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Abstract 
In this paper, the Auto-Bäcklund transformation connected with the homogeneous balance me-
thod (HB) and the extended tanh-function method are used to construct new exact solutions for 
the time-dependent coefficients Calogero-Degasperis (VCCD) equation. New soliton and periodic 
solutions of many types are obtained. Furthermore, the soliton propagation is discussed under the 
effect of the variable coefficients. 
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1. Introduction 
Recently, investigation of exact solutions for nonlinear partial differential equations (NPDEs) with variable 
coefficients plays an important role in modern nonlinear science because NPDEs with variable coefficients 
reflect the real thing even more than those with constant. 

One of the most important NPDEs is the time-dependent coefficients Calogero-Degasperis (VCCD) equation 
[1] 

( ) ( ) ( ) 0,xt x xy y xx xxxyu t u u t u u t uα β γ+ + + =                          (1) 
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where ( ) ( ),t tα β  and ( )tγ  are arbitrary functions. The VCCD equation describes the (2 + 1)-dimensional 
interaction of the Riemann wave propagating along the y-axis with a long wave along the x-axis. Many exact 
solutions have been found for Equation (1) by using symmetry method [1]. Equation (1) with ,α β  and γ  as 
constants was first constructed by Bogoyavlenskii and Schiff in different ways [2]-[4] and called the Calogero- 
Bogoyavlenskii-Schiff (CBS) equation. Bogoyavlenskii used the modified Lax formalism, whereas Schiff 
derived the same equation by reducing the self-dual Yang-Mills equation. The CBS equation has been solved by 
using Hirota’s bilinear method [5] and symmetry method [6]. 

The objective of this paper is to apply the auto-Bäcklund transformation method and the extended tanh- 
function method on the VCCD equation, to find more general new solitonic and periodic exact solutions. 

2. Auto-Bäcklund Transformation 
We can obtain Auto-Bäcklund transformation by using HB method [7]-[10] as follows. 

Step 1: We consider the exact solution of (1) in the form 

( ) ,
n

nu f w v
x
∂

= +
∂

                                          (2) 

where ( )f f w=  and ( ), ,w w t x y=  are undetermined functions, ( ), ,v v t x y=  is a solution of (1). 
According to the HB method n can be determined by balancing the linear term of the highest order derivative 

and the highest nonlinear term of u in (1). 
Therefore, 1n =  and 

( ), , ,u t x y f v
x
∂

= +
∂

                                       (3) 

Substituting (3) into (1), we get 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )( )
( ) ( )

24 3 2 2

2 3 3 2

2 2

( ) 2 3

4 6

2 3

x y x xy x y xx x y xx

x y xx x xy x xy x xx y

x xxy x xx xy y xx x xx xy x y xxx

xx xxy

t t f f t f w w t w w w w w t w w w f

t w w w t w w f f w w w w w t f

t w w w w w w w t w w w w w w f f

t w w t

α β γ α β

α β γ

α β

α β

  ′′ ′′′ ′′′′′ ′′+ + + + +   
   ′ ′′′ ′′′′+ + + +   
  ′ ′′+ + + + + 

+ + ( ) ( ) ( )

( )( )
( )( )

( )( ) ( )( )
( )

2 2 2 3

2 2

2

12 6 3 4

2 2

3 4 6 4

xy xxx t x x y x y x

x xx xy x xxy y xx x y xxx

x xt t xx x xy x xy x y xx x

x xx y xxx x y xy xxx xx xxy x xxxy y xxxx

xxt xx

w w f w w t v w w t v w

t w w w w w w w w w w f

w w w w t w v w w v w w v

t w w v v w w t w w w w w w w w f

w t w

α β

γ

α

β γ

α

′  + + +  
 ′′′+ + + + 

+ + + + +
 ′′+ + + + + + 

+ + ( ) ( )( ) ( )
( ) ( ) ( ) 0

xy xxy x xxx y xx xy xxxxy

xt x xy xx y xxxy

v w v t w v v w t w f

v t v v t v v t v

β γ

α β γ

  ′+ + + + 
+ + + + =

    (4) 

Step 2: To make (4) as a linear equation in f we assume that, 

( ) ln , where is constantf w c w c=                         (5) 

So that, we have the following relations 

( )2 2, , , ,
12 6 3 2
c c c cf f f f f f f f f f f f cf′′ ′′′ ′′′′′ ′′ ′′′′ ′ ′′′ ′′′′ ′ ′′ ′′′ ′ ′′= − = − = − = − = −     (6) 

Substitute from relations (6) into (4) and equating the linear coefficients , , ,f f f′′′′′ ′′′′ ′
  by zero, the fol- 

lowing partial differential system is obtained 

( ) ( )( ) ( ) 4 0,
12 x y
c t t t w wα β γ − + + =  
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( ) ( )( ) ( )

( ) ( )

3 2 3 2 2

2 3

4 6 2 3
6

0,
3

x xy x xx y x xy x y xx x y xx

x y xx x xy

cw w w w w t t w w w w w t w w w

c t w w w t w w

γ α β

α β

  + − + +   

 − + = 

 

( ) ( ) ( )( )
( )( ) ( )( )

2 2 3 2 2

2 2

12 6 3 4

2 3 0,
2

t x x y x y x x xx xy x xxy y xx x y xxx

x xxy x xx xy y xx x xx xy x y xxx

w w t v w w t v w t w w w w w w w w w w

c t w w w w w w w t w w w w w w

α β γ

α β

+ + + + + +

 − + + + + = 

 

( )( ) ( )( )
( )( ) ( ) ( )

22 2 3

4 6 4 0,

x xt t xx x xy x xy x y xx x x xx y xxx x y

xy xxx xx xxy x xxxy y xxxx xx xxy xy xxx

w w w w t w v w w v w w v t w w v v w w

t w w w w w w w w c t w w t w w

α β

γ α β

+ + + + + +

 + + + + − + = 
 

( )( ) ( )( ) ( ) 0,xxt xx xy xxy x xxx y xx xy xxxxyw t w v w v t w v v w t wα β γ+ + + + + =  

( ) ( ) ( ) 0.xt x xy xx y xxxyv t v v t v v t vα β γ+ + + =                         (7) 

Step 3: To solve the previous system, assume that 

( )( )exp ,w C kx ry tθ= + + −                              (8) 

where , ,C k r  are arbitrary constants and ( )tθ  is an arbitrary function of t. Then, we obtain the following 
relations 

( ) ( ) ( )( )
12
ct t tγ α β= +                                   (9) 

( ) ( ) ( )( )
2

0d , is a constant
12

ck rt t t t v vθ α β= + =∫                       (10) 

By substitution from (8-10) into (3) using (5), we obtain the following one-soliton solution for the VCCD 
equation under condition (9) 

( )
( ) ( )( )

( ) ( )( )

2

1 02

exp d
12

, ,
exp d

12

ck rkc kx ry t t t
u x y t v

ck rC kx ry t t t

α β

α β

 
+ − + 

 = +
 

+ + − + 
 

∫

∫
                    (11) 

By using the following two useful formulas [11] 

( )
( ) ( )

( )( )

1 for 0
exp 1 1tanh ln 1 for 0

exp 2 2
1 1coth ln 1 for 0
2 2

C

C C
C

C C

ζ
ζ

ζ

ζ


 =
  = − + >  +  
  − − + <   

                       (12) 

( )
( ) ( )( )

( )( )

1 for 0
exp 1 1tan ln 1 for 0

exp 2 2
1 1cot ln 1 for 0
2 2

C
i

i i C C
C i

i i C C

ζ
ζ

ζ

ζ


 =
  = + + >  +  
  − + − + <   

                     (13) 

We obtain the following kink-type soliton and periodic solutions respectively 
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( ) ( )( ) ( )
2

2 0
1tanh d ln 1

2 2 12
kc ck ru kx ry t t t C vα β

   
= + − + − + +   

     
∫             (14) 

( ) ( )( ) ( )
2

3 0
1coth d ln 1

2 2 12
kc ck ru kx ry t t t C vα β

   
= + − + + − + +   

     
∫            (15) 

Analogously, we assume that 1=k ik  and 1=r ir  in (11), where 1k  and 1r  are real constants. So the fol- 
lowing new periodic solutions for the VCCD equation are obtained 

( ) ( )( ) ( )
2

1 1 1
4 1 1 0

1tan d ln 1
2 2 12
k c ck ru k x r y t t t i C vα β

   −
= + + + + + +   

     
∫           (16) 

( ) ( )( ) ( )
2

1 1
5 1 1 0

1cot d ln 1
2 2 12

k c ck ru k x r y t t t i C vα β
   

= + + + + − + +   
     

∫             (17) 

3. The Extended Tanh-Function Method 
In this section, we are going to find more new exact solutions for the VCCD equation using direct integration 
and extended tanh-function method [12] [13]. Assume that 

( ) ( ) ( )2 2, , , where ,u x y t g k x r y tξ ξ λ= = + −                        (18) 

where 2k  and 2r  are arbitrary constants and ( )tλ  is an arbitrary function of t. 
By substitution in (1), we have 

( ) ( ) ( )( ) ( )2 3
2 2 2 2 2 0k t g k r t t g g k r t gλ α β γ′ ′′ ′ ′′ ′′′′− + + + =                     (19) 

To make the previous Equation (19) be an ordinary differential equation, we have found 

( ) ( ) ( )( )d ,t t t tλ α β= +∫                                        (20) 

( ) ( ) ( )( )2
2 2

, where is an arbitrary constant.at t t a
k r

γ α β= +                     (21) 

Therefore, (19) becomes 

2 2 0g k r g g ag′′ ′ ′′ ′′′′− + + =                                        (22) 

By Integrating (22) twice, we get 

2 3 22 2
1 2 ,

3
k rag g g c g c′′ ′ ′ ′+ − = +                              (23) 

where 1c  and 2c  are integration constants. Assume that R g ′= , then (23) becomes 

2 3 22 2
1 2

1 .
3

k rR R R c R c
a
 ′ = − + + + 
 

                                (24) 

Now, we apply the extended tanh function method used in [14] to obtain exact travelling wave solutions of 
Equation (24). Let us assume that Equation (24) has a solution in the form 

( ) 0
1

N
i

i
i

R A Aζ φ
=

= +∑                                        (25) 

where ( )φ ζ  is a solution of the following Riccati equation 
2bφ φ′ = +                                           (26) 

This Riccati equation has the following solutions 
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( ) ( )tanh , 0,b b bφ ζ ζ= − − − <  

( ) ( )coth , 0,b b bφ ζ ζ= − − − <  

( ) ( )tan , 0,b b bφ ζ ζ= >  

( ) ( )cot , 0,b b bφ ζ ζ= − >  

( ) 1 , 0,bφ ζ
ζ

= − =                                  (27) 

Substitute from (25) into Equation (24) and balance the term 2R′  with the greatest nonlinear term 3R , we 
get that 

2N =                                           (28) 
Therefore, 

( ) 2
0 1 2 ,R A A Aζ φ φ= + +                                  (29) 

where 0 1,A A  and 2A  are constants to be determined. Then, by substitution from (29) and (26) in (24), and 
equating the coefficients of ( )φ ζ  and all its powers with zero, we obtain an algebraic system by solving it 
with mathematica program many values of 0 1,A A  and 2A  are obtained. We have chosen one of them for 
simplicity 

( )

( )

2 2 1
0 2 2 1 1 2 2 2 1

2 2 2 2

3
22 2 11

2 2 2 2 2
2 22 2 2 2

3 11 11 2 1 , 0, , 1 ,
4

2 131 2
3

k r c
A k r c A A a k r c

k r k r b

k r ccc
k rk r k r

+ −
= + + = = = +

 +− = − +  
 

            (30) 

By substitution from (30) and (27) in (29), we have got the following exact solutions for Equation (24) 

( ) ( ) ( )

( ) ( ) ( )

2 2 1 2
1 2 2 1

2 2 2 2
2 2 1

2 2 1 2
2 2 2 1

2 2 2 2

3 11 1 2 1 tanh ,
1, where 1 , 1
43 11 1 2 1 coth ,

k r c
R k r c

k r k r
a k r c b

k r c
R k r c

k r k r

ξ ξ

ξ ξ

+
= + + − 

 = + = −
+ = + + − 



 

( ) ( ) ( )

( ) ( ) ( )

2 2 1 2
3 2 2 1

2 2 2 2
2 2 1

2 2 1 2
4 2 2 1

2 2 2 2

3 11 1 2 1 tan ,
1, where 1 , 1

43 11 1 2 1 cot ,

k r c
R k r c

k r k r
a k r c b

k r c
R k r c

k r k r

ξ ξ

ξ ξ

+
= + + + 

− = + =
+ = + + + 



     (31) 

and 
( )

3
22 2 11

2 2 2 2 2
2 22 2 2 2

2 131 2
3

k r ccc
k rk r k r

 +− = − +  
 

 for Equations (31). By back substitution from (31) into (18) using  

the relation R g ′=  and (20-21), we have got the following new exact solutions for the VCCD equation. 

( ) ( )( )( )

( )
( ) ( )( )( )

2 2 1
6 2 2

2 2

2 2 1
2 2

2 2

3 1
tanh d

1 1
d ,

k r c
u k x r y t t t

k r

k r c
k x r y t t t

k r

α β

α β

+
= + − +

− +
+ + − +

∫

∫

                      (32) 
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( ) ( )( )( )

( )
( ) ( )( )( )

2 2 1
7 2 2

2 2

2 2 1
2 2

2 2

3 1
coth d

1 1
d ,

k r c
u k x r y t t t

k r

k r c
k x r y t t t

k r

α β

α β

+
= + − +

− +
+ + − +

∫

∫

                        (33) 

where ( ) ( ) ( )( )2 2 1
2
2 2

1
,

4
k r c

t t t
k r

γ α β
+

= +  

( ) ( )( )( )

( )
( ) ( )( )( )

2 2 1
8 2 2

2 2

2 2 1
2 2

2 2

3 1
tan d

1 1
d ,

k r c
u k x r y t t t

k r

k r c
k x r y t t t

k r

α β

α β

+
= + − +

− +
+ + − +

∫

∫

                         (34) 

( ) ( )( )( )

( )
( ) ( )( )( )

2 2 1
9 2 2

2 2

2 2 1
2 2

2 2

3 1
cot d

1 1
d ,

k r c
u k x r y t t t

k r

k r c
k x r y t t t

k r

α β

α β

− +
= + − +

− +
+ + − +

∫

∫

                          (35) 

where ( ) ( ) ( )( )2 2 1
2
2 2

1
.

4
k r c

t t t
k r

γ α β
− +

= +  

The following part of this section is devoted to analyzing the influences of the variable coefficients on the 
solitonic propagation. From the expression of 1u , we can get the characteristic line of the soliton solution 
[15]-[17] as 

( ) ( )( )
2

d 0
12

ck rkx ry t t tα β+ − + =∫                                 (36) 

from the previous equation, we have found that there are three arbitrary constants ,k r  and c so that it is 
important to control the solitonic velocity in the profile at 0y =  (or y is constant) by choosing appropriate 
parameters. Correspondingly, the velocity v of the solitary wave along the x-axis can be expressed as 

( ) ( )( )
12
ckrv t tα β= +                                     (37) 

Therefore, the propagation direction of the soliton is decided by the sign of v and the solitonic velocity depend 
on the variables ( )tα  and ( )tβ  and the same can be done for the kink-soliton solution 6u  

The previous figures indicate that how the variable coefficients ( ) ( ),t tα β  affect the evolution of the soliton 
in Figures 1-6. In Figure 2, Figure 3, Figure 5 and Figure 6, we can see that the solitonic propagation  
 

 
Figure 1. The soliton solution u1 with α(t) = β(t) = 1 and k = r = 
c = C = υ0 = 1.                                             



R. M. El-Shiekh 
 

 
221 

 
Figure 2. The soliton solution u1 with α(t) = β(t) = t and k = r = 
c = C = υ0 = 1.                                           

 

 
Figure 3. The soliton solution u1 with α(t) = sin(t), β(t) = cos(t) 
and k = r = c = C = υ0 = 1.                                 

 

 
Figure 4. The kink-soliton solution u6 with α(t) = β(t) = 1 and 
k2 = r2 = c1 = 1.                                          

 
trajectory is not a straight line anymore. It exhibits as a parabolic and periodic-type propagation respectively. 
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Figure 5. The kink-soliton solution u6 with α(t) = β(t) = t and 
k2 = r2 = c1 = 1.                                          

 

 
Figure 6. The kink-soliton solution u6 with α(t) = sin(t), β(t) = 
cos(t) and k2 = r2 = c1 = 1.                                         

4. Conclusions 
By using the HB method, we have obtained Auto-Bäcklund transformation and new exact solitary and periodic 
solutions for the VCCD equation. Also by using a travelling wave transformation, we have reduced the VCCD 
equation to an ordinary differential equation, by the extended tanh function method we have been able to obtain 
many other new exact solitary and periodic-type solutions. Some remarks have been found on the obtained so-n 
lutions 

Remark 1: The obtained Bäcklund transformation is more easy and simple in calculations than that obtained 
in [1] by using Painlevé-test. Additionally, the obtained solutions are also new and more general than solutions 
in Ref. [1] because all solutions in Ref. [1] depend on only one variable ( )tβ . 

Remark 2: The combination between the two functions ( )tα  and ( )tβ  affects the propagation shape of 
the solitary wave solution. Moreover, the one-soliton solution 1u  recovers the single soliton solution obtained 
by Wazwaz in [5] for the CBS equation. 

Remark 3: All solutions obtained in this paper have been satisfied by Mathematica program. 
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