
Positioning, 2015, 6, 7-21 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/pos 
http://dx.doi.org/10.4236/pos.2015.62002   

How to cite this paper: Afifi, A. and El-Rabbany, A. (2015) An Improved Model for Single-Frequency GPS/GALILEO Precise 
Point Positioning. Positioning, 6, 7-21. http://dx.doi.org/10.4236/pos.2015.62002  

 
 

An Improved Model for Single-Frequency 
GPS/GALILEO Precise Point Positioning 
Akram Afifi, Ahmed El-Rabbany 
Department of Civil Engineering, Ryerson University, Toronto, Canada 
Email: akram.afifi@ryerson.ca, rabbany@ryerson.ca 
 
Received 28 April 2015; accepted 25 May 2015; published 28 May 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper introduces a new precise point positioning (PPP) model, which combines single-fre- 
quency GPS/Galileo observations in between-satellite single-difference (BSSD) mode. In the ab-
sence of multipath, all receiver-related errors and biases are cancelled out when forming BSSD for 
a specific constellation. This leaves the satellite originating errors and atmospheric delays un- 
modelled. Combining GPS and Galileo observables introduces additional biases that have to be 
modelled, including the GPS to Galileo time offset (GGTO) and the inter-system bias. This paper 
models all PPP errors rigorously to improve the single-frequency GPS/Galileo PPP solution. 
GPSPace PPP software of Natural Resources Canada (NRCan) is modified to enable a GPS/Galileo 
PPP solution and to handle the newly introduced biases. A total of 12 data sets representing the 
GPS/Galileo measurements of six IGS-MEGX stations are processed to verify the newly developed 
PPP model. Precise satellite orbit and clock corrections from IGS-MEGX networks are used for 
both GPS and Galileo measurements. It is shown that sub-decimeter level accuracy is possible with 
single-frequency GPS/Galileo PPP. In addition, the PPP solution convergence time is improved 
from approximately 100 minutes for the un-differenced single-frequency GPS/Galileo solution to 
approximately 65 minutes for the BSSD counterpart when a single reference satellite is used. 
Moreover, an improvement in the PPP solution convergence time of 35% and 15% is obtained 
when one and two reference satellites are used, respectively. 
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1. Introduction 
The concept of precise point positioning (PPP) was first introduced by [1]. Dual-frequency GPS PPP technique 
has been proven to be capable of providing positioning solution at the sub-decimeter level in static mode. This is 

http://www.scirp.org/journal/pos
http://dx.doi.org/10.4236/pos.2015.62002
http://dx.doi.org/10.4236/pos.2015.62002
http://www.scirp.org
mailto:akram.afifi@ryerson.ca
mailto:rabbany@ryerson.ca
http://creativecommons.org/licenses/by/4.0/


A. Afifi, A. El-Rabbany 
 

 
8 

achieved through rigorous modeling or estimation of all errors and biases. Both un-differenced and between-  
satellite single difference (BSSD) ionosphere-free linear combinations of carrier-phase and pseudorange mea-
surements have been used [2] [3]. More recently, [4] showed that a 50% improvement in the PPP convergence 
time is possible with BSSD dual frequency ionosphere-free GPS, in comparison with the un-differenced coun-
terpart. Unfortunately, dual-frequency GPS receivers may not provide a cost-effective solution to many users. In 
addition, a drawback of a single GNSS system such as GPS is the availability of a sufficient number of visible 
satellites in urban areas. 

The Galileo satellite system offers additional visible satellites to the user, which is expected to enhance the 
satellite geometry and the overall PPP solution when combined with GPS [5]. As shown in [6], combining GPS 
and Galileo observations in a PPP solution reduces the convergence time by up to 30% in comparison with the 
GPS-only PPP solution. Combining GPS and Galileo, however, comes at the expense of introducing additional 
biases to the observation mathematical models. These include the GPS to Galileo time offset, and Galileo satel-
lite hardware delay. Recently, the European Space Agency (ESA) estimated the GPS to Galileo time offset 
(GGTO), which was found to be approximately 50 ns, or equivalently 15 m range error [7]. 

Generally, combining multi-constellation observations in a PPP solution improves the positioning accuracy, 
especially when the system biases are calibrated, as shown in [8]. [9] showed that prior correction of the diffe-
rential GPS/Galileo (GIOVE) inter-system biases significantly increases the success rate of instantaneous ambi-
guity resolution for short baselines. Likewise, [10] showed that combining GPS/Galileo observables in a double- 
differenced carrier-phase and pseudorange technique improves the success rate of instantaneous ambiguity res-
olution in comparison with GPS-only solution. Unfortunately, however, their work was limited to differential 
positioning mode. 

This paper introduces a new PPP model, which combines single-frequency GPS and Galileo observables in 
BSSD mode. Precise corrections from the International GNSS Service multi-GNSS experiment (IGS-MEGX) 
network are used to account for GPS and Galileo satellite orbit and clock errors [11]. As these products are pre-
sently referenced to the GPS time and since we use mixed GNSS receivers that also use GPS time as a reference, 
the GGTO is cancelled out in our model. The inter-system bias is either cancelled out through differencing the 
observations or is treated as an additional unknown parameter as detailed below. The ionospheric delay is large-
ly corrected through the global ionosphere maps (GIM) model [12]. The hydrostatic component of the tropos-
pheric zenith path delay is modelled through the Hopfield model, while the wet component is considered as an 
additional unknown parameter [5]. All remaining errors and biases are accounted for using existing models as 
shown in [13]. When forming BSSD, we consider three scenarios in the selection of the reference satellite. Ei-
ther a GPS or a Galileo satellite is selected as a reference for both GPS and Galileo observables. Alternatively, 
two reference satellites are selected: a GPS reference satellite for the GPS observables and a Galileo satellite for 
the Galileo observables. The first approach is sometimes referred to as tight combination, while the latter is 
sometimes referred to as per constellation or loose combination [9] [14]. It is shown that the use of a single ref-
erence satellite provides a sub-decimeter level positioning accuracy and 35% improvement in the convergence 
time, in comparison with the un-differenced single-frequency GPS/Galileo solution. The use of two reference 
satellites, although provides comparable positioning accuracy, improves the solution convergence time by 15% 
only. 

2. Un-Differenced GPS/Galileo Model 
GNSS observations are affected by random and systematic errors, which must be accounted for to ensure that 
precise positioning solution is obtained. The positioning accuracy of a PPP model depends on the ability to 
mitigate errors and biases. These errors can be categorized into three classes, namely satellite related errors, 
signal propagation related errors, and receiver/antenna associated errors. The main GNSS errors include the sat-
ellite/receiver clock errors, satellite/receiver hardware delays, ionospheric and tropospheric delays, and multi-
path [15]. 

In addition to the above errors and biases, combining GPS and Galileo observations in a PPP model intro-
duces additional errors such as GGTO due to the fact that each system uses a different time frame. The GPS 
system uses the GPS time system, which is referenced to coordinated universal time (UTC) as maintained by the 
US Naval Observatory (USNO). On the other hand, the Galileo satellite system has its own time frame, namely 
the Galileo system time (GST), which is a continuous atomic time scale with a nominal constant offset with re-
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spect to the international atomic time (TAI) [5]. Taking the above errors and biases into consideration and as-
suming that the observations are taking simultaneously from a mixed GNSS receiver, which uses GPS time as a 
reference, the GPS and Galileo observation equations can be written as: 

( ) ( ) ( ) ( ) ( ) ( ), S S
G G G G G G rG G G G G rG G G G G

G G PG

P t t t c d t d t c dt t dt t
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+ + +
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where, the subscript G refers to the GPS satellite system and the subscript E refers to the Galileo satellite system; 
tG is the true signal reception time; τG and τE are signal propagation times for both GPS and Galileo, respectively; 
PG and PE are the GPS and Galileo pseudorange measurements, respectively; ΦG and ΦE are the GPS and Gali-
leo carrier-phase measurements, respectively; ( ),G G G Gt tρ τ−  and ( ),E G G Et tρ τ−  are the GPS and Galileo 
geometric ranges from the receiver at reception time tG to the satellite at transmission times ( )G Gt τ−  and 
( )G Et τ− , respectively; dtrG(tG) is the receiver clock error at reception time tG; ( )S

G G Gdt t τ−  and ( )S
E G Edt t τ−  

are the GPS and Galileo satellite clock errors at transmission times ( )G Gt τ−  and ( )G Et τ− , respectively; 
drG(tG) and drE(tG) are frequency-dependent code hardware delays in the receiver at reception time tG for GPS 
and Galileo, respectively; ( )S

G G Gd t τ−  and ( )S
E G Ed t τ−  are frequency-dependent code hardware delays in 

the satellites at transmission time ( )G Gt τ−  and ( )G Et τ−  for GPS and Galileo, respectively; δrG(tG) and 
( )S

G G Gtδ τ−  are frequency-dependent carrier phase hardware delays in the receiver at reception time tG for GPS 
and Galileo, respectively; δrE(tG) and ( )S

E G Etδ τ−  are frequency-dependent carrier phase hardware delays in 
the satellites at transmission time ( )G Gt τ−  and ( )G Et τ−  for GPS and Galileo, respectively; T is the tropos-
pheric delay; I is the ionospheric delay; λG and λE are the wavelengths of carrier frequencies for GPS and Galileo 
signals, respectively; Φr(t0), Φs(t0) are frequency-dependent initial fractional phases in the receiver and satellite 
channels, respectively; t0 is the receiver (or satellite) initial time; NG and NE are the integer numbers of cycles for 
GPS and Galileo carrier phase measurements, respectively; GGTO is the GPS to Galileo time offset; c is the 
speed of light in vacuum; and εP, εΦ are the relevant noise and unmodeled errors. 

As indicated earlier, precise orbit and satellite clock corrections of IGS-MGEX network are used for both 
GPS and Galileo observations. Clock corrections from the two networks are referred to the GPS time. In addi-
tion, they include the ionosphere-free linear combination of the satellite hardware delays of L1/L2 P(Y) code for 
GPS and the ionosphere-free linear combination of the satellite hardware delays of E1/E5a pilot code for Galileo 
[16]. As such, using Equations (1)-(4) and dropping the time arguments, the L1/E1 single-frequency code and 
carrier phase observation equations take the form: 

( )1 1- 2 1
s s

P G rG prec G P P G P PGGP dt c dt DCB T Iρ β ε = + − + + + + 
                        (5) 

( )1 1- 2 1- 1 1
s s s

C G rG G P P P C G PGprec GP dt c dt DCB DCB T Iρ β ε = + − + + + + + 
                (6) 
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

                    (8) 
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( ) 1- 51 1 1 1E E a
s s

E E rG E E E Eprec Edt c dt DCB T I ISB Nρ β εΦ Φ = + − + + − + + + 


              (9) 

where ( )
s
prec Gdt  and ( )

s
prec Edt  are the precise satellites clock corrections for both GPS and Galileo satellites, re-

spectively, which are obtained from IGS-MGEX; 1- 2
s
P PDCB , 1- 5

s
E E aDCB  and 1- 1

s
P CDCB  are the satellite diffe-

rential code biases for GPS P1/P2, P1/C1 and Galileo E1/E5a signals, respectively, which are obtained from IGS; 
βG and βE are the ionosphere-free linear combination coefficients, which equal 1.546 and 1.261 for GPS and Ga-
lileo, respectively; rGdt  represents the combined effect of the receiver clock error and the GPS receiver code 
hardware delay, i.e., [ ]1rG rP rGdt c d dt= +  when P-code is used and [ ]1rG rC rGdt c d dt= +  when C/A-code is 
used; ISB is the inter-system bias, which equals [ ]1 1rP rEc d d−  when P-code is used and equals [ ]1 1rC rEc d d−  
when C/A-code is used; N  is the ambiguity parameter lumped to the satellite and receiver hardware delays, 
i.e., 

1 1 1 1 1
S s s

L r rL L rP PG
N N c c d dλ ϕ ϕ δ δ     = + − + + − +     
                   (10) 

1 1 1 1 1
S s s

E r rE E rE EE
N N c c d dλ ϕ ϕ δ δ     = + − + + − +     
                   (11) 

It should be pointed out that in both of our GPS-only and GPS/Galileo PPP models, the GPS receiver hard-
ware delay is lumped to the receiver clock error as explained above. This strategy maintains the consistency of 
the estimated receiver clock error for both of the GPS-only and the GPS/Galileo PPP solutions [17]. It should 
also be mentioned that some of our data sets contain the C/A-code pseudorange rather than the P-code pseudo-
range. In this case, Equation (6) should replace Equation (5) for the GPS code measurements. In addition, the 
receiver clock error would be lumped to the receiver hardware delay of the C/A code. Furthermore, the ISB 
would equal the difference in the receiver hardware delays of the C/A code and E1 code, scaled by the speed of 
light. 

Equations (5) to (9) can be simplified for the pseudorange and carrier phase observables after applying the 
corrections for the satellite clock errors, the hydrostatic component of the tropospheric zenith path delay, the 
correction to the ionospheric delay, the satellite differential code biases, and the other remaining biases. As 
stated earlier, the global ionosphere maps (GIM) are used to account for the ionospheric delay [12]. Generally, 
GIM ionospheric model was found superior to other global models such as the Klobuchar model [18]-[20]. The 
Hopfield tropospheric correction model is used, along with Vienna mapping function, to account for the hydros-
tatic component of the tropospheric delay [21] [22]. All other remaining biases are modeled using existing mod-
els, including the effects of ocean loading [23] [24], Earth tide [13], carrier-phase windup [25] [26], Sagnac [27], 
relativity [5], and satellite and receiver antenna phase-center variations [28]. Applying these corrections and 
considering P-code observations only lead to: 

1 0G rG f w PG P  dt  m zpd   P  ρ ε+ + + − =


                              (12) 

1 0E rG f w PE E  dt  m zpd ISB  P  ρ ε+ + + + − =


                          (13) 

1 1 1 0G rG f w L L Ldt m zpd Nρ εΦ+ + + + −Φ =
 

                         (14) 

1 1 1 0E rG f w E E Edt m zpd ISB Nρ εΦ+ + + + + −Φ =
 

                    (15) 

where P  and Φ  are the corrected carrier phase and pseudorange observables; zpdw is the wet component of 
the tropospheric zenith path; fm  is the troposphere mapping function; PGε , PEε , 1LεΦ  and 1EεΦ  are the 
noise terms. 

3. BSSD GPS/Galileo Combination Model 
Differencing the observations between satellites cancels out most receiver-related errors, including receiver 
clock error, receiver hardware delay for the same constellation, and non-zero initial phase bias [15]. As the L1 
and E1 frequencies are the same, we can select a single satellite, either a GPS or a Galileo as a reference when 
forming the BSSD. This means that the observations of all other GPS and Galileo satellites are differenced with 
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respect to the observations of that satellite. As indicated earlier, this approach is sometimes referred to as tight 
combination. Alternatively, two reference satellites can be used, i.e., per constellation BSSD. The former ap-
proach produces two additional BSSD equations in comparison with the second approach, one for code and 
another for carrier-phase observables. However, the ISB is cancelled out when the per-constellation approach is 
used. When a GPS satellite is used as a reference in a tight combination, we obtain: 

, 1 0ij ij ij ij
G G f w PG Pm zpd P  ρ ε∇ + +∇ −∇ =

                                 (16) 

, 1 0ik ik ik ik
E G f w PE E Gm zpd ISB  P  ρ ε∇ + + +∇ −∇ =

                           (17) 

, 1 1 1 0ij ij ij ij ij
G G f w L L Lm zpd Nρ εΦ∇ + + +∇ −∇Φ = 

                           (18) 

, 1 1 1 0ik ik ik ik ik
E G f w E E E Gm zpd ISB Nρ εΦ∇ + + + +∇ −∇Φ = 

                     (19) 

where ∇  refers to the BSSD operator; 1
ij
LN  and 1

ik
EN  are the BSSD non-integer the ambiguity parameters 

lumped to the receiver and satellite hardware delays as shown in Equations (20) and (21). 

1 1 1 1 1
ij j i j i j i j i
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   − + + +   



                (21) 

If, however, a Galileo satellite is used as a reference in a tight combination, we obtain the following set of 
BSSD equations: 

, 1 0lj lj lj lj
G E f w PG P Em zpd ISB P  ρ ε∇ + − +∇ −∇ =

                            (22) 

, 1 0lk lk lk lk
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                                  (23) 
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G E f w L L L Em zpd ISB Nρ εΦ∇ + − + +∇ −∇Φ = 

                      (24) 

, 1 1 1 0lk lk lk lk lk
E E f w E E Em zpd N   ρ εΦ∇ + + +∇ −∇Φ = 

                            (25) 

where, 1
lj
LN  and 1

lk
EN  are the BSSD non-integer ambiguity parameters lumped to the receiver and satellite 

hardware delays as shown in Equations (26) and (27). 

1 1 1 1 1

1 1 1 1
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                 (26) 

1 1 1 1 1
lk k l k l k l k l
E E E E E E E E EN N N c c d dλ λ ϕ ϕ δ δ       = − − − + − − −       
                   (27) 

Finally, the per-constellation BSSD equations take the form: 

, 1 0ij ij ij ij
G G f w PG Pm zpd P  ρ ε∇ + +∇ −∇ =

                                 (28) 

, 1 0lk lk lk lk
E E f w PE Em zpd P   ρ ε∇ + +∇ −∇ =

                                (29) 

, 1 1 1 0ij ij ij ij ij
G G f w L L Lm zpd Nρ εΦ∇ + + +∇ −∇Φ = 

                           (30) 

, 1 1 1 0lk lk lk lk lk
E E f w E E Em zpd N   ρ εΦ∇ + + +∇ −∇Φ = 

                           (31) 

where, 1
ij
LN  and 1

lk
EN  are the BSSD non-integer ambiguity parameters lumped to the receiver and satellite 
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hardware delays as shown in Equations (32) and (33). 

1 1 1 1 1
ij j i j i j i j i
L G G G G L L P PN N N c c d dλ λ ϕ ϕ δ δ       = − − − + − − −       
                  (32) 

1 1 1 1 1
lk k l k l k l k l
E E E E E E E E EN N N c c d dλ λ ϕ ϕ δ δ       = − − − + − − −       
                 (33) 

It should be noticed from the above equations that the modified receiver clock error (i.e., the common term 
rGdt ) and the initial phase bias cancel out when forming BSSD with one satellite selected as a reference (i.e., 

tight combination). However, when forming per constellation BSSD, the modified receiver clock error, the inter- 
system bias, and the initial phase bias are all cancelled out. 

4. Sequential Least Squares Estimation 
The sequential least-squares estimation technique is used to obtain the best estimates, in the least squares sense, 
of the unknown parameters. The noise terms in the above observations equations are modeled stochastically us-
ing an exponential function, as described in [6]. They showed that, in comparison with existing stochastic mod-
els such as the general sine function, the use of the exponential model improves the PPP solution precision and 
convergence time. The general linearized form for the above observations equations around the initial (approx-
imate) vector u0 and observables 𝑙𝑙 can be written in a compact form as: 

( ), 0≈ ∆ − − ≈f u l A u w r                               (34) 

where u is the vector of unknown parameters; A is the design matrix, which includes the partial derivatives of 
the observation equations with respect to the unknown parameters u; Δu is the unknown vector of corrections to 
the approximate parameters u0, i.e., u = u0 + Δu; w is the misclosure vector and r is the vector of residuals. The 
sequential least-squares solution for the unknown parameters Δui at an epoch i can be obtained from (Vanicek 
and Krakiwsky, 1986): 

( ) [ ]
11 T 1 T

1 1 1 1ii i i i l i i i i i i

−− −
− − − −∆ = ∆ + + − ∆u u M A C A M A w A u                  (35) 

( ) 11 1 1 T 1 T 1
1 1 1 1ii i i i l i i i i

−− − − − −
− − − −= − +M M M A C A M A A M                       (36) 

( ) 1-1 1 1 T 1 T 1
1 1 1 1i iu i i i i l i i i i

−− − − −
∆ − − − −= = − +C M M M A C A M A A M                  (37) 

where Δui−1 is the least-squares solution for the estimated parameters at epoch i − 1; M is the matrix of the nor-
mal equations; Cl and CΔu are the covariance matrices of the observations and unknown parameters, respectively. 
It should be pointed out that the usual batch least-squares adjustment should be used in the first epoch, i.e., for i 
= 1. The batch solution for the estimated parameters and the inverse of the normal equation matrix are given re-
spectively by [29]: 

0 1 1

11 T 1 T 1
1 1 1 1 1l lx

−− − − ∆ = + u C A C A A C w                          (38) 

0 1

11 1 T 1
1 1 1lx

−− − − = + M C A C A                                 (39) 

where 0
xC  is a priori covariance matrix for the approximate values of the unknown parameters. 

Under the assumption that the observations are uncorrelated and the errors are normally distributed with zero 
mean, the covariance matrix of the un-differenced observations takes the form of a diagonal matrix. The ele-
ments along the diagonal line represent the variances of the code and carrier phase measurements. In our solu-
tion, we consider that the ration between the standard deviation of the code and carrier-phase measurements to 
be 100. When forming BSSD, however, the differenced observations become mathematically correlated. This 
leads to a fully populated covariance matrix at a particular epoch. 

Considering the un-differenced mode, the matrix A and the vector Δu at a particular epoch are given by: 
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where nG refers to the number of visible GPS satellites; nE refers to the number of visible Galileo satellites; 
G En n n= +  is the total number of the observed satellites for both GPS and Galileo systems; x0, y0 and z0 are the 

approximate receiver coordinates; , , , 1, 2, ,G G Gj j j
GX Y Z j n=   are the known GPS satellite coordinates; 

, , , 1, 2, ,E E Ek k k
EX Y Z k n=   are the known Galileo satellite coordinates; 0ρ  is the approximate receiver-  

satellite range. The unknown parameters in the above system are the corrections to the receiver coordinates, Δx, 
Δy, and Δz, the biased receiver clock error 

Gr
dt , the wet component of the tropospheric zenith path delay zpdw, 

the inter-system bias ISB, and the non-integer ambiguity parameters N . It should be pointed out that the num-
ber of unknown parameters in the above system equals 6G En n+ + , while the number of equations equals 
2 2G En n+ . This means that the redundancy equals 6G En n+ − . In other words, at least 6 mixed satellites are 
needed for the solution to exist. In comparison with the GPS-only un-differenced scenario, which requires a 
minimum of 5 satellites for the solution to exist, the addition of Galileo satellites increases the redundancy by nE 
− 1. In other words, we need a minimum of two Galileo satellites in order to contribute to the solution. 

When a GPS satellite is selected as a reference to form the BSSD for both GPS and Galileo observations, the 
design matrix A and the vector of corrections Δu take the form: 
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where 1G refers to the GPS reference satellite. All other parameters are as defined above. The advantage of the 
above system (42) is that the number of unknown parameters is reduced by two (i.e., becomes 4G En n+ + ), in 
comparison with the un-differenced scenario. This, however, comes at the expense of reducing the number of 
BSSD observation equations to ( )2 1G En n+ − . As such, the redundancy remains unchanged and equals 

6G En n+ − . Similarly, we need a minimum of two Galileo satellites in order to contribute to the solution. By 
analogy, the use of a Galileo satellite as a reference to form the BSSD for both GPS and Galileo observations 
leads to: 
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where 1E refers to the Galileo reference satellite. All other parameters are as defined above. Similar to the above 
BSSD scenario, the redundancy remains unchanged and equals 6G En n+ − . 

When two reference satellites are selected to form the BSSD, i.e., per-constellation BSSD, the design matrix 
A and the vector of corrections Δu take the form: 
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(43) 

The major advantage of the above per-constellation (or loose combination) system is that the modified re-
ceiver clock error and the inter-system bias are cancelled out. In addition, the total number of unknown parame-
ters is reduced by 4 to become 2G En n+ + , in comparison with the un-differenced scenario. This, however, 
comes at the expense of reducing the number of BSSD observation equations to ( )2 2G En n+ − . This means 
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that the redundancy remains unchanged and equals 6G En n+ − . Similar to the previous scenarios, the redun-
dancy for the GPS-only scenario is still 5Gn −  and the addition of Galileo satellites increased the overall re-
dundancy to 1En − . As such, we still need a minimum of two Galileo satellites in order to contribute to the so-
lution. However, as indicated by [14], the adjustment model is stronger through the tight combination, i.e., when 
a single satellite is used as a reference. 

5. Results and Discussion 
To verify the developed GPS/Galileo PPP model, GPS and Galileo measurements at six well-distributed stations 
(Figure 1) were selected from the IGS tracking network [28]. Those stations are occupied by GNSS receivers, 
which are capable of simultaneously tracking the GPS and Galileo constellations. The analysis is performed on 
two different days January 1, 2014 and July 8, 2014 for all stations shown in Figure 1. 

The sampling interval for all data sets is 30 seconds, while the time span used in the analysis is three hours, 
which is selected at different times of the day to ensure that the four Galileo satellites are visible at each station. 
GPSPace PPP software of Natural Resources Canada (NRCan) was modified to enable a GPS/Galileo PPP solu-
tion as described above. The positioning results for stations CONZ, and CUT0 (January 1, 2014) and stations 
DLF1, and UNB3 (July 8, 2014) are presented below. Similar results are obtained from the other stations. How-
ever, a summary of the convergence times is presented below for all stations. 

The single-frequency GPS/Galileo PPP solution is implemented through combining the GPS L1 signal with 
the Galileo E1 signal. As mentioned earlier, three different scenarios are considered when processing the data 
sets with the BSSD model, namely (1) a GPS satellite is selected as a reference satellite for both GPS and Gali-
leo observables; (2) a Galileo satellite is selected as a reference satellite for both GPS and Galileo observables; 
and (3) two reference satellites are selected: a GPS reference satellite for the GPS observables and a Galileo sa-
tellite for the Galileo observables. To assess the PPP solution accuracy of the developed single-frequency model, 
un-differenced dual-frequency ionosphere-free linear combination of GPS/Galileo PPP is used as a reference. 
Figure 2 shows the reference solution for July 8, 2014, as an example. As can be seen, the dual-frequency 
GPS/Galileo PPP solution has a sub-decimeter positioning accuracy with approximately 15 minutes conver-
gence time (i.e., the time that the solution takes to converge to a decimetre-level positioning accuracy). 

Figure 3 shows the PPP results for the un-differenced single-frequency GPS/Galileo model. As can be seen, 
the single-frequency GPS/Galileo PPP solution shows a decimetre level accuracy and approximately 100 mi-
nutes convergence time. It should be emphasized that the exponential function is used to model the stochastic  
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Figure 1. Analysis stations. 



A. Afifi, A. El-Rabbany 
 

 
16 

 
Time (min) 

ΔE 

ΔN 
ΔU 

DLF1 - July 8, 2014 

0 10 20 30 40 50 60 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 
Er

ro
r (

m
) 

 
 

Time (min) 

ΔE 

ΔN 
ΔU 

UNB3 - July 8, 2014 

0 10 20 30 40 50 60 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

Er
ro

r (
m

) 

 
Figure 2. Un-differenced ionosphere-free GPS/Galileo PPP solution. 
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Figure 3. Un-differenced single-frequency GPS/Galileo PPP solution. 
 
part of the mathematical model. As shown in [6], the use of the exponential function improves the precision of 
the PPP solution by about 30%, in comparison with the sine function. 

Figure 4 shows the results of the single-frequency BSSD GPS/Galileo PPP model, when a GPS satellite is 
selected as a reference for both GPS and Galileo observables. As can be seen, similar to the un-differenced 
counterpart, a sub-decimeter level positioning accuracy is obtained. However, a reduction of about 35% in the 
convergence time is obtained through the BSSD model, in comparison with the un-differenced single-frequency 
GPS/Galileo solution. 

Figure 5 shows the results of the BSSD GPS/Galileo PPP solution when a Galileo satellite is selected as a 
reference for both GPS and Galileo observables. As expected, similar results to the previous scenario are ob-
tained. This similarity is due mainly to the fact that both BSSD models use tight combination with similar rela-
tive satellite geometry and same redundancy number. 

The results of the third BSSD model scenario, i.e., when a GPS satellite and a Galileo satellite are selected as 
references for the GPS and Galileo observables, respectively, are shown in Figure 6. As can be seen, similar to 
the previous two scenarios, a sub-decimeter level positioning accuracy is obtained. However, only a 15% reduc-
tion in the convergence time is obtained, in comparison with the un-differenced model solution. This moderate 
improvement in the convergence time is likely attributed to the fact that the loose combination is weaker than 
the tight combination, as indicated above. In addition, as the ionospheric delay would not be modelled suffi-
ciently through the GIM, a residual component remains, which would be mapped differently into the unknown 
parameters of the BSSD models. 

Figure 7 shows a summary of the standard deviations (STD) for the obtained station coordinates, which are 
extracted from the solution every 20 minutes. A solution is said to have been converged when the three-dimen- 
sional positioning standard deviation reaches 10 cm. The results of the STD show that the un-differenced 
GPS/Galileo solution takes approximately 100 minutes to reach the decimetre level accuracy. However, this is 
reduced to about 65 minutes when BSSD with one reference satellite is used. On the other hand, when BSSD 
with two reference satellites is used, the solution takes 85 minutes to reach the decimetre level accuracy. As  
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Figure 4. BSSD GPS/Galileo PPP solution using a GPS reference satellite. 
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Figure 5. BSSD GPS/Galileo PPP solution using a Galileo reference satellite. 
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Figure 6. BSSD GPS/Galileo PPP solution using two reference satellites. 
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Figure 7. Summary of standard deviations of obtained station coordinates. 

 
discussed above, this is likely attributed to the relatively weaker adjustment model of the loose combination. 

Figure 8 summarizes the convergence times of all 24 cases considered in our analysis. As shown in Figure 9, 
as far as the solution convergence time is concerned, the best results are obtained when the BSSD model with 
one reference satellite (i.e., a tight combination) is used. 

The inter-system bias for the various receivers is obtained as a by-product of the PPP solution of the un-dif- 
ferenced and tight combination scenarios. Figure 9 summarises the results of the ISB for all stations, based on 
the BSSD single-frequency GPS/Galileo PPP model. The results are almost identical to those obtained the 
through the un-differenced single-frequency GPS/Galileo PPP model. 
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Figure 8. Summary of convergence times for all data sets analysed. (1) Un-differenced model; (2) BSSD 
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model with both a GPS and a Galileo as reference satellites. 
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Figure 9. Summary of ISB results. 

 
As shown in Figure 9, the values of the ISB are stable over the observation time spans. Differences of up to 3 

m can be observed, which indicate that the ISB is receiver/firmware dependent. 

6. Conclusions 
A new PPP model, which combines single-frequency GPS and Galileo system observations in BSSD mode, has 
been introduced in this paper. Three scenarios have been considered when forming BSSD; namely a GPS satel-
lite is selected as a reference, a Galileo satellite is selected as a reference, and two satellites, one GPS and one 
Galileo, are selected as references. It has been shown that a sub-decimetre level positioning accuracy can be ob-
tained with both of the un-differenced and BSSD single-frequency GPS/Galileo PPP models. However, the PPP 
solution of the un-differenced model takes about 100 minutes to converge to a decimetre level positioning accu-
racy. The convergence time of the single-frequency GPS/Galileo PPP solution is improved by 35% and 15% 
when BSSDs with tight and loose combinations are used, respectively. The moderate improvement in the solu-
tion convergence time obtained with the loose combination is likely attributed to its relatively weaker adjust-
ment model in comparison with the tight combination. 
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The values of the ISB have been obtained for various days and receiver types. Almost identical results have 
been obtained with both of the un-differenced and BSSD (tight combination) modes. It has been found that the 
values of the ISB are largely stable over the observation time spans. However, differences of up to 3 m have 
been observed, which suggest that the ISB is receiver/firmware dependent. 
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