin-1/2 pure uncorrelated state. Let us parameterize the settings of the jth observer with a unit vector jn  
(its direction along which the spin component is measured) with 1, ,j N=  . One can introduce the “projective” 
correlation function, which is the average of the product of the results of Von Neumann’s projective measure-
ment 

( ) ( )PM 1 2 1 2 avg
, , , , , , ,N NE r=n n n n n n                          (6.1) 

where r is the projective result. We assume the value of r is ±1 (in ( )2 N
  unit), which is obtained if the mea-

surement directions are set at 1 2, , , Nn n n . 
Also one can introduce a quantum correlation function with the system in such a pure uncorrelated state 

( ) [ ]QM 1 2 1 2, , , trN NE ρ= ⋅ ⊗ ⋅ ⊗ ⊗ ⋅n n n n n n σ σ σ                     (6.2) 

where ⊗  denotes the tensor product, ∙ the scalar product in R2, ( ),x yσ σ=σ  is a vector of two Pauli operators, 
and ρ  is the pure uncorrelated state, 

1 2 Nρ ρ ρ ρ= ⊗ ⊗ ⊗                                 (6.3) 
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with j j jρ = Ψ Ψ  and jΨ  is a spin-1/2 pure state lying in the x-y plane. 
One can write the observable (unit) vector jn  in a plane coordinate system as follows: 

( ) ( ) ( )1 2cos sin ,j j jk k k
j j j j j jθ θ θ= +n x x                             (6.4) 

where ( )1
j =x x  and ( )2

j =x y  are the Cartesian axes. Here, the angle jk
jθ  takes two values (two-setting mod-

el): 

1 2 π0, .
2j jθ θ= =                                    (6.5) 

We derive a necessary condition to be satisfied by the quantum correlation function with the system in a pure 
uncorrelated state given in (6.2). In more detail, we derive the value of the product of the quantum correlation 
function, QME  given in (6.2), i.e., 

2
QME . We use the decomposition (6.4). We introduce simplified notations 

as 

( ) ( ) ( )1 2
1 2 1 2tr N

N

ii i
i i i NT ρ = ⋅ ⊗ ⋅ ⊗ ⊗ ⋅ x x x


σ σ σ                       (6.6) 

and 

( ) ( )1 2, cos ,sin .j jk k
j j j j jc c θ θ= =c                             (6.7) 

Then, we have 

1
1 1

1 1 1

2
2 2 2 22 2

QM 1
1 1 , , 1 , , 1

1,N
N N

N N N

ii
i i N i i

k k i i i i
E T c c T

= = = =

 
= = ≤ 

 
∑ ∑ ∑ ∑

 

 

                  (6.8) 

where we use the orthogonality relation 2
,1j j jk c cα β

α βδ
=

=∑ . The value of 
11

2 2
, , 1 NN i ii i T

=∑




 is bounded as  
11

2 2
, , 1 1

NN i ii i T
=

≤∑




. We have 

( )2 2( )

11
tr 1.j

j

N
i

j j
ij

ρ
==

 ⋅ ≤ ∑∏ x σ                              (6.9) 

From the convex argument, all quantum separable states must satisfy the inequality (6.8). Therefore, it is a se-
parability inequality. It is important that the separability inequality (6.8) is saturated iff ρ  is a multi spin-1/2 
pure uncorrelated state such that, for every j, jΨ  is a spin-1/2 pure state lying in the x-y plane. The reason of 
the inequality (6.8) is due to the following quantum inequality 

( ) 22

1
tr 1.j

j

i
j j

i
ρ

=

  ⋅ ≤    ∑ x σ                              (6.10) 

The inequality (6.10) is saturated iff j j jρ = Ψ Ψ  and jΨ  is a spin-1/2 pure state lying in the x-y plane. 
The inequality (6.8) is saturated iff the inequality (6.10) is saturated for every j. Thus we have the maximal 
possible value of the scalar product as a quantum proposition concerning our physical world 

2
QM max

1E =                                   (6.11) 

when the system is in such a multi spin-1/2 pure uncorrelated state. 
On the other hand, a correlation function satisfies projective measurement theory if it can be written as 

( )
( )1 2

1
PM 1 2

, , , ,
, , , lim

m

N
l

N m

r l
E

m
=

→∞
=

∑ 



n n n
n n n                     (6.12) 

where l denotes a label and r is the result of Von Neumann’s projective measurement of the dichotomic obser-
vables parameterized by the directions of 1 2, , , Nn n n . 
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Assume the quantum correlation function with the system in a pure uncorrelated state given in (6.2) admits 
projective measurement theory. One has the following proposition concerning projective measurement theory 

( )
( )1 2

1
QM 1 2

, , , ,
, , , lim .

m

N
l

N m

r l
E

m
=

→∞
=

∑ 



n n n
n n n                       (6.13) 

In what follows, we show that we cannot assign the truth value “1” for the proposition (6.13) concerning pro-
jective measurement theory. 

Assume the proposition (80) is true. By changing the label l into l′  and by changing the label m into m′ , we 
have the same quantum expected value as follows 

( )
( )1 2

1
QM 1 2

, , , ,
, , , lim .

m

N
l

N m

r l
E

m

′

′=

′→∞

′
=

′

∑ 



n n n
n n n                      (6.14) 

An important note here is that the value of the right-hand-side of (6.13) is equal to the value of the right-hand- 
side of (6.14) because we only change labels. 

We abbreviate ( )1 2, , , ,Nr ln n n  to ( )r l  and ( )1 2, , , ,Nr l′n n n  to ( )r l′ . 
We have 

( ) ( )
( ) ( )

( ) ( )

1 1

1 1

2 2 2 22 1 1 1 1
QM

1 1 1 1

2 2 2 2
1 1

1 1 1 1

lim lim lim lim

lim lim li

N N

N N

m m m m

l l l l
m m m mk k k k

m m

l l
m mk k k k

r l r l
E r l r l

m m m m

r l r l
m m

′ ′

′ ′= = = =

′ ′→∞ →∞ →∞ →∞= = = =

′

′= =

′→∞ →∞= = = =

   ′   
′   = × = ⋅

′ ′   
   
   
 
 

′ ≤ ⋅ =
′ 

 
 

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑

∑ ∑
∑ ∑ ∑ ∑

 

 

1 1m lim 2 .

m m

Nl l
m mm m

′

′= =

′→∞ →∞

 
 
 ⋅ =

′ 
 
 

∑ ∑
     (6.15) 

We use the following fact 

( ) ( )1 2 1 2, , , , , , , , 1.N Nr l r l′ = +n n n n n n                         (6.16) 

The inequality (6.15) is saturated since we have 

( ){ } ( ){ }
( ){ } ( ){ }

1 2 1 2

1 2 1 2

, , , , 1 , , , , 1 ,

, , , , 1 , , , , 1 .
N N

N N

l r l l N l r l l N

l r l l N l r l l N

′ ′ ′= ∧ ∈ = = ∧ ∈

′ ′ ′= − ∧ ∈ = = − ∧ ∈

n n n n n n

n n n n n n

 

 

           (6.17) 

Hence one has the following proposition concerning projective measurement theory 
2

QM max
2 .NE =                                   (6.18) 

Clearly, we cannot assign the truth value “1” for two propositions (6.11) (concerning our physical world) and 
(6.18) (concerning projective measurement theory), simultaneously, when the system is in a multiparticle pure 
uncorrelated state. Of course, each of them is a spin-1/2 pure state lying in the x-y plane. Therefore, we are in the 
contradiction when the system is in such a multiparticle pure uncorrelated state. Thus, we cannot accept the va-
lidity of the proposition (6.13) (concerning projective measurement theory) if we assign the truth value “1” for 
the proposition (6.11) (concerning our physical world). In other words, such projective measurement theory does 
not reveal our physical world. 

7. Solution of the Problem of Von Neumann’s Theory 
In this section, we solve the contradiction presented in the previous section. We have the maximal possible value 
of the scalar product as a quantum proposition concerning our physical world 
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2
QM max

1E =                                      (7.1) 

when the system is in such a multi spin-1/2 pure uncorrelated state. On the other hand, one has the following 
proposition concerning projective measurement theory 

2
QM max

2 .NE =                                     (7.2) 

We cannot assign the truth value “1” for two propositions (7.1) (concerning our physical world) and (7.3) (con-
cerning projective measurement theory), simultaneously, when the system is in a multiparticle pure uncorrelated 
state. Of course, each of them is a spin-1/2 pure state lying in the x-y plane. Therefore, we are in the contradic-
tion when the system is in such a multiparticle pure uncorrelated state. 

We introduce the following hypothesis: 

Hypothesis: We assume the value of r is 1
2N

±  (in ( )2 N
  unit), which is obtained if the measurement  

directions are set at 1 2, , , Nn n n . 
When we accept this hypothesis, the proposition (7.2) (concerning projective measurement theory) becomes 

the following new proposition concerning a quantum measurement theory (two-setting model) 
2

QM max
1.E =                                      (7.3) 

We can assign the truth value “1” for both two propositions (7.1) (concerning our physical world) and (7.3) 
(concerning the quantum measurement theory), simultaneously, when the system is in a multiparticle pure un-
correlated state. Of course, each of them is a spin-1/2 pure state lying in the x-y plane. Therefore, we are not in 
the contradiction when the system is in such a multiparticle pure uncorrelated state. Hence, we solve the contra-
diction presented in the previous section by changing the value of the result of quantum measurements. Our so-
lution is equivalent to changing Planck’s constant ( )  to the new constant ( )2 . 

8. New Type of the Deutsch-Jozsa Algorithm 
The earliest quantum algorithm, the Deutsch-Jozsa algorithm, is representative to show that quantum computa-
tion is faster than classical counterpart with a magnitude that grows exponentially with the number of qubits. 

Let us follow the argumentation presented in [10].—The application, known as Deutsch’s problem, may be 
described as the following game. Alice, in Amsterdam, selects a number x from 0 to 2 1N − , and mails it in a 
letter to Bob, in Boston. Bob calculates the value of some function 

{ } { }: 0, , 2 1 0,1Nf − →                                 (8.1) 

and replies with the result, which is either 0 or 1. Now, Bob has promised to use a function f which is of one of 
two kinds; either the value of ( )f x  is constant for all values of x, or else the value of ( )f x  is balanced, that 
is, equal to 1 for exactly half of all the possible x, and 0 for the other half. Alice’s goal is to determine with cer-
tainty whether Bob has chosen a constant or a balanced function, corresponding with him as little as possible. 
How fast can she succeed? 

In the classical case, Alice may only send Bob one value of x in each letter. At worst, Alice will need to query 
Bob at least 

2 2 1N +                                       (8.2) 

times, since she may receive 2 2N  0 s before finally getting a 1, telling her that Bob’s function is balanced. 
The best deterministic classical algorithm she can use therefore requires 2 2 1N +  queries. Note that in each 
letter, Alice sends Bob N bits of information. Furthermore, in this example, physical distance is being used to ar-
tificially elevate the cost of calculating ( )f x , but this is not needed in the general problem, where ( )f x  may 
be inherently difficult to calculate. 

If Bob and Alice were able to exchange qubits, instead of just classical bits, and if Bob agreed to calculate 
( )f x  using a unitary transformation fU , then Alice could achieve her goal in just one correspondence with 
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Bob, using the following algorithm. 
Alice has an N qubit register to store her query in, and a single qubit register which she will give to Bob, to 

store the answer in. She begins by preparing both her query and answer registers in a superposition state. Bob 
will evaluate ( )f x  using quantum parallelism and leave the result in the answer register. Alice then interferes 
states in the superposition using a Hadamard transformation (a unitary transformation), 

( ) 2 ,x zH σ σ= +                                  (8.3) 

on the query register, and finishes by performing a suitable measurement to determine whether f was constant or 
balanced. 

Let us follow the quantum states through this algorithm. The input state is 

0 0 1 .Nψ ⊗=                                    (8.4) 

Here the query register describes the state of N qubits all prepared in the 

0                                         (8.5) 

state. After the Hadamard transformation on the query register and the Hadamard gate on the answer register we 
have 

{ }
1

0,1

0 1
.

22NNx

x
ψ

∈

 − 
=  

 
∑                               (8.6) 

The query register is now a superposition of all values, and the answer register is in an evenly weighted su-
perposition of 

0                                         (8.7) 

and 

1 .                                         (8.8) 

Next, the function f is evaluated (by Bob) using 

( ): , , ,fU x y x y f x→ ⊕                               (8.9) 

giving 

( ) ( )

2

1 0 1
.

22

f x

Nx

x
ψ

−  − 
= ±  

 
∑                            (8.10) 

Here 

( )y f x⊕                                     (8.11) 

is the bitwise XOR (exclusive OR) of y and ( )f x . Alice now has a set of qubits in which the result of Bob’s 
function evaluation is stored in the amplitude of the qubit superposition state. She now interferes terms in the 
superposition using a Hadamard transformation on the query register. To determine the result of the Hadamard 
transformation it helps to first calculate the effect of the Hadamard transformation on a state 

.x                                        (8.12) 

By checking the cases 0x =  and 1x =  separately we see that for a single qubit 

( )1 2 .xz

z
H x z= −∑                               (8.13) 

Thus 
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( ) 1 1

1

1
, ,

1

1 , ,
, , .

2

N N

N

x z x z
N

z zN
N N

z z
H x x

+ +

⊗

−
=
∑ 





                     (8.14) 

This can be summarized more succinctly in the very useful equation 

( )1
,

2

x z

N z
N

z
H x

⋅

⊗
−

=
∑

                              (8.15) 

where 

x z⋅                                        (8.16) 

is the bitwise inner product of x and z, modulo 2. Using this equation and (8.10) we can now evaluate 3ψ , 

( ) ( )

3

1 0 1
.

22

x z f x

Nz x

z
ψ

⋅ +−  − 
= ±  

 
∑∑                          (8.17) 

Alice now observes the query register. Note that the absolute value of the amplitude for the state 

0 N⊗                                       (8.18) 

is 

( ) ( )1 2 .f x N

x
−∑                                   (8.19) 

Let’s look at the two possible cases—f constant and f balanced—to discern what happens. In the case where f 
is constant the absolute value of the amplitude for 

0 N⊗                                       (8.20) 

is +1. Because 

3ψ                                       (8.21) 

is of unit length it follows that all the other amplitudes must be zero, and an observation will yield 

1
2

 
+ 
 

                                     (8.22) 

times for all N qubits in the query register. Thus, global measurement outcome is 

1 .
2N

 
+  
 

                                    (8.23) 

If f is balanced then the positive and negative contributions to the absolute value of the amplitude for 

0 N⊗                                       (8.24) 

cancel, leaving an amplitude of zero, and a measurement must yield a result other than 

1 ,
2

+                                       (8.25) 

that is, 

1 ,
2

−                                       (8.26) 
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on at least one qubit in the query register. Summarizing, if Alice measures all 1
2

 + 
 

s and global measure-

ment outcome is 1
2N

 
+ 
 

 the function is constant; otherwise the function is balanced. 

We notice that the difference between 1
2N

+  and 1
2N

−  is approximately zero when 1N  . We ques-

tion if the Deutsch-Jozsa algorithm in the macroscopic scale is possible or not. This question is open problem. 

9. Double-Slit Experiment and Projective Measurement Theory 
In this section, we consider the relation between double-slit experiment and projective measurement theory. We 
try to implement double-slit experiment. There is a detector just after each slit. Thus interference figure does not 
appear, and we do not consider such a pattern. The possible values of the result of measurements are ±1 (in 

2  unit). If a particle passes one side slit, then the value of the result of measurement is +1. If a particle passes 
through another slit, then the value of the result of measurement is −1. 

9.1. A Wave Function Analysis 
Let ( ),z xσ σ  be Pauli vector. We assume that a source of spin-carrying particles emits them in a state ψ , 
which can be described as an eigenvector of Pauli observable zσ . We consider a quantum expected value 

xσ  as 

0.x xσ ψ σ ψ= =                                  (9.1) 

The above quantum expected value is zero if we consider only a wave function analysis. 
We derive a necessary condition for the quantum expected value for the system in the pure spin-1/2 state ψ  

given in (115). We derive the possible value of the product 2
x x xσ σ σ× = . xσ  is the quantum ex-

pected value given in (115). We derive the following proposition 
2 0.xσ =                                      (9.2) 

Hence we have 
2 0.xσ ≤                                      (9.3) 

Thus, 

( )2

max
0.xσ =                                    (9.4) 

9.2. Projective Measurement Theory 
On the other hand, a mean value E admits projective measurement theory if it can be written as 

( )
1

m

l x
l

r
E

m

σ
==
∑

                                   (9.5) 

where l denotes a label and r is the result of projective measurement of the Pauli observable xσ . We assume the 
value of r is ±1 (in 2  unit). 

Assume the quantum mean value with the system in an eigenvector ( )ψ  of Pauli observable zσ  given in 
(9.1) admits projective measurement theory. One has the following proposition concerning projective measure-
ment theory 

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ ==

∑
                                (9.6) 
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We can assume as follows by Strong Law of Large Numbers, 

( ) .x x xσ σ ψ σ ψ+∞ = =                              (9.7) 

In what follows, we show that we cannot assign the truth value “1” for the proposition (9.6) concerning projec-
tive measurement theory. 

Assume the proposition (9.6) is true. By changing the label l into l′  and by changing the label m into m′ , 
we have the same quantum mean value as follows 

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ

′

′
′=′ =

′

∑
                                (9.8) 

An important note here is that the value of the right-hand-side of (9.6) is equal to the value of the right-hand-side 
of (9.8) because we only change labels. We have 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1 1.

m m m m

l x l x
l l l l

x x l x l x

m m m m

l l l l
l x l x

r r
m m r r

m m m m

r r
m m m m

σ σ
σ σ σ σ

σ σ

′ ′

′
′ ′= = = =

′

′ ′

′ ′= = = =
′

′× = × = ⋅
′ ′

≤ ⋅ = ⋅ =
′ ′

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
              (9.9) 

We use the following fact 

( ) ( ) 1.l x l xr rσ σ′ =                                 (9.10) 

The inequality (9.9) is saturated since we have 

( ){ } ( ){ }
( ){ } ( ){ }

1 1 ,

1 1 .
l x l x

l x l x

l r l l r l

l r l l r l

σ σ

σ σ

′

′

′ ′= ∧ ∈ = = ∧ ∈

′ ′= − ∧ ∈ = = − ∧ ∈

N N

N N
                   (9.11) 

Thus we derive a proposition concerning the quantum mean value under an assumption that projective mea-
surement theory is true (in a spin-1/2 system), that is 

( ) ( )( )max
1.x xm mσ σ ′× =                             (9.12) 

From Strong Law of Large Numbers, we have 

( )max
1.x xσ σ× =                                 (9.13) 

Hence we derive the following proposition concerning projective measurement theory 

( )2

max
1.xσ =                                   (9.14) 

We do not assign the truth value “1” for two propositions (9.4) (concerning a wave function analysis) and 
(9.14) (concerning projective measurement theory), simultaneously. We are in the contradiction. This implies 
that we cannot perform the following Deutsch’s algorithm. 
• The control of quantum states relies on the wave functional analysis. 
• The observation of quantum states relies on projective measurement theory. 

We cannot accept the validity of the proposition (9.6) (concerning projective measurement theory) if we as-
sign the truth value “1” for the proposition (9.4) (concerning a wave function analysis). In other words, such 
projective measurement theory does not meet the detector model for spin observable xσ . And we cannot per-
form Deutsch’s algorithm. Consistency between controlability and observability is necessary for an implementa-
tion of Deutsch’s algorithm. And desired consistency is not established. 
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10. Solution of the Problem of Projective Measurement Theory in a Macroscopic 
System 

In this section, we consider many double-slit experiments. In a macroscopic system, we solve the contradiction 
presented in the previous section. 

10.1. A Wave Function analysis 
We consider an implementation of N double-slit experiments. We assume that N sources of spin-carrying par-
ticles emit them in a state, which can be described as an eigenvector of Pauli observable zσ . We have the fol-
lowing state globally 

.
N

Nψ ψ ψ ψ ⊗=


                                (10.1) 

Each of them can be described as an eigenvector of Pauli observable zσ . We analyze experimental data glo-
bally. We consider a single expected value of 

N
N

x x x xσ σ σ σ ⊗⊗ ⊗ ⊗ =


                               (10.2) 

then we have the following quantum expected value from a wave function analysis 

( ) 0.
N NN NN

x x xψ σ ψ ψ σ ψ σ⊗ ⊗⊗ = = =                      (10.3) 

Thus we have the following proposition concerning a wave function analysis 

( ) ( )2 0, .
N

x Nσ = → +∞                               (10.4) 

Hence we have 

( ) ( )2
0, .

N
x Nσ ≤ → +∞                               (10.5) 

Thus, 

( ) ( )2

max
0, .

N

x Nσ = → +∞                              (10.6) 

10.2. New Type of a Quantum Measurement 
On the other hand, a mean value E admits a quantum measurement theory if it can be written as 

( )
1

m

l x
l

r
E

m

σ
==
∑

                                  (10.7) 

where l denotes a label and r is the result of quantum measurement of the Pauli observable xσ . We assume the 

value of r is 
1
2

±  (in 2  unit) [23]. If a particle passes one side slit, then the value of the result of mea-

surement is 
1
2

+ . If a particle passes through another slit, then the value of the result of measurement is 

1
2

− . 

Assume the quantum mean value with the system in an eigenvector ( )ψ  of the Pauli observable zσ  given 
in (9.1) admits such a quantum measurement theory. One has the following proposition concerning the quantum 
measurement theory 
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( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ ==

∑
                               (10.8) 

In what follows, we show that we can assign the truth value “1” for the proposition (10.8) concerning the 
quantum measurement theory in the macroscopic system ( )N →+∞ . 

Assume the proposition (10.8) is true. By changing the label l into l′  and by changing the label m into m′ , 
we have the same quantum mean value as follows 

( )
( )

1 .

m

l x
l

x

r
m

m

σ
σ

′

′
′=′ =

′

∑
                              (10.9) 

An important note here is that the value of the right-hand-side of (10.8) is equal to the value of the right-hand- 
side of (10.9) because we only change labels. We have 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )

1 1 1 1

1 1 1 11 2 1 2.

m m m m

l x l x
l l l l

x x l x l x

m m m m

l l l l
l x l x

r r
m m r r

m m m m

r r
m m m m

σ σ
σ σ σ σ

σ σ

′ ′

′
′ ′= = = =

′

′ ′

′ ′= = = =
′

′× = × = ⋅
′ ′

≤ ⋅ = ⋅ =
′ ′

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
           (10.10) 

We use the following fact 

( ) ( ) 1 2.l x l xr rσ σ′ =                               (10.11) 

The inequality (10.10) is saturated since we have 

( ){ } ( ){ }
( ){ } ( ){ }

1 2 1 2 ,

1 2 1 2 .

l x l x

l x l x

l r l l r l

l r l l r l

σ σ

σ σ

′

′

′ ′= ∧ ∈ = = ∧ ∈

′ ′= − ∧ ∈ = = − ∧ ∈

N N

N N
               (10.12) 

Thus we derive a proposition concerning the quantum mean value under an assumption that such a quantum 
measurement is true (in a spin-1/2 system), that is, 

( ) ( )( )max
1 2.x xm mσ σ ′× =                           (10.13) 

From Strong Law of Large Numbers, we have 

( )max
1 2.x xσ σ× =                               (10.14) 

Therefore we have ( )2

max
1 2

N
N

xσ = . Hence we derive the following proposition concerning the quantum 
measurement 

( )2

max
1 2 .

N
N

xσ =                                (10.15) 

Thus, 

( ) ( )2

max
0, .

N

x Nσ = → +∞                             (10.16) 

We can assign the truth value “1” for both two propositions (10.6) (concerning a wave function analysis) and 
(10.16) (concerning the quantum measurement theory), simultaneously. Hence, we solve the contradiction pre-
sented in the previous section by changing the value of the result of quantum measurements and by considering 
an implementation of double-slit experiments macroscopically. This implies that we can perform the following 
Deutsch’s algorithm. 
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• The control of quantum states relies on the wave functional analysis. 
• The observation of quantum states relies on the measurement theory. 

In other words, such a measurement theory meets the detector model for spin observable xσ . And we can 
perform Deutsch’s algorithm. Consistency between controlability and observability is necessary for an imple-
mentation of Deutsch’s algorithm. And desired consistency is established. 

11. The Relation between Our Result and Deutsch’s Algorithm 
In this section, we discuss how our solution is used in an implementation of Deutsch’s algorithm. Now, we can 
measure Pauli observable xσ  by solving the contradiction discussed in Section 10. Consistency between con-
trolability and observability is established. The values of the result of quantum measurements are 1 2± . So 
the values can be used for the values of the result of the final measurement of Deutsch’s algorithm. From Sec-
tion 4, we have 

( ) ( )

( ) ( )
2

0 1 0 1
if 0 1

2 2

0 1 0 1
if 0 1 .

2 2

f f

f f

ψ

  +   − 
± =    
    = 

 −   − ± ≠   
   

                     (11.1) 

We can consider 

0 1 0 1
, .

2 2x x

 +   − 
± = ± + ± = ± −   
   

                       (11.2) 

Therefore if we can measure an expected value of xσ , then we can distinguish the two states mentioned above. 
From a wave function analysis, we have 

1, 1.x x x x x xσ σ+ + = + − − = −                           (11.3) 

We see one measurement is enough to determine which state is realized. We can omit the final Hadamard gate 
on the first qubit. 

12. Conclusions 
In conclusion, we have discussed the fact that there is a crucial contradiction within Von Neumann’s theory. We 
have derived a proposition concerning a quantum expected value under an assumption of the existence of the 
orientation of reference frames in N spin-1/2 systems (1 ≤ N < +∞). This assumption intuitively has depictured 
our physical world. However, the quantum predictions within the formalism of Von Neumann’s projective 
measurement have violated the proposition with a magnitude that grows exponentially with the number of par-
ticles. We have had to give up either the existence of the directions or the formalism of Von Neumann’s projec-
tive measurement. Therefore, Von Neumann’s theory cannot have depictured our physical world with a viola-
tion factor that grows exponentially with the number of particles. The theoretical formalism of the implementa-
tion of the Deutsch-Jozsa algorithm has relied on Von Neumann’s theory. We have investigated whether Von 
Neumann’s theory meets the Deutsch-Jozsa algorithm. We have discussed the fact that the crucial contradiction 
makes the quantum-theoretical formulation of Deutsch-Jozsa algorithm questionable. Further, we have discussed 
the fact that projective measurement theory does not meet easy detector model for a single Pauli observable. 
Especially, we have systematically described our assertion based on more mathematical analysis using raw data. 
We have proposed a solution of the problem. Our solution has been equivalent to changing Planck’s constant 
( )  to the new constant ( )2 . It may have said that a new type of the quantum theory early approaches 
Newton’s theory in the macroscopic scale than the old quantum theory does. We have discussed how our solu-
tion is used in an implementation of Deutsch’s algorithm. 

What are new physical theories? We cannot answer it at this stage. However, we expect that our discussion in 
this paper could contribute to creating new physical theories in order to explain our physical world, to create 
new information science, and to predict new unknown physical phenomena efficiently. 
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