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Abstract 
Supervised classification of hyperspectral images is a challenging task because of the higher di-
mensionality of a pixel signature. The conventional classifiers require large training data set; 
however, practically limited numbers of labeled pixels are available due to complexity and cost 
involved in sample collection. It is essential to have a method that can reduce such higher dimen-
sional data into lower dimensional feature space without the loss of useful information. For classi-
fication purpose, it will be useful if such a method takes into account the nature of the underlying 
signal when extracting lower dimensional feature vector. The lifting framework provides the re-
quired flexibility. This article proposes the adaptive lifting wavelet transform to extract the lower 
dimensional feature vectors for the classification of hyperspectral signatures. The proposed adap-
tive update step allows the decomposition filter to adapt to the input signal so as to retain the de-
sired characteristics of the signal. A three-layer feed forward neural network is used as a super-
vised classifier to classify the extracted features. The effectiveness of the proposed method is 
tested on two hyperspectral data sets (HYDICE & ROSIS sensors). The performance of the pro-
posed method is compared with first generation discrete wavelet transform (DWT) based feature 
extraction method and previous studies that use the same data. The indices used for measuring 
performance are overall classification accuracy and Kappa value. The experimental results show 
that the proposed adaptive lifting scheme (ALS) has excellent results with a small size training set. 
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1. Introduction 
Hyperspectral data set consists of hundreds of images corresponding to different wavelengths for the same area 
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on the surface of the Earth [1]. The resulting higher dimensional feature vector (hyperspectral signature) causes 
the problem of dimensionality for conventional classifiers [2]. That is, the training data set size must increase 
exponentially with the dimension of the feature vector. However, practically, limited numbers of labeled pixels 
are available and therefore we cannot reliably estimate the classifier parameters [3]. Thus, it is essential to have 
a feature reduction method that can map such higher dimensional data into lower dimensional feature space 
without the loss of useful information. 

A feature reduction approach based on feature-extraction projects the original feature space onto the lower 
dimensional space by transformation. Recently, wavelet-based multiresolution analysis has been the widely used 
feature-extraction method in signal processing [4]. The wavelets provide an optimal representation for many 
signals containing singularities [5]. Therefore, it is feasible to detect the singularity of reflectance spectra by us-
ing the wavelet transform. Hsu et al. have proposed the discrete wavelet transform (DWT) and wavelet packet 
transform to extract lower dimensional spectral features for classification of hyperspectral images [6]. The DWT 
is proposed for feature extraction and signature classification; however, the authors mention that DWT is not 
shift invariant [7]. A small shift in singularity causes large variation in wavelet coefficient oscillation pattern. 
Around singularities, the wavelet coefficients tend to oscillate and may have a very small or even zero value. 
Such behavior of wavelet coefficients makes the singularity detection very difficult [8]. 

Due to its fixed filter bank structure, a wavelet does not always capture all the transient features of the input 
signal. This may result in lower classification accuracy. The conventional convolution-based implementation of 
the DWT has high computational and memory cost. For classification purpose, it will be useful to have a multi-
resolution tool that takes into account the nature of the underlying signal. The lifting framework proposed by 
Wim Sweldens provides the required flexibility [9]. 

This article proposes the adaptive lifting wavelet transform to extract the lower dimensional feature vectors 
for classification purpose. The lifting framework allows the decomposition filter to adapt the input signal so as 
to improve or leave intact the desired characteristics of the signal. Most adaptive lifting schemes proposed by 
the researchers have been used for image compression and denoising application: adaptive predict [10] [11] and 
adaptive update [12] [13]. For lossless image compression, a three-step nonlinear lifting scheme adapts both the 
operators and results in fewer large detail coefficients [14]. For denoising higher frequency features such as 
edges, very efficient point wise adaptive wavelet transform is presented [15]. The transform uses intersection of 
confidence intervals rule to determine the filter support for each sample independently. For epileptic seizure 
electrocardiogram (ECG) classification, Subasi and Ercelebbi used lifting-based discrete wavelet transform as a 
preprocessing method to increase the computational speed. The results are compared with that obtained using 
first generation wavelets [16]. 

In the context of remotely sensed images, most of the existing studies propose lifting scheme for lossless 
coding and for denoising. The multiplicative speckles in synthetic aperture radar (SAR) images were reduced by 
wavelet transform based on lifting scheme [17]. To enhance the compression efficiency, the design of lifting fil-
ter adapted to the signal statistics was proposed by Gouze et al. For example, the prediction filter is designed to 
minimize the variance of the signal [18]. To improve the performance of lossless compression for multichannel 
image, the blockwise adaption of the coefficients of the predictors of VQLS was proposed [19]. 

Thus, no literature was found on hyperspectral image classification within lifting framework. In this article, 
we propose the adaptive update operator that retains the transient features of the hyperspectral signature that 
helps to improve the classification. The rest of the article is organized as follows. The proposed adaptive update 
lifting scheme is introduced in Section 2. The experiments and results are presented in Section 3 and Section 4, 
respectively. Finally, conclusions follow in Section 5. 

2. Proposed Lifting Scheme 
As the application in hand is to produce the feature vectors from hyperspectral signatures for classification, the 
objective is to retain the distinctive information of the input signature. The spectral signature of different land 
cover classes are shown in Figure 1. It is observed that distinctive information lies in signal discontinuities, 
transitions or edges. Therefore, the proposed lifting scheme must preserve these discontinuities. The proposed 
adaptive lifting wavelet transform illustrated in Figure 2 consists of three steps described as follows. 

2.1. Split (Lazy Wavelet Transform) 
It divides the hyperspectral signature (underlying input signal) ( )X z  into two polyphase components: even  
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Figure 1. Hyperspectral signature of various landcover classes. 
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Figure 2. Adaptive lifting scheme structure. 

 
indexed ( )0X z  and odd indexed samples ( )1X z . 

2.2. Fixed Predict 
This step produces the detail coefficients ( )1

newX z . The odd elements ( )1X z  are predicted from even ele-
ments ( )0X z . The difference between an odd sample and prediction gives a detail coefficient. That is, 

( ) ( ) ( ) ( )1 1 0
newX z X z P z X z= − . To build a good predictor one should know the nature of the original signal and 

the problem in hand. In the case of data compression applications, the goal is to minimize the detail signal. For 
example, for a triangular signal, detail coefficients can be made zero if prediction is the average of two neigh-
boring even samples. In this algorithm, we use a fixed predict, that is, even sample itself is the best prediction of 
odd samples. Thus ( ) 1P z = . Therefore we have, 

( ) ( ) ( )1 1 0
newX z X z X z= −                              (1) 

In time domain, ( ) ( ) ( ) ( )1 2 1 2newx n d n x n x n= = + − . Thus the detail coefficients are computed as the differ-
ence between two adjacent samples. The fixed predict ( ) 1P z =  is justified because if the original hyperspec-
tral signature has local coherence, then both even and odd samples would be highly correlated. In that case, the 
difference ( )d n  and hence the detail coefficient will be negligible. On the contrary, at discontinuities, even 
and odd samples are not correlated. 

Therefore, the given fixed predictions results in large differences and hence detail coefficients, thereby re-
taining the distinct information about discontinuities. 

2.3. Adaptive Update 
Because of subsampling at first stage, even samples ( )0X z  are unsuitable for approximate signal. In the third 



R. Agrawal, N. Bawane 
 

 
141 

step, even samples are updated using wavelet coefficients ( )1
newX z  to produce the approximate signal ( )0

newX z . 
That is, ( ) ( ) ( ) ( )0 0 1

new newX z X z U z X z= + . The update step provides the approximate signal ( )0
newX z  that 

will be used as input for the next level of decomposition. The purpose of this update stage is to retain some 
property (such as mean value) of the original signal over successive decomposition. In our application, the ob-
jective is to retain the distinctive information of the input signature. The algorithm must not smooth the discon-
tinuities for the approximate signal. Therefore, depending upon the type of region, the update step varies as fol-
lows: At discontinuities when ( )d n  has large value, the signal is not smoothened but rather kept as it is to re-
tain the information. In the smooth region when ( )d n  is small, the approximate signal ( )0

newX z  is computed 
as the average of odd and even samples. Thus the adaptive update function is as follows. 

( )
( )
( )

0.5,   if  

0,     if  

d n T
U z

d n T

 <= 
≥

                                 (2) 

Here, T is the threshold computed as: ( )( ) ( )( )0 : 5* max minT d n d n = −  . The approximate component is 
expressed as follows. 

( )
( ) ( ) ( )
( ) ( )

0 1
0

0

0.5* ,   if  

,                          if  

new
new X z X z d n T

X z
X z d n T

 + <= 
≥

                       (3) 

In time domain, 

( )
( ) ( ) ( )
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0 1
0

0
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,                          if  

new
new x n x n d n T

x n
x n d n T
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                        (4) 

As ( ) ( ) ( )1 0d n x n x n= − ; ( ) ( )1 2 1x n x n= +  and ( ) ( )0 2x n x n= , we have, 

( )
( ) ( ) ( )

( ) ( )
0

2 2 1
         if  

2
2 ,                          if  

new
x n x n

d n T
x n

x n d n T

+ +
<= 

 ≥

                       (5) 

Because of the above adaptive update function, the approximate signal retains the discontinuity information. 
Thus the proposed lifting scheme takes the average of neighboring samples in the smooth regions of the signal 
and does not modify the signal at edges to retain the distinctive information useful for classification. 

3. Experiments 
3.1. Hyperspectral Data Set 
To study the effectiveness of the proposed adaptive update lifting scheme for classification, experiments are 
done on the following hyperspectral data sets. These images are used as it is without any processing. 

Washington DC Mall data set is collected by the Hyperspectral Digital Imagery Collection Experiment 
(HYDICE) system, consisting of 191 spectral channels in the region of the visible and infrared spectrum [20] 
[21]. For decomposition, the last spectral band is repeated to make the dimension of the signature in terms of 
power of 2. Throughout the experiments in this study, we used the 256 * 256 portion of the image shown in 
Figure 3. The image has five land cover identified as follows: roof top, grass, road, path, and trees. 

University of Pavia data set consists of Pavia University scenes acquired by the Reflective Optics System 
Imaging Spectrometer (ROSIS) sensor [22]. Out of available 103 spectral bands, only the first 96 bands are used 
in this study. A 610 * 340 pixels section shown in Figure 4 is used for experiments. The scene has nine ground 
cover identified as follows: Asphalt, Meadows, Gravel, Trees, Painted metal sheets, Bare soil, Bitumen, Self- 
Blocking Bricks, and Shadows. 

3.2. Neural Network and Its Topology 
In this experiment, a single hidden layer feed forward neural network is used for classification of feature vectors. 
After training by back propagation algorithm, the network is used as a classifier to classify the whole image. The  
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Figure 3. DC Mall: Comparison between original image and map produced by proposed method. 

 

 
Figure 4. University: Comparison between original image and map produced by proposed method. 

 
number of input nodes is determined by the dimension of the transform-based feature vector. The number of 
output nodes is equal to the number of classes in the image. The number of hidden layer nodes is set as equal to 
the square root of product of the number of input layer nodes and output layer nodes [23]. 

3.3. Training and Test Set 
As limited numbers of labeled pixels are practically available because of the complexity and cost involved in 
sample collection, we kept the size of the training and test set small. The training and test pixels for both data 
sets are obtained with the help of the labeled field map available from the data source. In both cases, the training 
and test data sets are mutually exclusive and randomly selected. 

3.4. Feature Extraction 
Let 1 2, , , SX X X X =  �  where XS represents the matrix containing the hyperspectral signature of the training 
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pixels belonging to land cover class S identified in the image. Thus, X consists of the training samples of each 
class. The proposed one-dimensional adaptive lifting wavelet transform is applied to each signature kept row 
wise in matrix X up to the desired level. Thus, in case of the DC mall data set, the original hyperspectral signa-
ture of dimension [1, 192] is converted into the wavelet-based feature vector of dimension [1, 12] after decom-
position up to level 4. For the Pavia University data, after two-level decomposition, the feature vector dimension 
gets reduced from [1, 96] to [1, 24]. Since approximate signal obtained by the proposed ALS retains useful fea-
tures, the approximate coefficients are used to construct wavelet-based feature vector. 

3.5. Train ANN Classifier 
Using the adaptive wavelet-based feature vectors, the single hidden layer feed forward neural network is trained 
by backpropagation algorithm. The network training is stopped after achieving termination criterion of either 
getting the desired test sample accuracy or upon reaching the maximum number of iterations. On completion of 
training, neural network is employed as a classifier to classify each image pixel signature into one of the land 
cover classes as follows. 

3.6. ANN as Classifier 
The trained ANN classifier is then used to classify every pixel’s hyperspectral signature as follows. 

1) Decompose original hyperspectral signature of a pixel up to the desired level using proposed adaptive lift-
ing wavelet transform. 

2) Use only the approximate coefficient as transform domain feature vector to feed into the trained network. 
3) A given pixel is assigned the class of the output node having highest value. 
4) Repeat these steps for all image pixels to generate the classification map. 

4. Result Discussion 
The performance is evaluated in terms of overall accuracy and kappa value, which are calculated as follows. 

1) Overall accuracy (OA) is defined as ratio of the number of correctly classified samples to the total number 
of samples. It is computed from the confusion matrix as follows. 

1

1 1

C

ii
i

C C

ij
i i

n
OA

n

=

= =

=
∑

∑∑
                                     (6) 

where nij is the element of the confusion matrix and denotes the number of samples of jth ( )1, ,j C= �  class 
classified into ith ( )1, ,i C= �  class. Here C represents the number of classes of the given data set. 

2) Kappa coefficient (K) is computed from the confusion matrix. It is based on the difference between the ac-
tual agreement and the chance agreement (row and column totals) [24]. The value of Kappa coefficient lies in 
the range [−1, +1]. Better the classification, closer is the value of Kappa to +1. Mathematically, it is defined as, 
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=

−

∑ ∑

∑
                                 (7) 

where n denotes the total number of test samples and C denotes the number of classes of the given data set. Also 
ni+ denotes the sum of the elements if the ith row and n+j denotes the sum of the elements of column j. 

The performance of proposed method is compared with first generation DWT-based feature extraction method. 
The results of the experiments on both data sets reported in Table 1 are of over 10 simulations. From Table 1, it is 
observed that the proposed ALS-based feature extraction method gives best performance for both data sets. For 
first generation DWT-based feature extraction method, detail coefficients are used to construct the feature vector 
as they give better results than their approximate coefficients. For the proposed approach, approximate coeffi-
cients give the best result that detail one. This validates our algorithm because the proposed adaptive update step 
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retains the distinctive information in the approximate signal, not in detail. It is found that most of the detail coef-
ficients obtained with ALS have very small value. 

From Figure 3, it is observed that all classes identified in the original image are well classified and the ob-
tained map has homogeneous regions. The map shows finer details and that similar class-Roof and Road are 
more accurately classified. The DWT-based approach fails to classify the finer details, and similar classes are 
not well separated. From the earlier studies on the same DC mall data set, it was found that the Nonparametric 
Weighted Feature Extraction (NWFE) algorithm by Kuo and Landgrebe gives 92% accuracy using Gaussian 
classifier with 12 features and 50 training samples of each class. The 2NN classifier with NWFE algorithm gives 
87% accuracy [25]. Table 2 shows the comparison of our result with the previous results. The proposed ap-
proach shows improvement in accuracy compared to previous studies. 

For the University scene, it is observed from Figure 4, that all nine classes are well classified. It is clear that 
Meadows and Trees are more accurately classified using the proposed method, although the spectral reflectance 
of both classes is very similar. Likewise, the classes Asphalt and Bitumen are also well defined. The proposed 
approach also clearly classifies small objects such as Trees and Shadows. All regions with boarder shadows are 
very well defined. These results are compared with the results of previous studies that used the same data set. 
Table 3 includes the results of previous algorithms: morphological-based classification using support vector 
machine (SVM), principal components and extended morphological profiles based classification by Plaza et al. 
[26]. It also includes results obtained with the pixel-wise classification, followed by majority voting within the 
watershed regions obtained by Tarabalka et al. [27]. The visual inspection of maps produced by the different 
algorithms mentioned in Table 3 reveals that the proposed ALS can classify some regions more accurately such 
as meadows and bare soil and bricks on highway. 

It is noted that the overall accuracy and kappa value are lower in the results of university scene compare to 
DC mall. This is due to the class distribution of University data set, even labeled training sample cannot represent 
the class distribution over all region. For both data sets, the overall classification accuracies for the classes that 
are represented by a few training samples are high. For instance, in the case of University scene, 99% accuracy 
was obtained for the Metal sheet class. 

 
Table 1. Best overall accuracy, kappa value, mean and standard deviation for both data set. 

Feature extraction Features used DC Mall University scene 

  K OA (%) Mean SD K OA (%) Mean SD 

Proposed ALS Approximate 0.96 97.2 95.43 2.35 0.81 83.4 82.8 0.64 

First generation DWT          

Haar Detail 0.88 90.1 90 0.15 0.66 69 65.2 2.49 

Db4 Detail 0.93 95.23 91.42 3.76 0.65 67.7 58 3.7 

 
Table 2. DC mall: Comparison with previous studies. 

Algorithm OA (%) K 

Proposed ALS 97.2 0.96 

NWFE + Gaussian classifier 92.00 - 

NWFE + 2NN 87 - 

 
Table 3. University: Comparison with previous studies. 

Algorithm OA (%) K 

Proposed ALS 83.40 0.81 

Morphology & SVM 81.01 0.75 

PCA & EMP 85.22 0.80 

SVM & majority voting 85.42 0.81 
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5. Conclusion 
This paper presents the new adaptive update scheme to extract lower dimensional feature vector for the classifi-
cation of hyperspectral signatures. The proposed approach preserves the distinctive features of hyperspectral 
signatures in the approximate signal, which lead to improvement in the classification result. It is clear that using 
the proposed approach, each class identified in both images is well separated. In fact, with the proposed ap-
proach, we are able to accurately distinguish the classes having similar spectral reflectance, for example, the 
classes such as Roof and Road in the case of DC mall and Meadows and Trees for the University of Pavia image. 
Another important aspect is that it gives better results even using a very small training set. This paper clearly 
demonstrates that our method is most robust for the classification of hyperspectral signatures with respect to 
overall accuracy, kappa value, and training data size. 
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