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Abstract 
A reaction-diffusion type mathematical model for growth of corals in a tank is considered. In this 
paper, we study stationary problem of the model subject to the homogeneous Neumann boundary 
conditions. We derive some existence results of the non-constant solutions of the stationary pro- 
blem based on Priori estimations and Topological Degree theory. The existence of non-constant 
stationary solutions implies the existence of spatially variant time invariant solutions for the 
model. 
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1. Introduction 
Most of the corals consist of colony of polyps reside in cups like skeletal structures on stony corals called calices. 
Polyps of hard corals produce a stony skeleton of calcium carbonate which causes the growth of the coral reefs. 
Polyps’ maximum diameter is a species-specific characteristic. Once they reach this maximum diameter they 
divide [1]. In this way, if survive, they divide over and over and form a colony. If the coral colony does not 
break off, it grows as its individual polyps divide to form new polyps [2]. As new polyps are formed they build 
new calices to reside. This causes the growth of solid matrix of the stony corals. 

Various modeling approaches on coral morphogenesis processes have been reported in [1] [3]-[9]. Morpho- 
genesis of branching corals has been described by Diffusion-Limited Aggregation (DLA) type models in [1] [6] 
[10]. 

A reaction diffusion type mathematical model for growth of corals in a tank is proposed in [11] [12] con- 
sidering the nutrient polyps interaction. This model is derived based on the model appear in [8]. The non- 
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dimensionalized version of this mathematical model takes the form: 
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                            (1) 

Here, u and v are vertically averaged nondimensionalized concentrations of dissolved nutrients (foods of coral 
polyps) and aggregating solid material (calcium carbonate) on the coral reefs respectively. α , d, λ  and 1λ  
are positive constants. The local and global stabilities of the solutions of the corresponding system of ordinary 
differential equations 
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                                          (2) 

are discussed in [11]. Turing type instability analysis and patterns formation behavior of the model (1) subject to 
the boundary conditions  

0, ,
0, ,

u x
v x

∇ ⋅ = ∈∂Ω 
∇ ⋅ = ∈∂Ω 

n
n

                                         (3) 

are discussed in [12]. Here ∇  denotes the gradient operator and n  denotes the outward unit normal vector to 
the domain boundary ∂Ω . 

1.1. Constant Solutions (Steady States) 
There are three constant solutions (homogeneous steady sates) ( )1 1 1,s sS u v≡ , ( )2 2 2,s sS u v≡  and  

( )3 3 3,s sS u v≡  for the system (1). Here 1 1su = , 1 0sv = , 
2 2

2
4

2su α α λ
α

− −
= , 

2 2

2
4

2sv α α λ
αλ

+ −
= , 

2 2

3
4

2su α α λ
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+ −
=  and 

2 2

3
4

2sv α α λ
αλ

− −
=  for 2α λ> . 

1.2. Stationary Problem 
In this article, the existence of the stationary solutions of the system (stationary problem corresponding to the 
system (1)): 

( )
( ) ( )( )

( )
( ) ( )( )

,

2 2

,

2 2

1 0,

0,

f u x v x

g u x v x

u u uv x
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

∆ + − + = ∈Ω





                               (4) 

subject to no-flux boundary conditions (3), is discussed. 
The main result presented in this article is the existence of non-constant positive solutions. These existence 

results are proved based on the Priori estimates and Topological Degree theory [13]-[15]. 

2. Priori Estimates 
In this section we obtain estimates for the upper and lower bounds for the stationary solutions of the system (4). 
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This boundedness property can be expressed as the following theorem:  
Theorem 1. Let ( ),u v  be any solution of (4) except 1S . Then there exists a constant C such that  

( ) ( )1 ,u x v x C
C
≤ ≤  

for x∈Ω , where Ω = Ω ∂Ω . 
Our main aim here is to prove the above theorem. In order to prove this, let us first prove following results: 
Lemma 1. Let ( ),u v  be any nontrivial solution of (4). Then ( )0 1u x≤ ≤  and ( ) 0v x ≥  for x∈Ω . Fur-  

thermore, if ( ) 1,u v S≠ , then ( ) 0v x >  for x∈Ω . 

Proof. Let ( ) ( )0 0 min xu u x u x∈Ω= = . Then applying maximum principle at 0x  we get  

( ) ( )( )0 0, 0f u x v x ≤ . That is, ( ) ( ) ( )2 2
0 0 01 0u x u x v xα− − ≤ , which implies  

( ) ( )0 2 2
0

1 0.
1

u x
v xα

≥ >
+

                                (5) 

Therefore, ( )min 0x u x∈Ω > . Let ( ) ( )0 0 max xu u x u x∈Ω= = . Again applying maximum principle at 0x  we  

get ( ) ( )( )0 0, 0f u x v x ≥ . That is, ( ) ( ) ( )2 2
0 0 01 0u x u x v xα− − ≥ , which implies ( )

( )0 2 2
0

1 1
1

u x
v xα

≤ ≤
+

.  

That is ( )max 1x u x∈Ω ≤ . Since ( )0 1u x≤ ≤ , from the second equation of (4) we have  
2 2 0 in .d v v uvλ α∆ − = − ≤ Ω  Applying strong maximum principle to the above equation we get ( ) 0v x >  in 

Ω , provided ( ) 0v x ≠ . The proof is complete.                                                  □ 
Lemma 2. Assume that ( ),u v  is any solution of (4). If dλ > , then ( ) ( ) 1u x dv x+ ≤  for x∈Ω .  
Proof. Let 1p u dv= + − . Then 

( )1 1 1 0.p p u d v u dv u v u dv d vλ λ∆ − = ∆ + ∆ − − + = − + + − − + = − ≥  

Also, 0p u d v∇ ⋅ = ∇ ⋅ + ∇ ⋅ =n n n  on ∂Ω . Then applying maximum principle we have ( )max 0x p x∈Ω ≤ , 
which implies the required inequality.                                                          □ 

Lemma 3. Assume that ( ),u v  is any solution of (4). If dλ < , then ( ) ( )u x dv x d λ+ ≤  for x∈Ω .  
Proof. Put q u dv d λ= + − , Then  

1 1 0.dq q u d v q u v u dv u
d d d
λ λ λλ

λ
   ∆ − = ∆ + ∆ − = − + + − + − = − ≥   
   

 

Since 0q∇ ⋅ =n  on ∂Ω , the maximum principle gives the required inequality.                      □ 
Lemma 4. Let ( ),u v  be any solution for (4). Then there exist a constant ( )1 , , 0C d λ α > , such that  
( ) ( )1 , ,u x C d λ α≥  for x∈Ω . 
Proof. From lemma (1), we have 

( )
( )( )0 22

0

1 .
1

u x
v xα

≥
+

                                     (6) 

From lemma (2) we get ( ) ( )1 1u x
v x

d d
−

≤ ≤  for all .x∈Ω  From lemma (3) we get  

( ) ( )1 1dv x u x
d λ λ
 ≤ − ≤ 
 

. Combining these two inequalities we have *1 1max ,v C
d λ

 ≤ = 
 

 (say). Then from 

(5) we have  

( ) 10 2 *2

1 .
1

u x C
Cα

≥ =
+

                                   (7) 

Therefore, ( ) ( ) 10u x u x C≥ ≥  for all .x∈Ω                                                   □ 
Lemma 5. Assume that ( ),u v  is any solution of (4) except ( )1 1,0S ≡ . Then there exist a positive constant 
2C  such that ( ) 2v x C≥  for all x∈Ω . 
Proof. The second equation of the system (4) can be written as 0v Av∆ + =  in Ω , where  
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( ) ( )A x uv dλ= − . From lemmas (1) and (3) we get ( ) 1u x ≤  and ( ) 1 1max ,v x
d λ

 ≤  
 

 for any x∈Ω . Then 

( ) 1 1 1max , .A x
d d

λ
λ∞

  ≤ +  
  

 Set 1 1 1max , .
d d

µ λ
λ

  = +  
  

 According to Harnack inequality [15] there  

exists a parameter ( )2 , , 0C N µ′ Ω >  such that 

( ) ( ) ( )2min , , max .
x x

v x C N v xµ
∈Ω ∈Ω

′≥ Ω                               (8) 

Denote ( ) ( )0 ˆmax
x
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∈Ω

= =  and ( )0 ˆmax
x

u x u
∈Ω

= . Then applying maximum principle for the second equ-  

ation of (4), we have ( )ˆ ˆ ˆ 0v uv λ− ≥ . Since ˆ 0v > , we get 

( )( )ˆ 1 for all .
ˆ

v u x x
u
λ λ≥ ≥ ≤ ∈Ω                            (9) 

From the inequalities (8) and (9) we get 
( ) ( ) ( ) ( )2 2min , , max ( ) , ,

x x
v x v x C N v x C Nµ λ µ

∈Ω ∈Ω
′ ′≥ ≥ Ω ≥ Ω  for all x∈Ω . That is ( ) 2v x C≥  for all x∈Ω ,  

where 2 2C Cλ ′= .                                                                          □ 

Proof of Theorem (1): From lemma (3) we have, ( ) 1 2 *2

1
1

u x u C
Cα

≥ ≥ =
+

, ( ) 1 1max ,v x
d λ

 ≤  
 

 and, from  

lemma (5) we have ( ) 2v x C≥  for all x∈Ω . Set 

1 2

1 1 1 1max , ,1,max , .C
C C d λ

  =   
  

                             (10) 

Then we have ( ) ( )1 , .u x v x C
C
≤ ≤                                                           □ 

3. Existence of Non Constant Stationary Solutions 
In this section we investigate the existence of non-constant solutions to (4). For this, the degree theory for 
compact operators in Banach spaces [15] [16] are used as the main mathematical tool. Define the spaces Θ  
and Y as follows: 

( ) ( ) ( ) 1, : , ,u v C C u v C
C

 Θ = ∈ Ω × Ω < < 
 

 

( ) ( ) ( ){ }2 2, : 0 onY u v C C u v= ∈ Ω × Ω ∇ ⋅ = ∇ ⋅ = ∂Ωn n  and ( ){ }, : , 0 .Y u v Y u v+ = ∈ >  Here C is the con-  
stant defined in Equation (10) and ( ),u v  is any solution of the system (4). Set an auxiliary parameter  

( )1td td t M= + −  for [ ]0,1t∈ , where M is a large constant to be determined. Let ( )* * *,S u v= =w  denote 
any constant solution of the system (4). Linearizing the system (4) when td d=  at S takes the form:  

( ) ( )
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* * * *
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Denote 
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( ) ( )
( ) ( )

* * * *

* * * *

, ,
., ,

u v

u v

t t

f u v f u v
A g u v g u v

d d

 
 

=  
 
 

 

Thus, ( )*tD A=wG w . Then (4) and (11) can be written as 

( )
( )*

in , 0 on ,

and in , 0 on ,
t

tA D

−∆ = Ω ∇ = ∂Ω

−∆ = = Ω ∇ = ∂Ωw

w G w w

w w G w w
                       (12) 

respectively. Define ( ) ( ) ( )( )1
t tI −= −∆ + +T w G w w , and ( ) ( ).t t= −F w w T w  That is ( ).tF  is a compact 

perturbation of the identity operator. According to the definition of Θ  there is no fixed point of T on the 
boundary ∂Θ . Thus, w  is a positive solution of (12) if and only if ( ) 0 in .t Y +=F w  So, the Leray-Schauder 
degree ( )( )deg . , ,0t ΘF  is well defined. Furthermore, we have ( ) ( ) ( )1

* .tD I I A I−= − −∆ + +w F w  
The index of tF  at *w  is defined as  

( )( ) ( ) ( )*
*Index . , 1 ,t

t
σ= −F w  

where ( )* tσ  is the number of negative eigenvalues of ( )*tDw F w .  
Lemma 6. The eigenvalues, µ  of ( )*tDw F w  are given by the equation  

( )2 21 0,m P Qµ µ µ+ + + =                                 (13) 

where ( )( )1 2m mP pµ µ= + −  and 2 .m mQ p qµ µ= − +  Here p and q are the trace and determinant of the 
matrix A respectively and mµ  ( )1,2,m =   are the positive eigenvalues of the eigenvalue problem  

in
,

0 on

u u
u

µ−∆ = Ω 


∂ 
= ∂Ω∂ n

                                     (14) 

such that 1 2 3µ µ µ< < < . Also the discriminant D of (13) is given by 

( ) ( ) ( )2 22 24 1 1 4 .m mD P Q p qµ µ= − + = + −  

Proof. The eigenvalues µ  of ( )*tDw F w  satisfies 
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−
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− −∆ + + =
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This implies 

( ) ( ) ( )
( ) ( ) ( )

* * * *
1 1

* * * *

1 , ,
0.

, 1 ,
m u v

t u m t v

f u v f u v
d g u v d g u v

µ µ µ
µ µ µ− −

− − −
=

− − − −
                   (15) 

By simplifying we get 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

2 2 1 2 1
* * * * * *

1
* * * * * * * * * *

1 1 , , 2 ,

, , , , , 0.

m m u t v m m t v

u t u v u v

f u v d g u v d g u v

f u v d f u v g u v g u v f u v

µ µ µ µ µ µ− −

−

+ + + + − + −

+ + − =
 

This implies 

( )2 21 0,m P Qµ µ µ+ + + =  

where ( )( )1 2m mP pµ µ= + −  and 2 .m mQ p qµ µ= − +  The discriminant of (13) is  
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( ) ( ) ( ) ( )2 2 22 24 1 1 2 4m m m m mP Q p p qµ µ µ µ µ − + = + − − − + 
 ( ) ( )2 21 4 .m p qµ= + −                                     □ 

Now we consider the cases 2α λ>  and 2α λ=  separately. 

3.1. The Case α > 2λ 
In this case there are two constant fixed points of tT  in Θ  which are ( )2 2 2 2,S u v≡ ≡ ≡*w w  and  

( )3 3 3 3,S u v≡ ≡w . Now we deal with the case ( )2 2,u v≡*w . Let 2P , 2Q  and 2D  be corresponding P value, 
Q value and the discriminant of (13) respectively. Also let 2p  and 2q  be the corresponding p and q values. 

3.1.1. The Case ( ),2 2*w u v≡  
The solutions for µ  of the Equation (13) can be written as 

( )
( )

2
2 2 2* 2 4

2 1
m

m

p p qµ
µ

µ
− − + −

=
+

 and 
( )

( )

2
2 2 2

*

2 4
.

2 1
m

m

p p qµ
µ

µ
− − − −

=
+

 

If ( )22
2 2 24 2 mp q p µ− > −  then * 0µ >  and * 0µ < . It can be shown that ( ) ( )2 2

2 2 2 22 4mQ p p qµ= − − − . 
That is, if 2 0Q <  then only one negative solution exists for (13). It follows that if 2Q  is negative we can find  

1m , 2m  ( )1 20 m m< <  such that 
1 2m m mµ µ µ< < . Therefore, ( ) ( ) ( ) ( )( )2 2 1 2

2Index , 1 1 .t m m
tT σ − −= − = −w  

3.1.2. The Case ( ),3 3*w u v≡  
Next we deal with the case ( )* 3 3,u v=w . Let 3P , 3Q  and 3D  be corresponding P value, Q value and the 
corresponding discriminant of (13). Also let 3p  and 3q  be the corresponding p and q values. In this case we 
can find 3m , ( )31 m<  such that 3Q  is negative when 

3
0 m mµ µ< < . Therefore there are exactly one neg- 

ative solutions for the corresponding Equation (13) when 
3

0 m mµ µ< < . Therefore ( ) ( ) 3
3Index , 1 m

tT = −w . 
Also, 

( ) ( ) ( ) ( )( ) ( )2 1 32
2 3deg , ,0 Index , Index , 1 1 .m m m

t t tI T T T − −− Θ = + = − + −w w              (16) 

Theorem 2. Assume that 2α λ> , 2 0Q <  and 3 0Q <  are satisfied. If ( )3 2 1m m m+ −  is even, then (4) 
has at least one positive nontrivial solution.  

Proof. Homotopy invariance property show that 

( ) ( )0 1deg , ,0 deg , ,0 .I T I T− Θ = − Θ  

By setting 0d M=  as sufficiently large constant we get ( )0 2Index , 1T = −w , ( )0 3Index , 1T =w . Therefore,  

( ) ( ) ( )0 0 2 0 3deg , ,0 Index , Index , 0.I T T T− Θ = + =w w                    (17) 

Also, we have 
( ) ( ) ( )

( ) ( )2 1 3

1 1 2 1 3

2

deg , ,0 Index , Index ,

1 1 2m m m

I T T T
− −

− Θ = +

= − + − = ±

w w
                       (18) 

The relations (17) and (18) contradict the homotopy invariance property for ( )deg , ,0tI T− Θ , ( )0 1t≤ ≤ . 
Thus the proof is complete.                                                                   □ 

3.2. The Case α = 2λ 

In this case the constant fixed point of tT  in Θ  is uniquely determined by 0
1 1,
2 2λ

 =  
 

w . The Leray- 

Schauder index at this point is: 

( ) ( ) 0
0Index , 1 ,T w σ= −  

where 0σ  is the number of real negative eigenvalues (counting algebraic multiplicity) of ( )0wI D T w− . 
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In this case 
2 t

t

d
p

d
λ −

=  and 0q = . Then,  

( ) 2
1 2t

m m
t

d
P

d
λ

µ µ
 −

= + − 
 

 

and 

( )2 2
.m t

m m m
t

d
Q p

d
µ λ

µ µ µ
 + −

= − =   
 

 

If 0mµ = : 

Then 
2 t

t

d
P p

d
λ −

= =  and 0Q = . Therefore, if 2td λ< , then 0P > . That is if 2td λ< , there is  

exactly one negative solution for (13). No negative solutions for (13) if 2.td λ≥   
If 0mµ > : 

In this case, Q is negative if 
2t

m

d λ
µ

<
+

. Then there is exactly one negative solution for (13). 

Let *m  be the number of mµ , satisfying 0Q < . Then, ( ) ( ) ( ) ( )
*

1 1
1 1Index , 1 1 mT σ= − = −w . 

Theorem 3. Assume that 2α λ= . If ( ) *
1 1 mσ =  is odd, then (4) admits at least one positive non-constant 

solution. 
Proof. From the Homotopy invariance property we have  

( ) ( )0 1deg , ,0 deg , ,0 .I T I T− Θ = − Θ  

Suppose that (4) has no non-constant solutions if td d= . Also  

( ) ( )0 0 1deg , ,0 Index , 1,I T T− Θ = =w  

provided 0d M=  is sufficiently large. On the other hand  

( ) ( ) ( ) ( )1 1
1 1 1deg , ,0 Index , 1 1.I T T σ− Θ = = − = −w  

These two relations contradict the homotopy invariance property for ( )deg , ,0tI T− Θ , ( )0 1t≤ ≤ . Thus the 
proof is complete.                                                                          □ 

4. Discussion 
Stationary problem corresponding to a model mathematical model for formation of coral patterns is considered. 
We have proved the existence of non-constant positive solutions of the stationary problem (4). Existence of non- 
constant solutions to the stationary problem gives a guarantee for the existence of spatially variant time invariant 
solutions to the proposed reaction-diffusion system. In other words, the solution of the system reaches a steady 
state with spatial patterns. This is a physically important feature which gurantees the the existence of stable coral 
patterns of the system. 
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