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Abstract 
In this paper, we are concerned with computation of a mathematical model of sand dune forma-
tion in a water of surface to incompressible out-flows in two space dimensions by using Chebyshev 
projection scheme. The mathematical model is formulate by coupling Navier-Stokes equations for 
the incompressible out-flows in 2D fluid domain and Prigozhin’s equation which describes the 
dynamic of sand dune in strong parameterized domain in such a way which is a subset of the fluid 
domain. In order to verify consistency of our approach, a relevant test problem is considered 
which will be compared with the numerical results given by our method. 

 
Keywords 
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1. Introduction 
The sandbank is a real physical phenomenon that constitutes a threat for our environment through the occu- 
pation of the roads, the arable earths and especially the waters of surfaces, as it is the case of the Niger stream. 
The main goal of this paper is to compute numerically the height of sand dune in a water of surface to the 
incompressible out-flows (streams, lakes, seas, ...). For this, we formulate a mathematical model which couples 
the Navier-Stokes equations for the incompressible out-flows in two space dimensions and Prigozhin’s equation 
that describes the sand dune dynamic [1]-[3]. The numerical approach that we develop to solve this model is 
made in three stages. The first stage aims to approach the Navier-Stokes equations by using Chebyshev projection 
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scheme, following , 2, 2N M N M− −−   method [4]-[7], the second stage is dedicated to the determination of the 
mass density of the sand grains transported by the out-flows, and we compute the dune height in the third stage. 

The outline of this paper is as follows. In Section 2, we give the problem formulation and description of 
parameters. In Section 3, the numerical scheme which will be used in this paper is presented. In Section 4, some 
numerical simulations of the solution and temporal errors evolution are presented. We end this paper with a 
conclusion and the perspectives in Section 5. 

2. The Problem Formulation 
Let Ω  be a bounded open subset with regular boundary ∂Ω  in 2  in which flows out a fluid to incom- 
pressible out-flows with a velocity u and a pressure p [6]. We suppose a sand dune isolated and completely 
immersed in Ω  and occupying a strong subdomain Γ  of Ω . Let denote by m and h, respectively the mass 
density of the sand grains transported by the out-flows and the dune height. While supposing that the mass  

density is transported by a flux 
u m
u

− , we propose the following mathematical model to describe the inter-  

action between the out-flow of the fluid and the dynamics of the dune in two space dimensions given by: 

( ) ( ) ] [ ( )

] [ ( )
( ) ( ) ( )
( ) ( ) ] [ ( )

( ) ] [ ( )

( ) ( ) ] [ ( )
( ) ] [ ( )

( ) ( ) ( )

2

0

0

1 , , in 0; 1

0 in 0; 2
0, , , in 3
, , , , in 0; 4

, , in 0; 5

, , in 0; 6
1, 1 0 in 0; 7

0, , , in 8

t

t

t

u u p u u f t x y T
Re

u T
u x y u x y
u t x y g t x y T

um m t x y T
u

h m h t x y T
h m h T

h x y h x y

∂ − ∇ +∇ + ⋅∇ = ×Ω

∇ ⋅ = ×Ω
 = Ω


= ×∂Ω

∂ − ⋅∇ = Ψ ×Ω

∂ −∇ ⋅ ∇ = Φ ×Γ
 ∇ ≤ ∇ − = ×Γ


= Γ

 

where 
• ( ) ( ) ( )( ), , , , , , ,u t x y w t x y v t x y=  is the vector velocity, w is the component following the x-axis and v the 

y-axis one; 
• ( ), ,p t x y  is the pressure; 
• ( ), ,f t x y , ( ), ,t x yΨ  and ( ), ,t x yΦ  are the source term; 
• ( ), ,m t x y  is the mass density; 
• ( ), ,h t x y  is the height of sand dune; 
• Re  is the Reynolds number; 
• T is a given positive time-parameter. 

The out-flow of the fluid is modelling by Equations (1)-(4). The transportation of the sand grains under the 
effect of averaged velocity is modelling by Equation (5). The dynamics of the sand dune is modelling by Equ- 
ations (6)-(8). 

To ensure the regularity of the solution we suppose that the functions f, 0u  and Ψ  are square integrable on 
Ω  while functions Φ  and 0h  are square integrable on Γ . We also suppose that the boundary conditions 
given by Equation (4) verify the said condition of debit: 

d 0,g n γ
∂Ω

⋅ =∫  

and the initial data 0u  must verify: 

0 0in and 0 in ,u n g n u⋅ = ⋅ ∂Ω ∇ ⋅ = Ω  

where n is the unit vector normal to the boundary of the domain Ω . 
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3. Numerical Schemes 
3.1. Temporal Discretisation 

For a given positif integer r, we consider a time step discretisation Tt
r

∆ = , with 1T ≥ . Then, we define the  

knots of the interval [ ]0;T  given by nt n t= ∆ , with { }0; ;n r∈  . 
For a given continues function ( ), ,t x yϕ , we approximate ϕ  at the knots nt  by: ( ) ( ), , ,n

nt x y x yϕ ϕ≈ . 
In order to approach in time Equations (1)-(8), we used second-order backward Euler scheme which is given by: 

( ) ( ) ( ) ( ) { }
1 1

1

3 , 4 , ,
, , , for , , .

2

n n n

t n

x y x y x y
t x y u m h

t
ϕ ϕ ϕ

ϕ ϕ
+ −

+

− +
∂ ≈ ∈

∆
              (9) 

While doing an extrapolation of order 1 of the pressure at the time of the prediction stage and while appro- 
aching the convection term ( )u u⋅∇  by a numerical scheme of Adams-Bashforth type, the basic principle of 
the projection methods in [8] [9] applied to Equations (1)-(4), allows us to get: 
- prediction stage: 

1 2 1 11 ˆn n nau u f
Re

+ + +− ∇ =                                      (10) 

1 1
/ ,n nu g+ +
∂Ω =                                               (11) 

where u  denotes the predicted velocity, 3
2

a
t

=
∆

 and 

( ) ( )1 1 1 1 12 1ˆ 2
2

n n n n n n n n nf f p u u u u u u
t t

+ + − − −= −∇ + − − ⋅∇ + ⋅∇
∆ ∆

, 

- projection stage: 
1 1 1,n n nau p f+ + ++∇ =                                         (12) 

1 0,nu +∇ ⋅ =                                               (13) 

1 1
/ ,n nu n g n+ +
∂Ω⋅ = ⋅                                         (14) 

where 1 1n n nf au P+ += +∇� �  for { } ( )0;1; ; , 1n r r∈ ≥� . This last stage corresponds to a Darcy problem [10] that 
is as well as the stokes problem of type saddle point. 

Thus, when one does a spatial discretisation of this problem by using a Chebyshev spectral method, so that 
the resulting discreet problem is well posed, it is necessary that the discreet spaces of velocity and pressure 
verify a compatibility condition inf-sup of Brezzi [11]. 

To answer this question of compatibility condition, we use the spectral method , 2, 2N M N M− −−   by using 
only one grid define by the usual Chebyshev-Gauss-Lobatto [12] [13]. 

3.2. Spatial Discretisation 
In this section we present the basic principle of the method , 2, 2N M N M− −−  . 

So for a given positive integers N and M we denote by ( )N Λ  and ( )2N − Λ  sets of orthogonal poly- 
nomials of degree less than or equal to N and 2N − , respectively, where Λ  is an open subset such that 
Ω = Λ×Λ . Let denote by ( ) ( ) ( ),N M N MΩ = Λ ⊗ Λ   , the set of polynomials defined on Ω  of degree N 
according to the variable x and degree M according to the variable y, and ( ) ( ) ( )2, 2 2 2N M N M− − − −Ω = Λ ⊗ Λ   , 
the set of polynomials defined on Ω  of degree 2N −  according to the variable x and degree 2−M  accord- 
ing to the variable y. 

The , 2, 2N M N M− −−   method consists in approaching the pressure by orthogonal polynomials of degree less 
than two units as those approaching the velocity while considering only one grid. 

In this paper, we consider Chebyshev polynomials and choose the Chebyshev-Gauss-Lobatto mesh defined by:  
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πcosi
ix
N

 =  
 

 and πcosj
jy
M

 =  
 

, for 0,1, ,i N=   and 0,1, ,j M=  . 

Then, we consider the velocity at ( ) ( )1 1N M+ × +  points of Ω  and the pressure at ( ) ( )1 1N M− × −  
points insides of Ω . Therefore, compatibility between the spaces of approximation of the velocity and the 
pressure is assured and the condition inf-sup is satisfied [14] [15]. 

Let us making the following space approximation for { }0;1; ;n r∈   

( )
( )

1 1
,

1 1
,

; ,

; ,

0, , ; 0, , ;

n n
i j i j

n n
i j i j

w x y w

v x y v

i N j M

+ +

+ +

 ≈
 ≈
 = =

 

 

( )1 1
,; , 1, , 1; 1, , 1.n n

i j i jp x y p i N j M+ +≈ = − = −   

We approach the first and secondary operators of derivation of { },w vϕ ∈  in ( ),N M Ω  [6] [13] [16] by: 

( ) ( )1 1
,1 1 ,1 1

, , , ,
0 0

; ;
;

n nN Mi j i jN n M n
i k k j j l i l

k l

x y x y
d d

x y

ϕ ϕ
ϕ ϕ

+ +
+ +

= =

∂ ∂
= =

∂ ∂∑ ∑  

( ) ( )2 1 2 1
,2 1 ,2 1

, , , ,2 2
0 0

; ;
; ;

n nN Mi j i jN n M n
i k k j j l i l

k l

x y x y
d d

x y

ϕ ϕ
ϕ ϕ

+ +
+ +

= =

∂ ∂
= =

∂ ∂∑ ∑  

where ( ),1
, 0 ; 0

N
i k i N k N

d
≤ ≤ ≤ ≤

 and ( ),2
, 0 ; 0

N
i k i N k N

d
≤ ≤ ≤ ≤

 are coefficients of the Chebyshev differentiation matrixes of  

order 1 ND  and order 2 2
ND , respectively in ( )N Λ . We approach the first operators of derivation of pre- 

ssure p in ( )2, 2N M− − Ω  [17] by: 

( )1 1
,1 1

, ,
1

;n Ni j N n
i k k j

k

p x y
d p

x

+ −
+

=

∂
=

∂ ∑  

( )1 1
,1 1

, ,
1

;
,

n Mi j M n
j l i l

l

p x y
d p

y

+ −
+

=

∂
=

∂ ∑   

where ( ),1
, 1 1; 1 1

N
i k i N k N

d
≤ ≤ − ≤ ≤ −

  are coefficients of the Chebyshev differentiation matrix of order 1 ND  in  

( )2N − Λ , given by the following relation: 

( )
( ) ( )

2

,1
,

2

,1
,

2

πsin 1
for

π ππ2sin sin sin
2 2

πcos
3 for 1 1.

π2 sin

i j
N
i j

N
i i

j
Nd i j

i j i ji
N N N
i

Nd i N
i

N

+
  −   −  = ≠

+ − 
   


     = ≤ ≤ −
     





 

Let us consider the following approximation spaces: 

( ) ( ){ }1
, , /N M N MX w w g∂ΩΩ = ∈ Ω =  

( ) ( ){ }2
, , / ,N M N MY v v g∂ΩΩ = ∈ Ω =  

where 1g  and 2g  are the first and second component of g, respectively. 
We define by: 
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( ) ( ) ( )( )
( ) ( ) ( )( )

1 1,1 1,2

1 1,1 1,2

ˆ ˆ ˆ; ; ; ; ,

; ; ; ; ,

1, , 1; 1, , 1.

n n n
i j i j i j

n n n
i j i j i j

f x y f x y f x y

g x y g x y g x y

i N j M

+ + +

+ + +

 =

 =

= − = −


 

 

Then the prediction stage (9)-(10) decomposes itself in two-Helmholtz problems for each components of the 
predicted velocity with Dirichlet boundary conditions: 

( ) ( ) ( ) ( )
2 1 2 1

1 1,1
2 2

; ;1 ˆ; ; ,
n n

i j i jn n
i j i j

w x y w x y
aw x y f x y

Re x y

+ +
+ +

 ∂ ∂
 − + =
 ∂ ∂ 

 

                  (15) 

1 1,1
/
n nw g+ +
∂Ω =                                          (16) 

( ) ( ) ( ) ( )
2 1 2 1

1 1,2
2 2

; ;1 ˆ; ; ,
n n

i j i jn n
i j i j

v x y v x y
av x y f x y

Re x y

+ +
+ +

 ∂ ∂
 − + =
 ∂ ∂ 

 

                   (17) 

1 1,2
/ .n nv g+ +
∂Ω =                                          (18) 

The Chebyshev collocation approximation of Helmholtz problems (15) and (17) is given by: 

( )

1 1
1 ,2 1 ,2 1

, , , , ,
1 1

1,1 ,2 1 ,2 1 ,2 1 ,2 1
, ,0 0, , , ,0 ,0 , ,

1

1ˆ ;

N M
n N n M n
i j i k k j j l i l

k l

n N n N n M n M n
i j i j i N N j j i j M i M

aw d w d w
Re

f d w d w d w d w
Re

− −
+ + +

= =

+ + + + +

 − + 
 

= + + + +

∑ ∑  

   

                          (19) 

and 

( )

1 1
1 ,2 1 ,2 1

, , , , ,
=1 =1

1,2 ,2 1 ,2 1 ,2 1 ,2 1
, ,0 0, , , ,0 ,0 , ,

1

1ˆ .

N M
n N n M n
i j i k k j j l i l

k l

n N n N n M n M n
i j i j i N N j j i j M i M

av d v d v
Re

f d v d v d v d v
Re

− −
+ + +

+ + + + +

 − + 
 

= + + + +

∑ ∑  

   

                           (20) 

Multiplying these equations by Re− , we obtain the following relations given by: 
1 1

,2 1 ,2 1 1 1
, , , , , ,

1 1

N M
N n M n n
i k k j j l i l i j i j

k l
d w d w w Gσ

− −
+ + +

= =

 + − = 
 
∑ ∑                                  (21) 

and 
1 1

,2 1 ,2 1 1 2
, , , , , ,

1 1

N M
N n M n n
i k k j j l i l i j i j

k l
d v d v v Gσ

− −
+ + +

= =

 + − = 
 
∑ ∑                                   (22) 

where 

aReσ = , ( )1 1 ,2 ,2 ,2 ,2
, , ,0 0, , , ,0 ,0 , ,

ˆ= N N M M
i j i j i j i N N j j i j M i MG Ref d w d w d w d w− − + + +    ; 

( )2 2 ,2 ,2 ,2 ,2
, , ,0 0, , , ,0 ,0 , ,

ˆ N N M M
i j i j i j i N N j j i j M i MG Ref d v d v d v d v= − − + + +    ; 

Let us denote by: 
( )1

, 1 1;1 1
,n

i j i N j M
W w +

≤ ≤ − ≤ ≤ −
=   

( )1
, 1 1;1 1

,n
i j i N j M

V v +

≤ ≤ − ≤ ≤ −
=   

( )1 1
, 1 1;1 1

,i j i N j M
G G

≤ ≤ − ≤ ≤ −
=  

( )2 2
, 1 1;1 1i j i N j M

G G
≤ ≤ − ≤ ≤ −

=  
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Then, we can rewrite Equations (21) and (22) by: 

( )2 2 1,
t

N MD W W D W Gσ+ − =                                   (23) 

and 

( )2 2 2 ,
t

N MD V V D V Gσ+ − =                                    (24) 

2
ND  is a matrix ( )( )1 1N M− −  obtained by suppressing the first and last lines, the first and last columns of 

the matrix 2
ND . 

Systems (23) and (24) are solving by using diagonalisation method [10]. 
Let us denote by xΛ  and yΛ  the diagonal matrixes whose entries are the eigenvalues ,x iλ , 1, , 1i N= − , 

and ,y jλ , 1, , 1j M= − , of the matrixes 2
ND  and 2

MD , respectively, so that 
2 1

1 1N xD Q Q−= Λ                                           (25) 

and 
2 1

2 2 ,M yD Q Q−= Λ                                          (26) 

where 1Q  and 2Q  are matrixes defined by the eigenvectors. 
Multiplying the Equation (23) on the left by 1

1Q− , we obtain: 

( )1 2 1 2 1 1 1
1 1 1 1 ,

t

N MQ D W Q W D Q W Q Gσ− − − −+ − =                                 (27) 

we deduce that: 

( ) ( )1 2 1 1 2 1 1 1
1 1 1 1 1 1 .

t

N MQ D Q Q W Q W D Q W Q Gσ− − − − −+ − =                           (28) 

Let us denote by 1 1 1 1
1 1andW Q W G Q G− −= = , the Equation (28) can be rewrite as: 

( )1 2 2 1
1 1 ,

t

N MQ D Q W W D W Gσ− + − =                                 (29) 

From (25) and (26), we deduce: 

( )2 1,
t

x MW W D W GσΛ + − =                                      (30) 

and multiplying this equation on the right by ( ) 1

2
tQ

−
, we obtain: 

( ) ( ) ( ) ( ) ( )1 1 1 12 1
2 2 2 2 ,

t
t t t t

x MW Q W D Q W Q G Qσ
− − − −

Λ + − =                           (31) 

so that, we deduce the following equation: 

( ) ( )( ) ( ) ( ) ( ) ( )1 1 1 1 12 1
2 2 2 2 2 2 .

t
t t t t t t

x MW Q W Q Q D Q W Q G Qσ
− − − − −

Λ + − =                  (32) 

Denoting by ( ) 1

2
ˆ tW W Q

−
=  and  ( ) 11 1

2
tG G Q

−
= , Equation (24) becames:  

( ) ( ) 

12 1
2 2

ˆ ˆ ˆ ,
t

t t
x MW WQ D Q W Gσ

−
Λ + − =                                (33) 

using relation (26), we obtain: 
1ˆ ˆ ˆ .x yW W W GσΛ + Λ − =                                       (34) 

Then, we deduce: 
1

,
,

, ,

ˆ , 1, , 1; 1, , 1.i j
i j

x i y j

GW i N j M
λ λ σ

= = − = −
+ −

 
                          (35) 
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We compute completely W  and W , by using the following algorithm: 
1) Compute 1 1 1

1G Q G−= . 

2) Compute  ( ) 11 1
2 .tG G Q

−
=  

3) Compute Ŵ  from (27). 
4) Compute 2

ˆ .tW WQ=  
5) Compute 1 .W Q W=   
When applying the same algorithm to Equation (24), we can compute completely V . 
In order to make the projection stage, we define: 

( ) ( ) ( )( )1 1,1 1,2; ; ; ; , 1 1;1 1n n n
i j i j i jf x y f x y f x y i N j M+ + += ≤ ≤ − ≤ ≤ −    

then we can rewrite Equations (12)-(13) by: 

( ) ( ) ( )
1

1 1,1
;

; ; ,
n

i jn n
i j i j

p x y
aw x y f x y

x

+
+ +

∂
+ =

∂
                       (36) 

( ) ( ) ( )
1

1 1,2
;

; ; ,
n

i jn n
i j i j

p x y
av x y f x y

y

+
+ +

∂
+ =

∂
                       (37) 

( ) ( )1 1; ;
0,

n n
i j i jw x y v x y

x y

+ +∂ ∂
+ =

∂ ∂
                               (38) 

with boundary conditions: 

( ) ( ) ( ) ( )1 1,1 1 1,1
0 0; ; , and ; ; , for 1, , 1;n n n n

j j N j N jw x y g x y w x y g x y j M+ + + += = = −  

( ) ( ) ( ) ( )1 1,2 1 1,2
0 0; ; , and ; ; , for 1, , 1.n n n n

i i i N i Nv x y g x y v x y g x y i N+ + + += = = −  

So, while noting: 

( )1,1 1,1
,; ,n n

i j i jf x y f+ +=   

( )1,2 1,2
,; ,n n

i j i jf x y f+ +=   

( )1,1 1,1
,; ,n n

i j i jg x y g+ +=  

( )1,2 1,2
,;n n

i j i jg x y g+ +=  

then by using spectral method , 2, 2N M N M− −−  , we obtain the spatial discretisation of Equations (36)-(38) as 
following : 

1
1 ,1 1 1,1

, , , ,
1

,
N

n N n n
i j i k k j i j

k
aw d p f

−
+ + +

=

+ =∑                                (39) 

1
1 ,1 1 1,2

, , , ,
1

,
N

n N n n
i j j l i l i j

l
av d p f

−
+ + +

=

+ =∑                                (40) 

1 1
,1 1 ,1 1 1

, , ,
1 1

,
N M

N n N n n
i k k j jl i l ij

k l
d w d v s

− −
+ + +

= =

+ =∑ ∑                            (41) 

where 1
0 0 0 0

n
ij i j iN Nj j i jN iNs d w d w d v d v+  = − + + +  , 1, , 1; 1, , 1,i N j M= − = −   

with boundary conditions : 
1 1,1 1 1,1

0, 0, , ,, and , for 1, , 1;n n n n
j j N j N jw g w g j M+ + + += = = −  

1 1,2 1 1,2
,0 ,0 , ,, and , for 1, , 1,n n n n

i i i M i Mv g v g i N+ + + += = = −  

Let us denote by: 
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( )1

1 1;1 1
,n

ij i N j M
S s +

≤ ≤ − ≤ ≤ −
=  

( )1
, 1 1;1 1

,n
i j i N j M

W w +

≤ ≤ − ≤ ≤ −
=  

( )1
, 1 1;1 1

,n
i j i N j M

V v +

≤ ≤ − ≤ ≤ −
=  

( )1
, 1 1;1 1

,n
i j i N j M

P p +

≤ ≤ − ≤ ≤ −
=  

( )1 1,1
, 1 1;1 1

,n
i j i N j M

F f +

≤ ≤ − ≤ ≤ −
= 

  

( )2 1,2
, 1 1;1 1

.n
i j i N j M

F f +

≤ ≤ − ≤ ≤ −
= 

  

Then, we obtain the following matrix formulation for Equations (39)-(41), given by: 



1,NaW D P F+ =                                         (42) 

( ) 2 ,
t

MaV P D F+ =                                      (43) 

( ) ,
t

N MD W V D S+ =                                     (44) 

where ND  is a matrix obtaining by suppressing the first and last lines, the first and last columns of the Cheby- 
shev matrix of derivation ND . 

Reformulating Equations (42), (43) and (44), we deduce : 

( )11 ,NW F D P
a

= −                                     (45) 

( )( )21 ,
t

MV F P D
a

= −                                   (46) 

( )t
N MB P P B S+ =                                      (47) 

where 
,N N NB D D=  

,M M MB D D=  

( )1 2 .
t

N MS D F F D aS= + −    

We solve Equation (47) by using the same strategy using for solving Equation (21) and (22). Then we deter- 
mine completely the P matrix for the pressure and deduce the matrixes W and V containing the values of the first 
and the second components of velocity, respectively from Equations (45) and (46). 

Let us denote by ( )1 1
, ;n n

i j i jm m x y+ +≈  the approximation of the masse density at the mesh ( ),i jx y  for  

{ }1; ; 1i N∈ − , { }1; ; 1j M∈ −  and { }0;1; ;n r∈  . While approaching the first derivation of the density 
m in ( )2, 2N M− − Ω , and using relation (9), Equation (5) give: 

1 1 1 1
, , , 1 ,1 1 1 ,1 1 1

, , , , , , ,1
1 1

3 4 1 .
2

n n n N M
i j i j i j n N n n M n n

i j i k k j i j j l i l i jn
k l

m m m
w d m v d m

t U

+ − − −
+ + + + +

+
= =

− +  − + = Ψ ∆  
∑ ∑              (48) 

We denote by 1nm +  the vector given by: 

( )1 1 1 1 1 1 1
1,1 1, 1 2,1 2, 1 1,1 1, 1; ; ; ; ; ; ; ; ; .

tn n n n n n n
M M N N Mm m m m m m m+ + + + + + +
− − − − −=      

We can rewrite Equation (48) by: 
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( )( )1 1 1 1 1
1 1 1 23 4 ,n n n n n n

N MI I J J m m m K+ + + − +
− −⊗ − − = − +                   (49) 

where: 

( )1 1 1 1 1 1 1
1,1 1, 1 2,1 2, 1 1,1 1, 12 ; ; ; ; ; ; ; ; ; ;

tn n n n n n n
M M N N MK t+ + + + + + +
− − − − −= ∆ Ψ Ψ Ψ Ψ Ψ Ψ     

( )1 1 1 1 1 1 1
1,1 1, 1 2,1 2, 1 1,1 1, 1; ; ; ; ; ; ; ; ; ;

tn n n n n n n
M M N N MW w w w w w w+ + + + + + +
− − − − −=      

( )1 1 1 1 1 1 1
1,1 1, 1 2,1 2, 1 1,1 1, 1; ; ; ; ; ; ; ; ; ;

tn n n n n n n
M M N N MV v v v v v v+ + + + + + +
− − − − −=      

( )( ) ( )11
1 11

2 . ;nn
N Nn

tJ diag W D I
U

++
−+

∆
= ∗ ⊗  

( )( ) ( )11
2 11

2 . ,nn
M Mn

tJ diag V I D
U

++
−+

∆
= ∗ ⊗  

where 1NI −  is the identity matrix of order ( )1N −  and   the matrix of order ( )( )1 1N M− −  of entries 
equal to 1 and ( ),U W V=  denotes the velocity of the out-flow. 

And while denoting by ( )1 1 1
1 1 1 23n n n

N MA I I J J+ + +
− −= ⊗ − − , we obtain: 

( ) ( ) { }
11 1 1 14 for 1; ; .n n n n nm A m m K n r
−+ + − += − + ∈                     (50) 

To make the approximation of Equations (6)-(8), we suppose that the strong domain occupied by sand dune is  

parameterized by 
2

1 1;µ µ µ
 −

Γ =  
 

, with 1µ >  so that this domain is contained in Ω . 

What brings us to consider another grid to approach the dune height by using new grid ( );i jxx yy , defined by:  
1 πcosi

ixx
Nµ

 =  
 

 and 1 πcosj
jyy
Nµ

 =  
 

, for 1, , 1i N= −  and 1, , 1j M= − . 

Let us denote by ( )1 1
, ;n n

i j i jh h xx yy+ +≈  the approximation of the dune height at the mesh ( ),i jxx yy  for  

{ }1; ; 1i N∈ − , { }1; ; 1j M∈ −  and { }0;1; ;n r∈  . While approaching the first derivation of the dune 
height h in ( )2, 2N M− − Ω , and using relation (9), Equation (6) give: 

1 1 1 1 1
, , , ,1 1 ,1 1 1 ,2 1

, , , , , , ,
1 1 1

3 4
2

n n n N N N
i j i j i j N n N n n N n

i k k j i k k j i j i k k j
k k k

h h h
d m d h m d h

t

+ − − − −
+ + + +

= = =

− +   − −  ∆   
∑ ∑ ∑              (51) 

1 1 1
,1 1 ,1 1 1 ,2 1 1

, , , , , , , ,
1 1 1

M M M
M n M n n M n n
j l i l j l i l i j j l i l i j

l l l
d m d h m d h φ

− − −
+ + + + +

= = =

  − − =  
  
∑ ∑ ∑                      (52) 

Denoting by 1nH +  the vector given by: 

( )1 1 1 1 1 1 1
1,1 1, 1 2,1 2, 1 1,1 1, 1; ; ; ; ; ; ; ; ; ,

tn n n n n n n
M M N N MH h h h h h h+ + + + + + +
− − − − −=      

we obtain the following matrix formulation: 

( )( )1 1 1 1 1 1 1
1 1 1 2 3 43 4n n n n n n n n

N MI I A A A A H H H R+ + + + + − +
− −⊗ − − − − = − +            (53) 

where: 

( )1 1 1 1 1 1 1
1,1 1, 1 2,1 2, 1 1,1 1, 12 ; ; ; ; ; ; ; ; ; ;

tn n n n n n n
M M N N MR t+ + + + + + +
− − − − −= ∆ Φ Φ Φ Φ Φ Φ     

( )( ) ( )1 1
1 1 12 . ;n n

N N N NA t diag D I m D I+ +
− −

 = ∆ ⊗ ∗ ⊗    

( ) ( )( )21 1
2 12 . ;n n

N NA t diag m D I+ +
−

 = ∆ ∗ ⊗   
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( )( ) ( )1 1
3 1 12 . ;n n

M M M MA t diag I D m I D+ +
− −

 = ∆ ⊗ ∗ ⊗    

( ) ( )( )21 1
4 12 .n n

M MA t diag m I D+ +
−

 = ∆ ∗ ⊗   

and while denoting by : 
( )( )1 1 1 1 1

1 1 1 2 3 43 ,n n n n n
N MC I I A A A A+ + + + +
− −= ⊗ − − − −  we can rewrite Equation (53): 

( ) ( ) { }
11 1 1 14 , for 1; ; .n n n n nH C H H R n r
−+ + − += − + ∈                  (54) 

4. Numerical Result  
For the numerical simulation, we consider an experimental solution on the one hand for the Navier-Stokes 
equations and other for the mass density and the dune height. 

For example: 

( ) ( ) π π, , cos 5 sin cos ,
2 2
x yw t x y t    =    

   
 

( ) ( ) π π, , cos 5 cos sin ,
2 2
x yv t x y t    =    

   
 

( ) ( ) ( ) ( ) ( ) ( )
2cos 5

, , cos π cos π 10 cos 5 ,
4

t
p t x y x y x y t= + +    

( ) ( ) ( )2 2, , exp andm t x y x y t= + −  

( ) ( )( ) ( )2 2, , 1 1 exp .h t x y x y t= − − −  

We take 100Re = , 1T =  and 16 30N M≤ = ≤  for the cases tests. While noting { }( ), , ,N w v m hϕ ϕ ∈   
the calculated fields, we give the evolution of the temporal error ( ) ( )

2
, n

N L
E t t tϕ ϕ ϕ∆ = −  during the time. The  

integration in time of this error is initialized while taking the fields to the instants ,0t−∆  equals to the exact 
solution to the same time level.  

We represent temporal errors according to the first components ( ),wE t t∆  (Figure 1(a)) and the second  
 

    
(a)                                                    (b) 

Figure 1. Temporal evolution of the errors in time on the first component of the velocity, ( ),wE t t∆  (a), and the second 

component ( ),vE t t∆  (b), for a step of time 32 10 , 20.t N M−∆ = × = =                                                
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components ( ),vE t t∆  (Figure 1(b)) of the velocity by using the following parameters of discretisation 
32 10t −∆ = ×  and 20N M= = . One notices a likeness between the two figures, that shows the precision of the 

second order in time by the numerical scheme used. Also, these errors don’t depend on the chosen of spatial 
discretisation. 

We also represent the temporal errors for the mass density of sand grains ( ),mE t t∆  (Figure 2(a)) and the 
dune height ( ),hE t t∆  (Figure 2(b)) by using 32 10t −∆ = × , 150µ =  and 20N M= = . These also confirm 
the precision of the second order in time by the numerical scheme used. 

The profile of the dune height is represented at 0.095t = , for 35 10t −∆ = ×  by using 10µ =  (Figure 3), 
100µ =  (Figure 4), and 150µ =  (Figure 5). The experimental height on the left and the approach height on 

the right. One notices that the simulations made for 150µ =  give a better approximation of the dune height 
that those achieved for μ = 10 and 100µ = . That permits us to conclude that for a higher value of parameter μ 
we obtain a good approximation for a dune height in the strong domain µΓ . Also, these figures show a likeness 
between the numerical solution and the experimental solution for each value of parameter { }10;100;150µ ∈ . 
That permits us to conclude the consistency of our approach. 
 

   
(a)                                                        (b) 

Figure 2. Temporal evolution of the errors in time on the mass density of sand grains, ( ),mE t t∆  (a), and on the dune 

height, ( ),hE t t∆  (b), for a step of time 32 10 , 20t N M−∆ = × = =  and 150.µ =                                     

 

  
(a)                                                        (b) 

Figure 3. Profile of the experimental and approached of the dune height in the space at t = 0.095, for a time step Δt = 5 × 
10−3, N = M = 20 and 10.µ =                                                                                 
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Figure 4. Profile of the experimental and approached of the dune height in the space at t = 0.095, for a time stepΔt = 5 × 10−3, N 
= M = 20 and 100.µ =                                                                                    
 

  
Figure 5. Profile of the experimental and approached of the dune height in the space at t = 0.095, for a time step Δt = 5 × 
10−3, N = M = 20 and 150.µ =                                                                                   

5. Conclusions and Perspectives 
We have solved numerically a mathematical model of sand dune formation in a surface water to incompressible 
out-flows in two space dimensions. This model couples the Navier-Stokes equations governing the incompressi- 
ble out-flows in two-dimension of space and the Prigozhin equation that describes the evolution of a sand dune 
in a surface water. One of the difficulties of this approach resides in the treatment of the pressure which appears 
only in Navier-Stokes equations as Lagrange multiplier. We used a Chebyshev projection scheme following a 
spectral approach , 2, 2N M N M− −−   to solve the Navier-Stokes equations, which permitted us to ignore the 
boundary conditions on the pressure. And, as we don’t have any boundary condition on the mass density and the 
dune height, we have expressed the first and secondary operator derivations in ( )2, 2N M− − Ω  for the mass 
density and in ( )2, 2N M− − Γ  for the dune height. It is evident from the gotten results that the smaller the strong 
domain Γ  occupied by the dune is, the better the approximation of the dune height is. 

In our future works, we count to pass in dimension 3 of space and to put a optimal control in place to deter- 
mine the optimal height of sand dune in a surface water, from which other dunes can be formed in the fluid. 
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