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Abstract 
The minimum risk equivariant estimator of a quantile of the common marginal distribution in a 
multivariate Lomax distribution with unknown location and scale parameters under Linex loss 
function is considered. 
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1. Introduction 
In the analysis of income data, lifetime contexts, and business failure data the univariate Lomax (Pareto II) dis-  

tribution with density 
1

1 ;
rr x xµ µ

σ σ

− −− + > 
 

, is a useful model [1]. The lifetime of a decreasing failure rate  

component may be describe by this distribution. It has been recommended by [2] as a heavy tailed alternative to 
the exponential distribution. The interested reader can see [3] and [4] for more details. 

A multivariate generalization of the Lomax distribution has been proposed by [5] and studied by [6]. It may 
be obtained as a gamma mixture of independent exponential random variables in the following way. Consider a 
system of n components. It is then reasonable to suppose that the common operating environment shared by all 
components induces some kind of correlation among them. If for a given environment τ , the component life-
times 1 2, , , nX X X  are independently exponentially distributed ( ),E µ σ τ  with density 

( )exp ,x xτ τ µ µ
σ σ

 − − > 
 

, and the changing nature of the environment is accounted by a distribution function  
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F(.), then the unconditional joint density of 1 2, , , nX X X  is 

( ) ( ) ( ) ( )( ) ( )0 1 2 , 10
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n n

n in
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f x x x x I x Fµ
τ τµ σ µ τ

σσ
∞
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=

 = − − 
 

∑∫                (1) 

where ( ) { }1 21 min , , , nx x x x=  . Furthermore, if ( )F ⋅  is a gamma distribution ( ),1G r  with density 

( )
11  e ; 0r r

r
ττ − − >

Γ
, then (1) become 
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                  (2) 

This is called multivariate Lomax ( ), ,nML r µ σ  with location parameter μ  and scale parameter σ . The 
same distribution is referred to as Mardia’s multivariate Pareto II distribution, see [3] and [7]. If take 0µ =  
and assign a different scale parameter, iσ  to each iX  we have 

( ) ( )
( ) ( ) ( )( )2 1 2 ,
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=
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∏ ∑
                   (3) 

For more information about the work on this distribution, the reader can see [8]. 

2. Best Affine Equivarient Estimator 
Let 1 2, , , ; 2nX X X n ≥  are from a multivariate Lomax distribution ( ), ,nML r µ σ  with unknown μ  and 
σ  and known r. We consider the linear function kθ µ σ= +  for given 0k ≥ . When 1 1rk p−= − ; 0 1p< < , 
θ  is the 100(1 − p) th quantile of the marginal distribution of iX . Quantile estimation is of interest in reliabil-
ity theory and lifetesting. [9] generalized results in [10] to a strictly Convex loss. 

In this paper we consider the Linex loss function 

( ), e 1
a

L a
δ θ
σ δ θθ δ

σ

− 
 
  − = − − 

 
                              (4) 

where 0a ≠  is the shape parameter, which was introduced by [11] and was extensively used by [12]. 
The minimal sufficient statistic in the model (2) is (S, X) where, ( )( )11

n
iiS X X

=
= −∑  and ( )1X X= . Condi-

tional on τ , a  random variable with ( ),1G r  distribution, S and X are independent with 

~ 1, , ~ , .S G n X E
n

σ στ τ µ
τ τ

   −   
   

                           (5) 

So, the density of (S, X) is 
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             (6) 

The problem of estimating kθ µ σ= + ; 0k ≥  under the loss (4) is invariant under the affine group of 
transformations ( ) ( ), ,S X cS cX b→ +  and the equivariant estimator have the form δ = X + cS where c is a real 
constant. 

Following [13], we study scale equivariant estimators of the form ( )Z Sδ φ= , where 
XZ
S

=  and ( ).φ  is  
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a measurable function. Thus the equivariant estimator is of the form ( )Z Sφ , where ( )Z Z cφ = + . Now, con-
sider the risk of the estimator X cS+  for estimating kµ σ+  when the loss is (4). 
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Now, since ( )~ ,1G rτ  and ~ ,X E
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στ µ
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which is finite if r ac> . By the invariant property of the problem we can take ( ) ( ), 0,1µ σ =  and the risk be-
comes 
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Differentiate the risk with respect to c and equating to zero, the minimizing c must satisfies the following eq-
uation 

( )( )0

,
n

nE r
n a ac

τ
τ

τ τ

  = 
− −  

                               (10) 

Yielding the best affine equivariant estimator ( )equivariant 0 0 Z Sδ δ φ= = , where 

( )0 0Z Z cφ = + . 

3. Improved Estimator 
For improving upon 0δ , we study scale equivariant estimator ( )Z Sδ φ= . The risk of δ  depends on ( ),µ σ   

through 
µ
σ

, so without loss of generality one can take 1σ =  and write 

( ) ( )( ){ }, , .R E E L Z S Z zµ µδ µ φ θ = =                          (11) 

The minimization of ( ),R δ µ  leads to the following equation 

( )e e .a kacSE S Z z E S Z zµ
µ µ

− + = =  =                            (12) 

let 0z > , then the conditional density of S given 0Z z= >  is proportional to 
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Consider now 0µ ≤  and fix 0z > , then setting 
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From (12) we compute the following expectations as follows 
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any ( )c Zφ=  satisfying (15) minimizes ( ) ( )( ), ,R E E L Zδ µ δ θ =   , for 0µ ≤  and 0Z > . Now, let 0µ >   

and fix again 0Z > , then S
Z
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> , ( )
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So we have 
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and hence (7) becomes 

( )
( )

( ) ( )( )
( )

1 12 2
1 1

1 1
1 d e 1 dr rn acS n

nz nz
z nz n z z nz n z

u u u u u uµ µ
µ µ µ µ

− −
+ +

+ + − + + −

− = −∫ ∫                   (16) 

any ( )c c µ=  satisfying (16) minimizes ( ) ( ), ,R E E L Zδ µ δ θ  =     for 0µ >  and 0Z >  [14]. Now for 
deriving an improved equivariant estimator upon this we must find a bound for c in formula (15) and (16). As 
we can not derive c from Equations (15) and (16) explicitely, this would not be achieved. 
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