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Abstract 
In the present paper Cauchy integral methods have been applied to derive exact and expressions 
for Goursat’s function for the first and second fundamental problems of isotropic homogeneous 
perforated infinite elastic media in the presence of uniform flow of heat. For this, we considered 
the problem of a thin infinite plate of specific thickness with a curvilinear hole where the origins 
lie in the hole is conformally mapped outside a unit circle by means of a specific rational mapping. 
Moreover, the three stress components xxσ , yyσ  and xyσ  of the boundary value problem in the 
thermoelasticity plane are obtained. Many special cases of the conformal mapping and four appli-
cations for different cases are discussed and many main results are derived from the work. 

 
Keywords 
An Elastic Plate, Presence of Heat, Curvilinear Hole, Cauchey Method, Conformal Mapping 

 
 

1. Introduction 
The boundary value problems for isotropic performed plates have been discussed by several authors. Some au-
thors used Laurant’s theorem [1]-[8] to express each complex potential as a power series, and others [9]-[16] 
used complex variable method of Cauchy integral. The extensive literature on the isotropic is now available and 
we can only mention a few recent interesting investigations in refs [17]-[26]. 

In thermoelastic problems for elastic media, the first and second boundary value problems are equivalent to 
two finite analytic functions ( )zφ  and ( )zψ  of one complex argument z x iy= + . These functions must sa-
tisfy the boundary condition, 

( ) ( ) ( ) ( )1 1 1K t t t t f tφ φ ψ′− − =                                  (1) 
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where t denotes the affix of a point on the boundary. In terms of ( )z cω ζ= , 0c > , ( )ω ζ′  does not vanish or 
become infinite for 1ζ > , where the infinite region is outside a unit circle γ . For the first fundamental boun-
dary value problems or the called stress boundary value problems, 1K = − , ( )f t  is a given function of stress. 
While for 1K k= > , ( )f t  is a given function of displacement called the thermal conductivity; we have the 
second fundamental boundary value problems called the displacement boundary value problems. 

The complex potential functions ( )1 tφ  and ( )1 tψ  take the following forms, see [23] 

( ) ( ) ( )1 ln ,
2π 1

X iY c
k

φ ζ ζ ζ φ ζ+
= − + Γ +

+
                            (2) 

and, 

( ) ( )
( ) ( )1 ln ,

2π 1
X iY

k c
k

ψ ζ ζ ζ ψ ζ∗−
= + Γ +

+
                           (3) 

where, ,X Y  are the components of the resultant vector of all external forces acting on the boundary and , ∗Γ Γ  
are complex constants. Generally the two complex functions ( )φ ζ  and ( )ψ ζ  are single value analytic func-
tions within the region outside the unit circle γ  and ( ) ( )0, 0φ ψ∞ = ∞ = . In [27], Muskhelishvili used the ra-
tional mapping, 

( )1 , 0, is real number,z c m c mζ ζ −= + >                            (4) 

for solving the problem of stretching of an infinite plate weakened by an elliptic hole. Sokolonikoff [3] used the 
same rational mapping of Equation (4) to solve the problem of elliptical ring, where the Laurant’s theorem is 
used. This transformation of Equation (4) conformally maps the infinite domain bounded internally by an ellipse 
onto the domain outside the unit circle 1ζ =  in the ζ -plane. The application of the Hilbert problem is used 
by Muskhelishvili [27] to discuss the case of a stretched infinite plate weakened by a circular cut. England [1] 
considered an infinite plate which is weakened by a hypotrochoid hole, conformally mapped onto a unit circle 

1ζ =  by the transformation mapping 

( ) 1, 0, 0nz c m c m
n

ζ ζ −= + > ≤ <                               (5) 

where ( )z ζ′  does not vanish or become infinite outside the unit circle γ , and solve the boundary value prob-
lems. 

The main reason for interest in this mapping is that the general shape of the hypotrochoids is curvilinear po-
lygons, for n = 1 ellipse, for n = 2 a curvilinear triangle, for n = 3 a curvilinear square… etc. In previous papers 
(Abdou et al. [9]-[15] [28] [29]), the complex variable method has been applied to solve the first and second 
fundamental problems for the same domain of the infinite plate with general curvilinear hole c conformally 
mapped on the domain outside a unit circle by using respectively, the rational mapping functions 

1

1 , 0, 1
1

mz c c n
n

ζ ζ
ζ

−

−

+
= > <

−
                                    (6) 

1 2
1 2

1 , 0, 1
1

m nz c c n
n

ζ ζ ζ
ζ

− −

−

+ +
= > <

−
                              (7) 

, 0, 1, 1, 2, ,
1

mz c c n p
n

ζ ζ
ζ

−

−

+
= > < =

−





 
                          (8) 

and 
1 2 3

1 2 3
1 , 0, 1.

1
m m m

z c c n
n

ζ ζ ζ ζ
ζ

− − −

−

+ + +
= > <

−
                        (9) 

In this paper, the complex variable method has been applied to solve the first and second fundamental prob-
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lems for the same previous domain of the infinite plate with a general curvilinear hole C, with three poles and 
presence of heat, conformally mapped on the domain outside a unit circle γ  by the rational mapping functions 

( ) ( )( ) 1 2
1 2

, 0,
1 1

mz c c c n n
n n
ζ ζω ζ
ζ ζ

−

− −

+
= = > ≠

− −



 

                    (10) 

where 0c > , 1, 2, , p= 
, m  and n  are real parameters restricted such that ( )z ζ′  does not vanish or 

become infinite outside the unit circle γ . Consider a heat qyΘ =  flowing uniformly in the direction of the 
negative y-axis, where the increasing temperature Θ  is assumed to be constant across the thickness of the layer, 
i.e. ( ),x yΘ = Θ , and q is the constant temperature gradient. The uniform flow of heat is distributed by the 
presence of an insulated curvilinear hole C. The heat equation satisfies the relations, 

2 2
2 2

2 20,
x y
∂ ∂

∇ Θ = ∇ = +
∂ ∂

                              (11) 

00, r r
n

∂Θ
= =

∂
                                   (12) 

where n is the unit vector perpendicular to the surface. 
Neglecting the variation of the strain and the stress with respect to the thickness of the layer, the thermoelastic 

potential function Φ  satisfies the formula (see [14]), 

( )2 1 ν α∇ Φ = + Θ                                   (13) 

where α  is a scalar which presents the coefficient of the thermal expansion and ν  is Poisson’s ratio. Assume 
that the force of the layer is free of applied loads. 

In this case, formula (1) for the first and second boundary value problems respectively takes the following 
forms, 

( ) ( ) ( ) ( ) ( )1 1 1
0

1 d
2

s

t t t t i iX s Y s s c
x y G

φ φ ψ ∂Φ ∂Φ′+ + = + + − +  ∂ ∂ ∫                (14) 

( ) ( ) ( )1 1 1k t t t t u iv i
x y

φ φ ψ ∂Φ ∂Φ′− − = + − −
∂ ∂

                        (15) 

where the applied stresses ( )X s  and ( )Y s  are prescribed on the boundary of the plane; s is the length meas-
ured from an arbitrary point; u and v are the displacement components; G is the shear modulus and Φ  
represents the thermoelastic potential function. Also, here the applied stresses ( )X s  and ( )Y s  must satisfy 
the following (see [14]), 

( ) d d
d dxx xy
y xX s
s s

σ σ= −                                (16) 

( ) d d
d dyx yy
y xY s
s s

σ σ= −                                (17) 

where ,xx xyσ σ  and yyσ  are the components of stresses which are given by the following relations, 

( )
2 2 2

2 22 2 2 4 ( )xx yy xyi G i G z z z
x yy x

σ σ σ φ ψ
 ∂ Φ ∂ Φ ∂ Φ ′′ ′′− + = − + + +    ∂ ∂∂ ∂ 

            (18) 

( )4 Rexx yy G zσ σ φ λ′+ = − Θ                               (19) 

where ( )1
2
αλ ν= +  is the coefficient of heat transfer. 

The rational mapping ( )z cω ζ=  maps the boundary C of the given region occupied by the middle plane of 
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the layer in the z-plane onto the unit circle γ  in the ζ -plane. Curvilinear coordinates ( ),ρ θ  are thus intro-
duced into the z-plane, which are the maps of the polar conditions in the ζ -plane as given by eiθζ ρ= , 
0 2πθ≤ ≤ . By using the transformation ( )z cω ζ= , Equation (1) reduces to, 

( )( ) ( )
( )

( )( ) ( )( ) ( )( )1 1 1K c c c f c
ω ζ

φ ω ζ φ ω ζ ψ ω ζ ω ζ
ω ζ

− − =
′

                   (20) 

the last formula represents the first and second boundary value problems in the ζ -plane. 
In this study, we use the rational mapping (10) to map the curvilinear hole C of the infinite viscoelastic fluid 

layer outside a unit circle γ . Then, we use the properties of Cauchy integral to obtain the two complex potential 
functions (Goursat functions). After that, we determine the components of stresses. We establish many applica-
tions and special cases from this work. 

2. The Rational Mapping 
The mapping function (10) maps the curvilinear hole C in z-plane onto the domain of the outside unit circle in 
ζ -plane under the conditions that ( )ω ζ′  does not vanish or become infinite outside the unit circle γ . The 
following graphs give the different shapes of the rational mapping (10), see Figure 1. 

3. Method of Solution 
In this section, we use the complex variable method to obtain the two complex functions (Goursat functions) 
( )φ ζ  and ( )ψ ζ . Moreover, the three stress components xyσ , xxσ  and yyσ  will be completely determined. 

The solution of Equation (9) is given by, 
2

2 20 , .
r

q R R x y
R

 
Θ = + = + 

 
                                (21) 

By substituting Equation (19) in Equation (11) and using the definition of 2∇ Φ  in polar coordinates the 
thermoelastic potential function takes the form, 

( ) 2
0 21

ln .
4

qr
zR

ν α+
Φ =                                     (22) 

Also, the stresses components can be adapted in the forms, 

( ) ( ) ( )
2 2

2 2

12 2 Re 2
2xx G z z z z

y x
σ λ φ φ ψ

  ∂ Φ ∂ Φ ′ ′′ ′′= − − + Θ + − −     ∂ ∂   
                  (23) 

( ) ( ) ( )
2 2

2 2

12 2 Re 2
2yy G z z z z

y x
σ λ φ φ ψ

  ∂ Φ ∂ Φ ′ ′′ ′′= − − Θ + + +     ∂ ∂   
                   (24) 

and, 

( ) ( )( )
2

2 Im .xy G z z z
x y

σ φ ψ
 ∂ Φ ′′ ′′= + + ∂ ∂ 

                              (25) 

By using Equation (19) and Equation (20), Equations (21)-(23) becomes 

( ) ( ) ( ){ }2 22 4 Im Re 2 ,xx G z zz z z z M z zσ η φ′= − + + + −                          (26) 

( ) ( ) ( ){ }2 22 4 Im Re 2 ,yy G z zz z z z M z zσ η φ′= + + + +                          (27) 

and, 
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1 20.1, 0.3,

0.9, 1.
n n
m
= − =
= − =

 
 

1 20.1, 0.1,
0.01, 3.

n n
m
= − = −
= − =

 
 

1 20.1, 0.1,
0.01, 3.

n n
m
= − =
= − =

 

 
1 20.1, 0.1,

0.1, 9.
n n
m
= − =
= − =

 
 

1 20.2, 0.2,
0.1, 5.

n n
m
= − =
= =

 
 

1 20.1, 0.2,
0.1, 6.

n n
m
= = −
= − =

 

 
1 20.1, 0.2,

0.01, 10.
n n
m
= − =
= − =

 
 

1 20.1, 0.02,
0.01, 7.

n n
m
= = −
= − =

 
 

1 20.1, 0.02,
0.1, 3.

n n
m
= =
= =

 

 
1 20.08, 0.04,

0.1, 3.
n n
m
= = −
= − =

 
 

1 20.08, 0.04,
0.1, 5.

n n
m
= = −
= − =

 
 

1 20.08, 0.07,
0.03, 12.

n n
m
= − =
= − =

 

 
1 20.08, 0.1,

0.3, 4.
n n
m
= =
= =

 
 

1 20.06, 0.03,
0.03, 8.

n n
m
= = −
= =

 
 

1 20.02, 0.09,
0.03, 6.

n n
m
= − =
= =

 

Figure 1. The different shapes of the rational mapping (10). 
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( ) ( ){ }22 ( 2 Im Re Im ,xy G zz z z M z zσ η= − +                        (28) 

where, 

( )
( )

( ) ( ) ( )
2

0
2

1
, , .

2

r
M z z z z z

zz

ν
η φ ψ

+
′′ ′= = +                        (29) 

After determining the Goursat functions the components of stress are completely determined. 

Using Equation (8), the expression 
( )
( )1

ω ζ

ω ζ −′
 can be written in the form, 

( )
( ) ( ) ( )1

1

ω ζ
α ζ β ζ

ω ζ
−

−
= +

′
                              (30) 

where, 

( )
2

1
.j

j j

h
n

α ζ
ζ=

=
−∑



                                 (31) 

( )( ) ( )

( ) ( )( ) ( )( ){ }
2 23 2

1 2

1 1 1 1 2
3 1 1 2

1 1

1 1 3 2 1

j j j
j

j j j j j j j j j

n mn n n n
h

n n n n n n mn mn n n n mnν ν ν ν ν ν+ − + +
−

+ − −
=

  − − − + − + − + +    

    (32) 

1ν =


, 1, 2j =  and ( )β ζ  is a regular function for 1ζ > . 

Using Equation (2) and Equation (3) in Equation (18), we get 

( ) ( )
( ) ( ) ( ) ( ) ( )1

1 2π 1
X iYKc K c c F

k
ω ζ

ζ φ ζ ζ φ ζ ζ ψ ζ ζ
ω ζ

∗ −
−

 − ′Γ + + − Γ − + Γ − = 
+′   

          (33) 

using Equation (29) in Equation (31), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1K N F cK cφ ζ α ζ φ ζ ψ ζ β ζ φ ζ ζ α ζ β ζ ζ ζ ζ∗ − ′ ′− − − − + = − Γ − Γ      (34) 

taking ζ σ=  for generality, we get 

( ) ( ) ( ) ( ) ( )K Fφ σ α σ φ σ ψ σ σ∗ ∗′− − =                          (35) 

where, 

( ) ( ) ( ) ( )ψ ζ ψ ζ β ζ φ ζ∗ ′= +                             (36) 

( ) ( ) ( ) ( ) ( )1F F cK c Nζ ζ ζ ζ ζ α ζ β ζ∗ −
∗

 = − Γ − Γ + +                   (37) 

( ) ( )2π 1
X iYN c

k
ζ ζ−

= Γ −
+

                              (38) 

and, 

( ) ( )( ) ( )F f c f tζ ω ζ= =                               (39) 

Assume that the function ( )F σ  with its derivatives must satisfy Hölder condition. Our aim is to determine 
the functions ( )φ ζ  and ( )ψ ζ  for the various boundary value problems. For this multiply both sides of Equ-  
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ation (35) by 
( )
d

2πi
σ
σ ζ−

 where ζ  is any point in the interior of γ  an integral over the circle, we obtain 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

1 1 1d d d d
2π 2π 2π 2π

FK
i i i iγ γ γ γ

φ σ α σ φ σ ψ σ σ
σ σ σ σ

σ ζ σ ζ σ ζ σ ζ
∗′

− − =
− − − −∫ ∫ ∫ ∫           (40) 

using Equations (35)-(39) in Equation (40) then applying the properties of Cauchy integral to have 

( ) ( ) ( )
( )

( ) ( )
( ) ( ) 11 1d d

2π 2π
N

K A c
i iγ γ

α σ φ σ σ α σ
φ ζ σ σ ζ ζ

σ ζ σ ζ
∗ −′

− − − = − Γ
− −∫ ∫              (41) 

where, 

( ) ( )
( )

1 d
2π

F
A

i γ

σ
ζ σ

σ ζ
=

−∫ .                                (42) 

The formula (41) represents the integro-differential equation of the second kind with Cauchy kernel. 
To obtain the integral in terms of Equation (41) we use Equation (29) and then apply the residue theorem to 

have, 

( ) ( )
( )

2

1

1 d
2π

j j

j j

h b
c

i nνγ

α σ φ σ
σ

σ ζ ζ=

′
=

− −∑∫                              (43) 

where , 1, 2jb j =  are complex constants which can be determined. 
Also, 

( ) ( )
( )

( )2

1

1 d
2π

j j

j j

N n hN
i n

ν

ν
γ

σ α σ
σ

σ ζ ζ=

=
− −

∑∫                             (44) 

So, Equation (41) reduce to, 

( ) ( ) ( )
2

1

1

j
j j

j j

h
K A c N n cb

n
ν

νφ ζ ζ ζ
ζ

∗ −

=

 − = − Γ + + −∑                      (45) 

Differentiating Equation (45) with respect to ζ  and using the result in Equation (44), we obtain 

( )( ) ( )2
j j j j j j jcKb c n h d N n cb A nν ν ν∗+ Γ + + = −                         (46) 

where, 

( ) 22 21 , 1, 2.j j jd n n jν ν −
= − =                                 (47) 

Hence, we have 

( )2 2 2
j j j j

j
j j

KE h d E
b

c K h d

−
=

−
                                   (48) 

where, 

( ) ( )2
j j j j j jE A n c n h d N nν ν ν− ∗′= − − Γ −                             (49) 

Also, from the boundary condition (35), ( )ψ ζ  can be determined in the form 
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( )
( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )
( )

1 2
1 1

1

2 *
1 2

3

1

2π 1

j
j

j j

j j j
j j j j j j

h
cK B B n

n

ch ch h X iY
b N n n L

K K
ν ν

ω ζ ζ
ψ ζ ζ φ ζ ζ φ

ω ζ ζ

δ δ ζ δ
χ

−
− −

∗ ∗
=

= Γ − + − + ′ −
Γ − + + + + + 

+ 

∑




              (50) 

where, 

( ) ( )
( )

1 d
2π

F
B

i γ

σ
ζ σ

σ ζ
=

−∫                                      (51) 

( )1 d
2π

F
B

i γ

σ
σ

σ
= ∫                                          (52) 

( ) ( ) ( )Nφ ζ φ ζ ζ∗ ′= +                                       (53) 

( ) ( )
1

2π 1
X iYN c

k
ζ ζ −+

= Γ −
+

                                   (54) 

( ) ( )1 d
2π

j
j j

h
L F

iK γ

δ σ σ σ= ∫                                   (55) 

and, 

( )
( )( ) ( )

( ) ( )

( )

2
1

2 2

1

2

3

1 1

1

1

1 2
0 3

1 1
0 otherwise

j j
j

j

j

j

n n

n

n

ζσ σ σ ζ σ σ
δ σ

σ σ ζ

ζ

δ ζ

δ

−

−

 − − − + − =
− −

 + =


= =
 =

=
= 


  













                        (56) 

4. Special Cases 
Now, we are in a position to consider several cases: 

1) For 1 0n = , we have the mapping ( ) 1 , 1,2, ,z c m n pζ ζ ζ− −= + − = 

   discussed by Abdou and 
Kkhar El-din [9], see Figure 2. 

2) For 1,01 == n , we have the mapping ( )1 11z c m nζ ζ ζ−= + −  discussed by El-Sirafy and Abdou [15], see 
Figure 3. 

3) For 1 20, 0n n= = , we have the mapping ( ) 1,0z c m mζ ζ −= + ≤ ≤



. The main reasons of interest in this  

mapping is that the general shapes of the hypotrochids are curvilinear polygons, for 1=  see Muskhelishvili’s 
[27]. For 2=  we have a curvilinear triangle see Abdou [28]. For 3=  a curvilinear square, see Abdou and 
Badr [29], see Figure 4. 

5. Some Applications 
In this section, we assume different values of the given function in the first or second fundamental boundary 
value problems. Then, we obtain the expression of Goursat functions. After that, the components of stresses can 
be calculated directly. 
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0.1, 3, 0.03m n= = =  

 
0.1, 2, 0.03m n= = =  

 
0.1, 5, 0.03m n= = =  

 
0.06, 6, 0.08m n= = =  

 
0.09, 7, 0.02m n= = =  

 
0.09, 9, 0.01m n= = =  

Figure 2. The different shapes of the rational mapping in (1). 
 

 
0.3, 1, 0.2m n= = =  

 
0.2, 1, 0.4m n= = =  

 
0.8, 1, 0.09m n= = =  

Figure 3. The different shapes of the rational mapping in (2). 
 

 
0.7, 1m = =  

 
0.4, 2m = =  

 
0.2, 3m = =  

Figure 4. The different shapes of the rational mapping in (3). 
 

1. Application 1: When the curvilinear centre is not allowed to rotate. At 1= , the rigid curvilinear 
kernel is restrained in its original position by a couple which is not sufficient to rotate the kernel. 

For 2, , e , 0 2π, 0
4 2

iP PK k X Y fθ θ∗ −−
= Γ = Γ = ≤ ≤ = = = , 
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Goursat’s functions in Equations (45) and (50) take the form 

( )
2

1 2

1
e

2
i

j j

cP ck
n

θ τφ ζ ζ
ζ

−

=

− = +
−∑                            (57) 

( )
( )
( ) ( ) ( )

1 2
1 1

14 1
j

j
j j

hcP k n
n

ω ζ ζ
ψ ζ ζ φ ζ φ

ω ζ ζ

−
− −

∗ ∗
=

= − +
′ −∑                   (58) 

where, 

( )
( ) ( ) ( ) ( ) ( )

2 2 2

2

2 cos 2 sin 2
, , .

44 2 1
j j j j

j
j j j j j

ph k n ipn n cP
k h k h n

θ θ
τ α φ ζ φ ζ

α α ∗

+
′= − = = +

+ − −
         (59) 

This application discusses the first fundamental boundary value problem of an infinite layer stretched at infin-
ity by the application of a uniform tensile stress of intensity heat in the negative direction of y-axis. This layer is 
weakened by a curvilinear hole C which is free from stress. 

For 1 0.09n = , 2 0.4n = , 0.8m = − , 0.25p = , the stress components xxσ , yyσ  and xyσ  are obtained in 
large forms calculated by computer and illustrated in the following two cases: 

1) In the thermoelasticity layer, we have the following shapes for the stress components by using the substitu-
tions 0.5G = , 0.1q = , 0 0.75r = , 0.7α = , 0.7ν = , see Figure 5 and Figure 6. 

2) When the study is in the normal layer, we have the following shapes for the stress components, see Figure 
7 and Figure 8. 
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Figure 5. The relation between components of stresses and the angle made on the x-axis. xxσ  ooooooooo; 

yyσ  ______; xyσ  ++++. 
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Figure 6. The ratio of vertical to horizontal stresses. 
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Figure 7. The relation between components of stresses and the angle made on the x-axis. xxσ  
ooooooooooooo; yyσ  ______; xyσ  ++++. 
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Figure 8. The ratio of vertical to horizontal stresses. 

 
2. Application 2: Bi-axial tension 

For ( ), , 0, 0 2π, 0 and 2
2
pK k X Y f t i tθ µ∗= Γ = Γ = Γ = ≤ ≤ = = = , 

Goursat’s functions in Equations (45) and (50) take the form 

( ) ( )( )
2

12
j

j j j j

hcP
k h d n

φ ζ
ζ=

=
+ −

∑                         (60) 

( )
( )
( ) ( ) ( )

1 2
1 1

12 1
j

j
j j

hcP k n
n

ω ζ ζ
ψ ζ ζ φ ζ φ

ω ζ ζ

−
− −

∗ ∗
=

= − +
′ −∑                  (61) 

where, 

( ) ( )
4

cPφ ζ φ ζ∗ ′= + .                             (62) 

This application discusses the first fundamental boundary value problem of an infinite layer stretched at infin-
ity by the application of a uniform tensile stress of intensity heat in the negative direction of y-axis. This layer is 
weakened by a curvilinear hole C which is free from stress. 

For 1 0.09n = , 2 0.4n = , 0.8m = − , 0.25p = , the stress components xxσ , yyσ  and xyσ  are obtained in 
large forms calculated by computer and illustrated in the following two cases: 

1) In the thermoelasticity layer, we have the following shapes for the stress components by using the substitu-
tions 0.5G = , 0.1q = , 0 0.75r = , 0.7α = , 0.7ν = , see Figure 9 and Figure 10. 
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Figure 9. The relation between components of stresses and the angle made on the x-axis. xxσ  ooooooooo; 

yyσ  ______; xyσ  ++++. 
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Figure 10. The ratio of vertical to horizontal stresses. 

 
2) When the study is in the normal layer, we have the following shapes for the stress components, see Figure 

11 and Figure 12. 
3. Application 3: When a couple with a given moment acting on the curvilinear hole and the stresses 

vanishing at infinity 

For 2, , e , 0 2π, 0 and 2
4 2

iP PK k X Y f i tθ θ µε∗ −−
= Γ = Γ = ≤ ≤ = = = , 

Goursat’s functions in Equations (45), (50) take the form 

( )
( )

( )( )
22

1
2 j

j j j j

m n
c i

k h d n
φ ζ µε

ζ=

+
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− −
∑                           (63) 
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∑               (64) 

where, 

( ) ( )( )
( ) ( )( )
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2 2 22

2 2
1

2
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1

1 2
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4π 1 2

1π sin 2 .

j j j

j j j

j
j j j
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ε
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θ
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∑
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Figure 11. The relation between components of stresses and the angle made on the x-axis. xxσ  
ooooooooooooo; yyσ  ______; xyσ  ++++. 
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Figure 12. The ratio of vertical to horizontal stresses. 

 
This application discusses the first fundamental boundary value problem of an infinite layer stretched at infin-

ity by the application of a uniform tensile stress of intensity heat in the negative direction of y-axis. This layer is 
weakened by a curvilinear hole C which is free from stress. 

For 1 0.09n = , 2 0.4n = , 0.8m = − , 0.25p = , the stress components xxσ , yyσ  and xyσ  are obtained in 
large forms calculated by computer and illustrated in the following two cases: 

1) In the thermoelasticity layer, we have the following shapes for the stress components by using the substitu-
tions 0.5G = , 0.1q = , 0 0.75r = , 0.7α = , 0.7ν = , see Figure 13 and Figure 14. 

2) When the study is in the normal layer, we have the following shapes for the stress components, see Figure 
15 and Figure 16. 

4. Application 4: The external force acts on the center of the curvilinear hole 
For , 0K k f∗= Γ = Γ = = , Then, Goursat, s functions in Equations (45), (50) take the form 

( ) ( )
( ) ( )

2 22

2 2 2 2 2 2
1

1 1
2π 1

j j j j j j

j j j j j j

h n kh d X iY h d
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φ ζ
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∑


               (66) 
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
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where, 

( ) ( ) ( )
.

2π 1
X iY

k
φ ζ φ ζ
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+′= −
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                                   (68) 
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Figure 13. The relation between components of stresses and the angle made on the x-axis. xxσ  oooooooooooo; 

yyσ  ______; xyσ  ++++. 
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Figure 14. The ratio of vertical to horizontal stresses. 
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Figure 15. The relation between components of stresses and the angle made on the x-axis. xxσ  oooooooooooo; 

yyσ  ______; xyσ  ++++. 

 
This application discusses the first fundamental boundary value problem of an infinite layer stretched at infin-

ity by the application of a uniform tensile stress of intensity heat in the negative direction of y-axis. This layer is 
weakened by a curvilinear hole C which is free from stress. 
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For 1 0.2n = − , 2 0.2n = , 0.1m = , 5= , 0.25p = , the stress components xxσ , yyσ  and xyσ  are ob-
tained in large forms calculated by computer and illustrated in the following two cases: 

1) In the thermoelasticity layer, we have the following shapes for the stress components by using the substitu-
tions 0.5G = , 0.1q = , 0 0.75r = , 0.7α = , 0.7ν = , see Figure 17 and Figure 18. 

2) When the study is in the normal layer, we have the following shapes for the stress components, see Figure 
19 and Figure 20. 
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Figure 16. The ratio of vertical to horizontal stresses. 
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Figure 17. The relation between components of stresses and the angle made on the x-axis. xxσ  
ooooooooooooo; yyσ  ______; xyσ  ++++. 
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Figure 18. The ratio of vertical to horizontal stresses. 
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Figure 19. The relation between components of stresses and the angle made on the x-axis. xxσ  
ooooooooooooo; yyσ  ______; xyσ  ++++. 

 
 

yy

xx
σ
σ

 

1 2 3 4 5 6 
theta~ 0.5 

0 
-0.5 

-1.5 

-2.5 
-3 

-2 

-1 
 

 

 

xx

yy

σ
σ

 

1 2 3 4 5 6 
theta~ 

-1 

0 

1 

2 

 
Figure 20. The ratio of vertical to horizontal stresses. 

6. Conclusions 
From the previous discussions we have the following results: 

1) We find that the effect of heat is very clear; we find that the values of components stress are reduced with 
existence of heat, while at absence of heat we find the values of components of stresses are increasing. 

2) With increasing angle and with absence ( )f t , we find that 
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and, 
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min and min and .
N HN H

yy yyxx xx

yy xx yy xx

σ σσ σ
σ σ σ σ

      
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4) The components of stresses effected are clear by increasing the values of  . 
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