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Abstract

The minimum risk equivariant estimator of a quantile of the common marginal distribution in a
multivariate Lomax distribution with unknown location and scale parameters under Linex loss
function is considered.

Keywords

Best Affine Equivariant Estimator, Quantile Estimation, Lomax (Pareto II) Distributions, Linex Loss
Function

1. Introduction

In the analysis of income data, lifetime contexts, and business failure data the univariate Lomax (Pareto 1) dis-

-1-r
tribution with density L(1+ X_ﬂj ; X> u , is a useful model [1]. The lifetime of a decreasing failure rate
o o

component may be describe by this distribution. It has been recommended by [2] as a heavy tailed alternative to
the exponential distribution. The interested reader can see [3] and [4] for more details.

A multivariate generalization of the Lomax distribution has been proposed by [5] and studied by [6]. It may
be obtained as a gamma mixture of independent exponential random variables in the following way. Consider a
system of n components. It is then reasonable to suppose that the common operating environment shared by all
components induces some kind of correlation among them. If for a given environment t, the component life-
times X,,X,,---, X, are independently exponentially distributed E(x,o/7) with density

z exp {—i(x—y)}, X > u, and the changing nature of the environment is accounted by a distribution function
o o
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F(.), then the unconditional joint density of X,, X,,---, X, is

n

fo (X Xpuo e, Xy 1, 0) = J':% exp{—ézn:(xi —,u)} |(0) (x(l))dF (7). (1)

where X, = min{X,,X,,---, X, } . Furthermore, if F(-) isagamma distribution G(r,1) with density

r-1,-7.

Lr e";r>0,then (1) become

r(r)

r(n+r) 1
FO (123 x-n)
This is called multivariate Lomax ML, (r, o) with location parameter x and scale parameter o . The

same distribution is referred to as Mardia’s multivariate Pareto Il distribution, see [3] and [7]. If take #=0
and assign a different scale parameter, o; toeach X, we have

'(n+r 1
fo (X %000 %g107) = ( n) ' I(Hv”)(x(l))' S

LNl .o [Hzin_lxi_]w

For more information about the work on this distribution, the reader can see [8].

fL (X0 Xp0eoe Xy 1,0) =

j L () 2

2. Best Affine Equivarient Estimator

Let X,,X,,---,X,;n>2 are from a multivariate Lomax distribution MLn(r,y,o-) with unknown ux and
o and known r. We consider the linear function @ = u+ko for given k>0.When k=p™*" -1; 0<p<1,
6 isthe 100(1 — p) th quantile of the marginal distribution of X, . Quantile estimation is of interest in reliabil-
ity theory and lifetesting. [9] generalized results in [10] to a strictly Convex loss.

In this paper we consider the Linex loss function

=0 _
L(6,5)=e . J—a(Mj—l 4)
o
where a =0 isthe shape parameter, which was introduced by [11] and was extensively used by [12].
The minimal sufficient statistic in the model (2) is (S, X) where, S = Zi”ﬂ X, - X(lj and X = X(l). Condi-
tional on 7, a random variable with G(r,l) distribution, S and X are independent with
S|T~G(n—l,zj, X|T~E(,u,£j. (5)
T nr
So, the density of (S, X) is
=1 " L S Beew 10,
f(s,x;u,0)= s"%e o —eg° —— et
(s:%40.2) ;[(n—Z)!o-”'l o r(r)’
nrC(n+r) g2 (6)

= . 7 X>pu,s>0

(n=2)r(r)o” {1+;L_{s+n(X—/1)}}nH

The problem of estimating 6 =u+ko; k>0 under the loss (4) is invariant under the affine group of
transformations (S, X ) —(cS,cX +b) and the equivariant estimator have the form ¢ = X + ¢S where ¢ is a real
constant.

Following [13], we study scale equivariant estimators of the form &§=¢(Z)S , where Z :é and ¢(.) is

()



N. Sanjari Farsipour

a measurable function. Thus the equivariant estimator is of the form ¢(Z)S, where ¢(Z)=2Z+c. Now, con-
sider the risk of the estimator X +cS for estimating g +ko when the loss is (4).

R(6,5)=E {;‘(MJ _ a(M)—l}

(o2

ke | XS) g ac au
=e ° Ele -—E(X)-—E(S)+—+ak-1 )
(o2 O O
_BE { |:a(><+cs)
=e o EJE|e°

Now, since 7~G(r,1) and X|r~E(,u,£j and S|r~G(n—l,gj we have
nr T

f}}—%E{E(x |r)}—§E[E(S|r)]+%u+ak—l-

R(H,é):ne‘akEr{( )Tn }—i{m—“u}—mﬁ—hak—l ®)
nrt—a

(r—ac)"'1 ol o o o

which is finite if r>ac. By the invariant property of the problem we can take (x,0)=(0,1) and the risk be-
comes

n

R((O,l),&)znea"ET{ 4 }—a—acr(n—1)+ak—1 (9)

(nz—a)(r—ac)"”

Differentiate the risk with respect to ¢ and equating to zero, the minimizing ¢ must satisfies the following eq-

uation
E. il _{—r, (10)
(nc-a)(r-ac,)

=68, =¢,(Z)S , where

Yielding the best affine equivariant estimator &

equivariant
& (Z) =Z+¢,.
3. Improved Estimator

For improving upon &, , we study scale equivariant estimator & =¢(Z)S . Theriskof & dependson (u,o)

through ﬁ, so without loss of generality one can take o =1 and write
o

R(6,4)=E, {E,[L(#(2)8.0)|z =2]}. (11)
The minimization of R(&,x) leads to the following equation
E, [S ™|z = z} =e“E [s|z=2]. (12)

let z>0, then the conditional density of S given Z =z>0 is proportional to

n-1
> ;S >max {o,ﬁ}. (13)
(1+S(1+nz)-nu) z

Considernow £ <0 andfix z>0, then setting

()
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SI‘\
S;u)= . 14
ASw) (1+S(1+nz)—nu)"" (4

From (12) we compute the following expectations as follows
1
(1+n2)" (1-nu)™

E,(S|Z=2)=] q(s;u)ds= J':u”(l—u)r’zdu

and
o0 l
E (Se**|Z=1z)=[ e*q(s;u)ds=
ﬂ( ) -‘-O ( )d (1+nz)n+1(1_nﬂ)r—l
L u) g
joe u"(1-u) “du,
where u= S(L+n2) . Hence (12) becomes

1+S(1+nz)—nu

1 geltu v - r(r-1)n!

&z Tu 1— r Zd _ a—alu+k) 15
!e wimu) T du=e I'(n+r) (15)

any c=¢(Z) satisfying (15) minimizes R(5,u)= E[E(L(5,9)|Z)], for £<0 and Z >0. Now, let >0

and fix again Z >0, then s>£ q(S,u)= —.
z 954 [1+S(1+nZ)-nu]

So we have
o0 1
E |S|Z=z|= S;u)ds=
,U|: | :I J.,u/zq( /J) (1+nz)n+1(1_nlu)r—1
' u(1+nz) Un (1— u)l’—Z du
z+p(14nz)-nuz
and

1
(1+nz)"" (1-nu)™

S
E, [Se*

22}, a(sin)i-

1 -2
u(1+nz) e*Su" (1—U)r du
z+p(1+nz)-npz

and hence (7) becomes

') u"(1-u)"du :jl uaer)  €°U" (1-u) du (16)

2+p(1+n2)-nuz z+p(14+nz)-nuz

any c=c(u) satisfying (16) minimizes R(J,u)= E[E[L(5,9)|Z J for 4>0 and Z >0 [14]. Now for
deriving an improved equivariant estimator upon this we must find a bound for ¢ in formula (15) and (16). As
we can not derive ¢ from Equations (15) and (16) explicitely, this would not be achieved.
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