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Abstract: 

Steady two dimensional MHD stagnation point flow of a power law fluid over a stretching surface is inves-
tigated when the surface is stretched in its own plane with a velocity proportional to the distance from the 
stagnation point. The fluid impinges on the surface is considered orthogonally. Numerical and analytical 
solutions are obtained for different cases. 
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1. Introduction 

The stagnation point is a point on the surface of a body 
submerged in a fluid flow where the fluid velocity is zero. 
Stagnation flow, describing the fluid motion near the 
stagnation region, exists on all solid bodies moving in a 
fluid. The stagnation region encounters the highest pres-
sure, the highest heat transfer, and the highest rates of 
mass deposition. The study of flow over a stretching sur-
face has generated much interest in recent years in view 
of its numerous industrial applications such as extrusion 
of polymer sheets, continuous stretching, rolling and 
manufacturing plastic films and artificial fibers. The flow 
near a stagnation point has attracted many investigations 
during the past several decades because of its wide ap-
plications such as cooling of electronic devices by fans, 
cooling of nuclear reactors, and many hydrodynamic 
processes [1-5]. 

The two-dimensional flow of a fluid near a stagnation 
point was first examined by Hiemenz [6], who demon-
strated that the Navier-Stokes equations governing the 
flow can be reduced to an ordinary differential equation 
of third order using similarity transformation. Later the 
problem of stagnation point flow was extended in nu-
merous ways to include various physical effects. The 
results of these studies are of great technical importance, 
for example in the prediction of skin-friction as well as 
heat/mass transfer near stagnation regions of bodies in 
high speed flows and also in the design of thrust bearings 
and radial diffusers, drag reduction, transpiration cooling 

and thermal oil recovery. Axisymmetric three-dimen- 
sional stagnation point flow was studied by Homann [7]. 
Either in the two or three-dimensional case Navier- 
Stoke’s equations governing the flow are reduced to an 
ordinary differential equation of third order using a simi-
larity transformation. In hydromagnetics, the problem of 
Hiemenz flow was chosen by Na [8] to illustrate the so-
lution of a third-order boundary value problem using the 
technique of finite differences. An approximate solution 
of the same problem has been provided by Ariel [9]. At-
tai [1] has made an analysis of the steady laminar flow in 
a porous medium of an incompressible viscous fluid im-
pinging on a permeable stretching surface with heat gen-
eration. The steady magneto hydrodynamic (MHD) 
mixed convection stagnation point flow towards a verti-
cal surface immersed in an incompressible micropolar 
fluid with prescribed wall heat flux was investigated by 
Bachok et al. [4]. They have transformed the governing 
partial differential equations into a system of ordinary 
differential equations, which is then solved numerically 
by a finite-difference method. Hayd et al. [2] have stud-
ied the boundary layer equations for axisymmetric point 
flow of power-law electrically conducting fluid through a 
porous medium with transverse magnetic field. McLeod 
and Rajagopal [10] have discussed the uniqueness of the 
exact analytical solution of the flow of a Newtonian 
fluid due to a stretching boundary. On the other hand, 
Rajagopal et al. [10,11] obtained an approximate ma-
thematical solution of the viscoelastic boundary layer 
flow over a stretching plastic sheet and studied the flow 
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behaviors. 
Chiam [12] and Mahapatra and Gupta [13] have inves-

tigated the steady two-dimensional stagnation point flow 
of an incompressible viscous fluid over a flat deformable 
sheet when the sheet is stretched in its own plane with a 
velocity proportional to the distance from the stagnation 
point. It is shown that a boundary layer is formed near 
the stretching surface and that the structure of this boun-
dary layer depends on the ratio of the velocity of the 
stretching surface to that of the frictionless potential flow 
in the neighborhood of the stagnation point. Recently, 
Patel et al. [5] have discussed the numerical solution for 
steady two-dimensional MHD forward stagnation point 
flow introducing the Crocco’s independent variable with 
Galerkin’s. In stagnation point flow, a rigid wall or a 
stretching surface occupies the entire horizontal x-axis, 
the fluid domain is 0y   and the flow impinges on the 
wall either orthogonal or at an arbitrary angle of inci-
dence.  

In this paper we investigate steady two dimensional 
stagnation point flow of a power law fluid over a stret-
ching surface, when the surface is stretched in its own 
plane with a velocity proportional to the distance from 
the stagnation point. The fluid impinges on the surface is 
considered orthogonally. Numerical and analytical solu-
tions are obtained for different flow geometries along 
with graphical presentation. 

2. Flow Analysis 

The well-known Ostwald-de-Wale model of power-law 
fluid is purely phenomenological; however, it is useful in 
that approximately describes a great number of real 
non-Newtonian fluids. This model behaves properly un-
der tensor deformation. Use of this model alone assumes 
that the fluid is purely viscous. Mathematically it can be 
represented in the form  

1

21
:

2

n

m
 

      
  

         (1) 

where m  and n  are called the consistency and flow 
behavior indices respectively. If 1n  , the fluid is called 
pseudo plastic power law fluid and if 1n  , it is called 
dilatants power law fluid since the apparent viscosity 
decreases or increases with the increase shear of rate ac-
cording as 1n   or 1n  , if 1n   the fluid will be 
Newtonian. 

Consider the steady two-dimensional stagnation-point 
flow of power-law fluid flowing towards a flat surface 
coinciding with the plane 0y  , the flow being con-
fined to the region 0y  . Two equal and opposing 
forces are applied on the stretching surface along the 

x-axis so that the surface is stretched keeping the origin 
fixed as shown in Figure 1. The MHD equations for 
steady two-dimensional stagnation-point flow in the 
boundary layer towards the stretching surface are, in the 
usual notation,  
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Here the magnetic Reynolds number is assumed to be 
very small so that the induced magnetic field is neglected. 
Here u and v are the velocity components along the x and 
y direction, respectively. Further xy  is stress tensor in 
the direction of Y-axis perpendicular to X-axis. ( )U x  
stands for the stagnation-point velocity in the inviscid 
free stream. The stress tensor is defined by Equation (1).  

In the present problem we have  

and             0
au

ay
  when 1

a

c
 .          (4) 

Therefore the shear stress will convert as: 
n
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a

c
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Figure 1. A sketch of the physical problem. 

 

Figure 2. Variation of (0)F  with oS  for = 1.1a / c . 



M. PATEL  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

131

Table 1. 

n  0oS   0.5oS   1.0oS   1.5oS   2.0oS 

0.4 0.1123 0.1252 0.1445 0.1564 0.1601 
0.8 0.1512 0.1668 0.1748 0.1799 0.1869 
1.2 0.1924 0.2214 0.2356 0.2455 0.2662 
1.5 0.2358 0.2514 0.2636 0.2741 0.2852 
2.0 0.2897 0.2999 0.3121 0.3255 0.3412 

Table 2. 

n  0oS   0.5oS   1.0oS   1.5oS   2.0oS 

0.4 1.2216 1.3625 1.4886 1.6289 1.7865 
0.8 1.0023 1.0423 1.0858 1.1821 1.3226 
1.2 0.8984 0.9672 1.0115 1.1000 1.2101 
1.5 0.8864 0.9355 1.0021 1.0552 1.1001 
2.0 0.8876 0.9301 0.9864 0.9945 1.0477 

Table 3. 

n  0oS   0.5oS   1.0oS   1.5oS   2.0oS 

0.4 3.8771 4.1332 4.4755 4.8163 5.2445 
0.8 2.3854 2.5446 2.5845 2.8354 2.8714 
1.2 1.9328 1.9454 2.0023 2.1426 2.1735 
1.5 1.7001 1.7537 1.8817 1.9583 1.9966 
2.0 1.5481 1.5841 1.6120 1.6526 1.6998 

Table 4. Results of finite difference method of Case-I. 

No. of iteration 0oS   0.5oS  1.0oS   1.5oS  2.0oS 

1 1.02326 1.2326 1.2326 1.2326 1.2326
2 1.1688 1.3593 1.5393 1.7882 1.8385
3 1.1743 1.3637 1.5407 1.7890 1.8339
4 1.1715 1.3618 1.5392 1.7662 1.8328
5 1.1717 1.3621 1.5394 1.7914 1.8330
6 1.1717 1.3620 1.5394 1.7914 1.8330

 
Now the momentum Equation (3) become, in non-di- 

mensional form, when 1
a

c
  
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The boundary conditions are: 

,  0  y 0u cx v at               (7) 

( ) ,  ,   yu U x ax v ay at           (8) 

where a  and c  are positive constants. 
Introducing stream function ( ,  )x Y , where 
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           (9) 

Following Labropulu [3], we assume that  

( )cxF y                 (10) 

Using Equations (9) and (10) into the Equation (6),  
we obtained 
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with the boundary conditions: 

(0) 0F  , (0) 1F   , ( )
a

F
c

           (12)  

where 
2

0
o

B
S

c




  is the magnetic parameter. 

Case-I: Newtonian fluid: consider 1n   and / 1a c   
Equation (11) is converted in the following equation 

2( ) ( ) ( ) ( ) ( ) 1 0o oF y F y F y F y S F y S          (13) 

with the boundary conditions: 

(0) 0F  , (0) 1F   , ( )
a

F
c

         (14) 

Case-II: if we consider case for 1n  , and let 0U   
(i.e. 0a  ) then the Equation (11) is converted in  

2( ) ( ) ( ) ( ) ( ) 0oF y F y F y F y S F y          (15) 

Subject to the boundary conditions;  

(0) 0, (0) 1, ( ) 0F F F              (16) 

It is interesting to note that the above BVP Equation (15) 
has a simple analytic solution of the form 

 

Figure 3. Variation of (0)F  with oS  for = 1.5a / c . 

 

Figure 4. Variation of (0)F  with oS  for = 2.0a / c . 
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Figure 5. Variation of (0)F  with oS  for = 1a / c , 

= 1n . 

 

Figure 6. Variation of ( )F y  with y . 

1
( ) [1 exp( )]F y py

p
            (17) 

where 1/2
0(1 )p S   

Method of solution: The transformed momentum 
Equation (11) is solved using Galerkin’s method after 
introducing Crocco’s variables [5,14]. The equation for 
Case-I (Equation (13)) is solved by T. Y. Na [8] using 
Finite difference method the graphical presentation of 
those tabular values (Table 3) is shown in Figure 2. And 
the equation of Case-II (Equation (15)) is solved analyti-
cally. 

Results and discussion: The computed variation of 
 0F   with oS  and n is summarized in Tables 1 and 2 

for / 1.1,  1.5a c   and 2.0, respectively. It can be con-
clude (from the above Tables 1-3, Figures 2-4) that for a 
fixed value of oS ,  0F   increases with increase in n  
in a small neighbourhood of / 1a c   then it decreases 
for other values of a/c. From Tables 1-3, it is clear that for 
a fixed value of n  and /a c , the value of  0F   de-
creases with increase in oS . This behaviour may perhaps 
be attributed to the change in the character of the flow as 

/a c  changes its values. 

It is interesting to note that when the velocity of the 
stretching surface is equal to the velocity of the inviscid 
stream  a c , Equation (16) admit to the exact analytic 
solution ( )F y y  . From this we can infer that when 
a c , the velocity distribution near the stretching sur-
face is the same as athat of a flow away from the surface 
so that no boundary layer is formed near the surface. It 
should be mentioned here that when , the flow is not fric-
tionless in a strict sense. In fact in this case the friction is 
uniformly distributed and does not, therefore, affect the 
motion. 

If we consider 1n   then the entire flow geometry is 
reduced in Newtonian fluid, which is discussed as a 
Case-I with a c  (i.e. / 1a c  , Table 4, Figure 5). 
For that case  0F   increases with increase in the val-
ue of oS  for a fixed value of 1n  . If we consider 
stream velocity is zero  1n   then the flow is treated 
as a uniform stagnation point flow, in this case  F y  
decreases with increase in y  for a fixed value of oS . 
The graphical representation is shown in Figure 6. 
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Nomenclature:  

u , v  – velocity components in X, Y directions respec-
tively 
U  – main stream velocity in X direction 
a , c  – positive constants 
 ,, ij  – usual shear stress tensor 
 , ije  – usual rate of deformation tensor/ Strain rate 
component 

yx  – stress tensor in the direction of X-axis perpen-
dicular to Y-axis. 
K  – kinematic Viscosity 

m  – Physical constant 
n  – flow behavior indices 

0B  – Imposed magnetic field 
MHD  – Magneto hydro dynamics 
  – field density 
  – Electrical conductivity 

pC  – Specific heat 
  – Stream function 
F  – Similarity function 

oS  – Magnetic parameter – 
2
0B


 

 


