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Abstract

In this paper, firstly, some priori estimates are obtained for the existence and uniqueness of solu-
tions of a nonlinear viscoelastic wave equation with strong damping, linear damping and source
terms. Then we study the global attractors of the equation.
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1. Introduction

We know that viscoelastic materials have memory effects. These properties are due to the mechanical response
influenced by the history of the materials. As these materials have a wide application in the natural science, their
dynamics are of great importance and interest. The memory effects can be modeled by a partial differential equ-
ation. In recent years, the behaviors of solutions for the PDE system have been studied extensively, and many
achievements have been obtained. Many authors have focused on the problem of existence, decay and blow-up
for the last two decades, see [1]-[5]. And the attractors are still important contents that are studied.

In [6], R.O. Aradjo, T. Ma and Y.M. Qin studied the following equation

|u|” g —Au - Au, +.fo+°°g (s)Au(t—s)ds+ f (u)=h(x) (1.2
and they proved the global existence, uniqueness and exponential stability of solutions and existence of the
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global attractor.
In [7], Y.M. Qin, B.W. Feng and M. Zhang considered the following initial-boundary value problem:

|u|” U —Au - Au, +J';wg(s)Au(t—s)ds+ut =o(xt),xeQt>r
u(xt)=0xeoQ,t>r (1.2)
u(x,7)=ug(x), u (x,7)=u (x),u(x,t)=u, (x,t), xeQreR"

where Q is a bounded domain of R" (n>1) with a smooth boundary o€, u, (x,t) (the past history of u) is
a given datum which has to be known for all t <7, the function g represents the kernel of a memory, o = o—(x,t)

. . 2 . .
is a non-autonomous term, called a symbol, and p is a real number such that 1< p < P} if n>23; p>1if
n —

n=1,2. They proved the existence of uniform attractors for a non-autonomous viscoelastic equation with a past
history. For more related results, we refer the reader to [8]-[14].
In this work, we intend to study the following initial-boundary problem:

U —Au+ [ 7 g(s)Au(t-s)ds— AU, +&U, +&u" u=f(X), xeQt>0
(x,t):O, XeoQ,t>0 (1.3)
u(x,0)=uy(x), u(x0)=u(x), xeQ

where ¢,,¢,,6,20, and Q< R"(n>1) isabounded domain with smooth boundary 0Q,

{ 2n 2n+4
2< p<min
n-2" n

I g(s)Au(t—s)ds replaces J' g(t—s)Au(s)ds, and we consider the strong damping term - Au,, the li-
near damplng term &,U, and source terms g3|u|p_2u.We define

} if Nn>3; p>2 if n=12, for the problem (1.3), the memory term

n=n(s)=n"(xs)=u(xt)-u(xt-s)

A direct computation yields
7(8) = =71, (s) + U (t)
Thus, the original memory term can be written as
I g(s)Au(t-s) ds—j g(s)ds-Au- j g(s)An(s)ds

and we get a new system
( j a(s ds)Au £AU, j g(s)An(s)ds+eu, +&ul""u=f(x) (1.4)

e =15 + ut (15)
with the initial conditions

u(x,0)=uy(x), u (x,0)=u,(x), 7(0)=7"(x,0)=0, xeQ (1.6)
and the boundary conditions
u(x,t)=0, xeaQ,t>0 @7

The rest of this paper is organized as follows. In Section 2, we first obtain the priori estimates, then in Section
3, we prove the existence of the global attractors.
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For convenience, we denote the norm and scalar product in L*(Q) by || and (--), let Vv =H'(Q),
D(A)=H?(Q).
2. The Priori Estimates of Solution of Equation

In this section, we present some materials needed in the proof of our results, state a global existence result, and
prove our main result. For this reason, we assume that

(G1) ¢g:R" — R" isadifferentiable function satisfying 1— j g(s)ds=1>0;

(G2) g(s)=0,9'(s)<0,VseR";

(G3) There exists a constant & >0 suchthat g'(s)+&g(s)<0, VseR™;

Lemma 1. Assume (G1), (G2) and (G3) hold, let

2<p <ﬂ, n>3
-2
p=2, n=12
and (uy,u;) e Hg(Q)xL*(Q), fel?(Q), v=u +eu, then the solution (u,v) of Equation (1.3) satisfies
(u,v)e Hg(Q)xL*(Q) and

Wi(0) _, C w
o = 1ol ol < et Spae) @

here W (0) = v |2 +(1 - &.) [Vu, +2ﬁ||u0 |7, thus there exists E, and t, =t, () >0, such that

=[Vu@®[f +|v )} <Es(t>t,) (2.2)

(u, [,

Proof. We multiply v =u, +&u with both sides of equation and obtain
( ( -["a(s ds)Au &Au - [ g(s (s)ds+gzut+g3|u|p72u,v)=(f,v)

By using Holder inequality, Young’s inequality and Poincare inequality we get

Hix2

1d
(un,v)z(vt—gut,v)=5—||v||§—g U,Vv)= 2d ||v||2—g (v—eu,v)

= dt SV e v+ (v, V)>——||V||2— z|v ||2——||U||2——||V||2 (2:3)
1d
o L o - S vl - S
and
( ( _[ (s ds)Au v) —1(Au,u, +gu):|5%||Vu||§+lg||Vu||§ (2.4)
and

(j g(s dsv) (J' (s dsu)(j g(s ngu) (2.5)
For the first term on the right side (2.5), by using (G1), (G2) and (G3), we have
.[Jwg(s)jgvn(s)-Vuldxds :jomg(s)jQVn(s)(Vnt +V7,)dxds
=r°°g ()3 IV nlE s+ [, "o (s)d v @8)

g
> 2O, S,
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where
ol =1, 9(9)|va(s); os @7
For the second term on the right side (2.5), by using Holder inequality and Young’s inequality, we get
( .[ g(s s)ds, gu) 5J' g(s)[ Vn(s)Vudxds
2 & 2 28)
—zllnllg,v —l a(s)ds|vul;
So, we have

(- "9ls n(s)ds.v) = (-, a(s n(s)ds.u )+ (-1, als n(s)ds,zu)

: . (29)
>gallf7||gv Il ——I g(s)ds|vul,
By using Poincare inequality, we obtain
(—£,AU,V) = & (~AV+ AU, V) = & |V + &6 (Au,u, +eu)
ge d
= [Vt - 25 S vul} - 0% 2.10)
ge d
N Y ey
and
(£2Uv) = £ (U +eu) = &, ui [, e ul, Ju,
> 6, - 22 o, -2 fu @)
& &€
e
and
_ - d
(ealul™* uv) =5 (Ul *uy, +gu):isa||u||g +eelul’ (2.12)
By using Holder inequality and Young’s inequality, we obtain
1
(f (X):V)SIIfII'IIVIIS%IIVIIE +allf||§ (2.13)
Then, we have
1d, 2 & 1d,
S =l —ZA7 - S+ ol +1ef9uE + S S
£ &% o ge d
wqlly =1 o) asvul; + ek M, =g vl - [Vul;
(2.14)
&8
o, 1- )nu - 24w+ 2l +ege||u||"

S%IIVII?aIIfIIi
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That is
d 2 2 2 26‘3 p 2 2
a{||v||2+<l—ele>nwnz+||n||g,v g e U

+o0 E 2 § 2
+25[| —515—a—2_[ g(s)ds— Zij"Vu”z +§"77”g,v +2535”“"E (2.15)

&
25| 1-2 Jufs < 11

Next, we take proper ¢,¢,,¢&,,&,, such that

a =264 26— -1 >0

_Zg[l—glg— 7k +°’°g(s)o|s—2£—jjzo (2.16)

a, =2s, (l—g) >0

Taking a1=min{a1, % é,pg},then

l-¢ge
Iy (t)+ocw(t)si||f||2 =C (2.17)
dt ! R
where W (t)= ||v||2 glg)||Vu||§ +||77||;V +2—;3||u||i , by using Gronwall inequality, we obtain
W (t) <w (0)e™ +&(1—e"’1t) (2.18)

o

From 2<p< Z—nz,n >3, according to Embedding Theorem then H2(Q) < L (Q), let k =min{L,(I1-¢)},
n —

so we have
W(0) _, C w
A
Then
C
!Ln;" u V "Ho 12 Szlk

So, there exists E, and t, =t,(©)>0, such that

w9y =IVuOf, + IV < Es(t>1)

H0><L2

Lemma 2. Assume (G1), (G2) and (G3) hold, let

{2< p<2n+4, n>3
n

p=2, n=12
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and (up,u;)e H?(Q)xH'(Q), feH'(Q), V=U +&u, then the solution (u,v) of Equation (1.3) satisfies
(u,v)e HZ(Q)XH ( ) and
W(0) .

C —a
R 219
Here V(O)=||Vul+Vu0||§ +(I—glg)||Au0||§ , thus there exists E; and t, =t,(Q)>0, such that

(8%

Proof. We multiply —Av =-Au, —¢Au with both sides of equation and obtain

( ( j g(s ds)Au £AU, J' 9(s (s)ds+.92ut+53|u|p’2u,—Av)=(f,—Av) (2.21)

H2xH!

=|au(); + [ <E (t>t,) (2.20)

By using Holder inequality, Young’s inequality and Poincare inequality, we get

(un,_Av>=<vt—sul,—Av )=l PVE 2020

2 dt ||Vv||2 —e(v—eu,—Av)

LYoot ()
z ——||VV||2 —e[vol; ——||VU||2 ——||VV||2
>__"VV"2 e[[vvl; - ||AU||§—7||VV||§
and
(~{1- 1" 9 (s)ds) au,-av) =~ (a0, -0, ~ru) =S+l fau; (2.22)
and
(j g(s s)ds, —Av) (I g(s)An(s)ds, —Au) (J' g(s)An(s)ds, gAu) (2.23)

For the first term on the right side (2.23), by using (G1), (G2) and (G3), we have
j;wg(s)jQAn(s)-Autdxds:J-(; g(s)[ An(s)-(An, +An,)dxds
- a(s)5 s lan s+ [ g (s)aanf: (2.24)
L<
> 2 S8 o+ S o
where
71} oy = I, 9 (s)]An(s)]0s (2.25)
For the second term on the right side (2.23), by using Holder inequality and Young’s inequality, we get

(j g(s s)ds, gAu) g.[(: g(s)[ An(s)Audxds
(2.26)
& +o0

0l -5 (5 sl

so, we have



L. Guo et al.

( j (s s)ds, —Av)
( J' g(s s)ds, —Au) ( j g(s s)ds, —gAu)

LS
4||77||Z,,D(A> 1 o(s)as]auf

By using Poincare inequality, we have

(—&AU,—AV) = &, (-AV + eAU, -AV) = & ||Av||§ +&¢(Au,—Au, —£Au)

e d (2.27)
= ai[javl; - Al —ae? Jaul,
and
(£,U,~AV) = &, (U, ~AU, —eAU) = &, |[Vu, & — &6 [Vul, [Vu,],
(2.28)
& &,
26, (1-2 7 - 2
And using Interpolation Theorem, we have
(&5l u-av) < 5 ul},, IAVIIZ <&,C (IIUIIZ)IIAUIIZ IIAVIIZ
£ o (ul), %2
e A 229
&,
< S v+ ZJaulf +Cy (Jo, 1.601.6).
By using Holder inequality and Young’s inequality, we have
1
(f(x),-av)<|vE]-|vy] < %IIVVIIE +——|Vf,. (2:30)
A&
Then, we have
d &? &’ I d
> eIVl =V —allAUIlﬁ =WV + 5 I8l 12 aul;
f 2 &% pie d 2 2
LT e L S AT O LT (R A
g€ d & £,&
0 el (1= - 2
£ le & 1
< S, 100 ol ) + ST+ T
That is
d £
S +(1- ) +||n||:D(AJ e L
I o0 £
+2€(E—€15 “2r f‘[ a(s ;JHAU"; +§||77||;D(A) (2.31)

&
126, {1—5}”“% [ < E"Vf [ +2C, (Jul, 61,51, ).
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Next, we take proper ¢,¢;,¢&,,&;, such that

blz%—Zg—gz >0

|
bz=28(5 2/11 gj g(s s—-ﬂJ>0 (2.32)

b3 = 252 (1—5] >0

Taking az:min{bl, b, é},then

l-¢ge

%v (t)+aV (1)< > +2C, (ul, &850, 8)=C,, (2.33)
where V (t _||Vv||2 glg)||Au||§+||n||;D( »» Dy Gronwall inequality, we have
C
V(t)<V (0)e ! + 22 (1—-e " 2.34
(D) <V(0)e + 2(1-e) (2.34)
From 2<p< 2n2,according to Embedding Theorem, then H?(Q) cW** (), let k =min{L(I-£¢)},
S0, we have
V(0) _, C w
O e
then
im|(u, V) <2
ol et =

So, there exists E; >0 and t, =t,(Q)>0, such that

[(u.v) | = |au (t)||§ +||w(t)||j <E (t>t,).

H2xHY

3. Global Attractors
Theorem 1. Assume (G1), (G2) and (G3) hold, let

2< p<m|n{ 2n 2n+4}' nx>3

-2 'n
p=>2, n=12

and (uy,u,)e H?(Q)xH'(Q), feH'(Q), V=U +eU,so Equation (1.3) exists a unique smooth solution
(uv) € L7 ([0,+0); H? (Q)x H' ()

Proof. By the method of Galerkin and Lemma 1 and Lemma 2, we can easily obtain the existence of solu-
tions. Next, we prove the uniqueness of solutions in detail.
Assume that u,v are two solutions of equation, let w=u—v, then, the two equations subtract and obtain

( .[ a(s dS)AW j 9(s)(An, —An,)ds — AW + &,W

=g, (|v|rkz Vo u)

3.1
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where
m=u(xt)-u(xt=s), 7, =v(x,t)-v(xt-s)
By multiplying the equation by w' and integrating over Q, we get
( ( -["a(s) ds)Aw [ 9(s)(Am—An,)ds— AW + &, w)
=(6‘3(|V|p_2V—|U|p_ u),w’)
here

'

=3 3w

and

| d 2
(=L g (s)as) )= v
by using (G1), (G2) and (G3), we have

(—J.;wg(s)(Anl An,)ds, W) (.[ (s Anl—Anz)dS,(nl—nz)t+(771—772)S)

S
2 Ea”’h m, "g v 5"771 _’72”;\/
By using Poincare inequality, we have
(e, W) = & [V, > &4, [,
and
(W, W) =, W,
By using Holder inequality, Young’s inequality and Poincare inequality, we have

& (|u|p72 u—pv"* v,w’) = gzj'(|u|p72 u—p"* v)w’dx

< e, (ul" + P l)IWIIW'IdX < &:Co [wl|w]

&,C
< e W+ °||W||2—28311||W||2 0||v I

then, we have

5 ! !
B Y LT PR Y (Y RPN v s

<2e, 2 Wik + &:Co

v,

That is

[||W||2+'|IVW||2+|I'71 mly < 4 W+ °||VW||2+||771 A

&,Ce
Taking m=max14e,4,—>-,1¢, then
4471

3.2)

3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

3.9)

(3.10)

(3.11)
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ar, , ,
S+ =, | < (e + v+l -l ) (3.12)
By using Gronwall inequality, we have
WG+l + =l <] )+ VWO +[ln. (0)=n: (O)f, e (313)

Sowe get w(t)=0, the uniqueness is proved.

Theorem 2. Let X be a Banach space, and {S (t)} (t>0) are the semigroup operator on X. S(t):X — X,
S(t)S(r)=S(t+7), S(0)=1,here I is aunit operator. Set S(t) satisfy the follow conditions.

1) S(t) isbounded, namely VR>0, |, <R, itexistsaconstant C(R),so that

[s(t)u], <C(R) (te[0,+x))
2) It exists a bounded absorbing set B, < X , namely, VB c B, it exists a constant t,, so that
S(t)BcB, (t=t))

3)When t>0, S (t) is a completely continuous operator A.
Therefore, the semigroup operators S (t) exist a compact global attractor.
Theorem 3. Under the assume of Theorem 1, equations have global attractor

A=o(8,)=US(E;

s>0t>s

2

2 = ||u||ig +V[E <Ep+ El} , B, is the bounded absorbing set of
OX

where B, ={(u,v) e H x H* [ (u,v)|

H?(Q)xHg(Q) and satisfies

1) S()A=A, t>0;

2) limdist(S(t)By, A)=0, here B HZ(Q)xH'(Q) and it is a bounded set,
dlst(X,Y)zsup|n$

xeX Y€

X_y||H2><H1

Proof. Under the conditions of Theorem 1, it exists the solution semigroup S(t), here X =HZ (Q)xH'(Q),
S(t): HZxH!' > H?xH.
1) From Lemma 1 to Lemma 2, we can get that VB < H{ (Q)xH*(Q) is a bounded set that includes in

the ball {"(u,v)"ngHl < R} ,

"S (t)(Ug,V5)

This shows that S(t)(t>0) isuniformly bounded in H?(Q)xH; (Q).
2) Furthermore, for any (uy,v,)e H? (Q)xH*(Q), when t>max{t,t,}, we have

||S (t)(uo,v0)|

So, we get B, is the bounded absorbing set.
3) Since H?(Q)xHg(Q)— Hy(Q)xL*(Q) is tightly embedded, which means that the bounded set in

0
H?(Q)xHy(Q) is the tight set in H;(Q)xL* (), so the semigroup operator S(t) is completely conti-
nuous.
So, the semigroup operators S (t) exist a compact global attractor A. The proof is completed.

2
H

vory = e + Mg < Doz +[velly +C < R*+C. (£20,(ugvo) < B)

2
HExH!

=[ully; + M <E0+E,
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