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Abstract 
An existing weakly nonlinear diffusive instability hexagonal planform analysis for an interaction- 
diffusion plant-surface water model system in an arid flat environment [11] is extended by per-
forming a rhombic planform analysis as well. In addition a threshold-dependent paradigm that 
differs from the usually employed implicit zero-threshold methodology is introduced to interpret 
stable rhombic patterns. The results of that analysis are synthesized with those of the existing 
hexagonal planform analysis. In particular these synthesized results can be represented by closed- 
form plots in the rate of precipitation versus the specific rate of plant density loss parameter 
space. From those plots, regions corresponding to bare ground and vegetative Turing patterns 
consisting of tiger bush (parallel stripes and labyrinthine mazes), pearled bush (hexagonal gaps 
and rhombic pseudo-gaps), and homogeneous distributions of vegetation, respectively, may be 
identified in this parameter space. Then that predicted sequence of stable states along a rainfall 
gradient is both compared with observational evidence and used to motivate an aridity classifica-
tion scheme. Finally this system is shown to be isomorphic to the chemical reaction-diffusion 
Gray-Scott model and that isomorphism is employed to draw some conclusions about sideband in-
stabilities as applied to vegetative patterning. 
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1. Introduction 
In order to explain more fully the occurrence of tiger bush (or banded thicket) patterns in arid flat environments 
[1], Kealy and Wollkind [2] introduced a two-component interaction-diffusion model system based on the 
Klausmeier [3] differential flow instability model but including the diffusion of surface water rather than its ad-
vection. That is, they considered the dimensionless coupled partial differential interaction-diffusion equation 
model for ( ), ,n x y t ≡  plant biomass density and ( ), ,w x y t ≡  surface water content, where ( ),x y ≡  a two- 
dimensional spatial coordinate system and t ≡  time, 

( )
2 2

2 2 2
2 2,       for , n nwn n

t x y
α µ∂ ∂ ∂

− ∇ ∇ +
∂ ∂ ∂

= =+                      (1.1) 

( )2 21 ,1 ww n
t

w wβ= + − − ∇
∂

+
∂                              (1.2) 

defined on an unbounded planar domain with 

( )
1/2 2

2 1
1/2

2

, , 1 1 for 1,
2

DAR M
DL

aa J
L

α β ν ν ν µ
α

= = + − ≥ = ≥ == .         (1.3) 

Here A and L are the rates of precipitation and evaporation for the water; R and M, the rates of water infiltra-
tion and biomass loss for the plants; J, the yield of plant biomass per unit water consumed; and 1D  and 2D , 
the constant dispersal and diffusion coefficients of the plants and water, respectively. 

From a linear stability analysis of its possible critical points, Kealy and Wollkind [2] deduced that system 
(1.1)-(1.2) admitted both a bare ground trivial equilibrium point ( 0n ≡ , 1w β≡ + ) , which existed and was 
stable for all parameter values, and a homogeneous vegetation community equilibrium point ( )1n w≡ ≡  which 
could generate a Turing [4]-type diffusive instability. They then performed a variety of weakly nonlinear insta-
bility analyses on that community equilibrium point finding from a one-dimensional analysis that it bifurcated 
supercritically to form a stationary striped vegetative pattern and from a two-dimensional hexagonal planform 
analysis that a close-packed array of vegetative gaps could occur in a narrow region flanking the marginal sta-
bility curve in their diffusive instability aα −  parameter space for the typical value of 0.001µ =  [5]. Finally, 
Kealy and Wollkind [2] identified these theoretical predictions with tiger and pearled bush patterns, respectively, 
and compared them with numerical simulations of Klausmeier’s [3] model system. Specifically, they showed 
that the predicted wavelength of the tiger bush patterns including the width ratio between stripes and interstripes 
was in very good quantitative agreement with the vegetative bands involving acacia trees in the Go-Gub area of 
Somaliland [6]. To make this comparison Kealy and Wollkind [2] employed the concept of low threshold pat-
terns, originally introduced by Wollkind and Stephenson [7] and Boonkorkuea et al. [8], without explicitly spe-
cifying the mechanism required to pose the proper threshold value for vegetative biomass associated with that 
methodology. After Cangelosi et al. [9], who investigated a model for mussel bed patterning, in order to make 
this selection process more precise it is necessary for us to extend the weakly nonlinear stability analyses of 
Kealy and Wollkind [2] by performing a two-dimensional rhombic planform analysis of the community equili-
brium point of (1.1)-(1.2) as well. 

As a prelude to that investigation, we summarize the hexagonal planform results of Kealy and Wollkind [2] in 
Section 2. We perform the rhombic planform nonlinear diffusive instability analysis of the homogeneous veget-
ative equilibrium point of (1.1)-(1.2) in Section 3. In particular we find that, although square patterns of rhombic 
angle π 2ϕ =  are not stable, rhombic patterns of other characteristic angles do occur. In the process we intro-
duce a threshold-dependent paradigm to interpret those stable rhombic patterns that differs from the implicit zero- 
threshold methodology usually employed for this purpose. We synthesize the results of Sections 2 and 3, in Sec-
tion 4. These synthesized results can be represented by closed-form plots in aα −  parameter space for a fixed 
value of µ . From those plots, regions corresponding to bare ground and vegetative patterns consisting of tiger 
bush (parallel stripes and labyrinthine mazes), pearled bush (hexagonal gaps and rhombic pseudo-gaps), and 
homogeneous distributions of vegetation, respectively, may be identified in this parameter space. Then that pre-
dicted sequence of stable states along a rainfall gradient is both compared with observational evidence and used 
to motivate an aridity classification scheme based upon the vegetative patterning inherent to our system. Unlike 
strictly numerical procedures these analytical stability methods can be employed to determine quantitative rela-
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tionships between system parameters and stable patterns which make it easier to compare theoretical predictions 
with field observations. Finally, we show our model to be isomorphic to the Gray-Scott chemical reaction- 
diffusion system and apply sideband instability results deduced for the latter to nonlinear vegetative pattern for-
mation. 

2. The One-Dimensional and Hexagonal-Planform Results of Kealy and Wollkind 
[2] 

Kealy and Wollkind [2] found that the homogeneous vegetation equilibrium point of (1.1)-(1.2), which existed 
for 2a α> , was linearly stable in the absence of diffusion when 

1 0.β α+ − >                                            (2.1) 

They performed a hexagonal planform analysis of that community equilibrium point of system (1.1)-(1.2) by 
seeking a solution to it that to lowest order satisfied 

( ) ( ) ( ) ( ) ( ) ( )
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where, for ( ), ,i j k =  even permutations of (1, 2, 3), 
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with an analogous expansion for ( ), ,w x y t . 
 
Their one-dimensional pattern formation results can be deduced by taking 

2 3 1 2 3 0A A φ φ φ= = = = ≡                                       (2.5) 

in (2.2) and (2.3)-(2.4). From a linear stability analysis Kealy and Wollkind [2] found that the components of the 
maximum point of the marginal curve in their wave number squared-bifurcation parameter two-dimensional 
space were given by 

( )
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=                        (2.6) 
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with ( ); ,c cσ σ β α µ=  being the most dangerous mode of linear theory. Then, for fixed α  and µ , 0cσ <  
when cβ β> , 0cσ =  when cβ β= , and 0cσ >  when 1 cβ β< < . Thus the locus ( )0 ;cβ β β α µ= =  
served as a marginal stability surface in α µ β− −  three-dimensional space. In addition the locus 

( )0 ;
cca aa σ α µ===  where 

( ) ( ) ( )1 2 1 2; ; ;1 ,
c c c

aσ σ σα µ α β α µ β α µ = +                               (2.8) 

depicted in Figure 1, served as a similar surface in aα µ− −  space. 
Under the conditions of (2.5), the amplitude-phase equations of (2.3)-(2.4) reduced to the Landau equation 

31
1 1 1

d
.

d
~ AA a A

t
σ −                                        (2.9) 
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Figure 1. Three-dimensional plots of the marginal stability 
surface ( );ca a α µ=  of (2.8) with 0cσ =  and the planar 

surface 2a α=  for 2 0.5µ α< ≤  and 0.0001 0.001µ≤ ≤ .  
 

From their one-dimensional nonlinear stability analysis Kealy and Wollkind [2] found that 

( ) ( )1 1,, ,; ;c aaσ σ β α µ α µ= =                                  (2.10) 

where ( )1 ;a α µ  is plotted versus α  in Figure 2 for 2α µ>  and 0.001µ = . That Landau constant, given 
explicitly in the Appendix, had the asymptotic representation [2] 

( ) ( )2
1 0 0 2; ~ 80  as 0 for 2a m mα µ α µ µ α µ α µ+ − → >                      (2.11) 

where 

0
2 710 0.2.

36
m ≅

−
=                                  (2.12) 

Figure 2 consists of two parts: A left-hand part for which 1a  has been plotted for the same α -domain as in 
Figure 1, namely 2 0.5µ α< ≤ ; and a right-hand one, which is an enlargement of the former restricted to the 
lower end of that α -domain. From Figure 2, it can be observed that this curve has a zero at ( )0α µ  characte-
rized by 

( ) ( )1 0 1 00 for 2 , 0 for aa µ α α µ α α µ< < < > >                      (2.13) 

where 

( )0 10 ;α µ µ≅                                  (2.14) 

and a linear asymptote of the form 0m α  which is almost coincident with it when the α -scale of Figure 1 is 
employed. Since for ecologically relevant values of α —e.g., tree 0.045α =  and grass 0.45α =  [3], the con-
straint ( )0α α µ<  was satisfied identically should 0.0001 0.001µ≤ ≤  [5], Kealy and Wollkind [2] consi-
dered 1a  positive and concluded that when cβ β> , the community equilibrium point was stable giving rise to 
a uniform homogeneous vegetative distribution while when 1 cβ β< <  a re-equilibrated state of stationary 
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Figure 2. Plots of the Landau constant ( )1 ;a α µ  of (A.1) versus α  for 2α µ>  with 0.001µ =  (solid line) and its 

asymptotic approximation as 0µ →  given by (2.11) (dashed line). The right-hand panel is an enlargement to illustrate the 
behavior of the approximation near 0α .                                                                         
 
parallel vegetative stripes resulted with amplitude ( )1 2

1 0e c aA σ >=  and dimensional and dimensionless wa-
velength 

( )1 2
22π  an ,d c c c cLDqλ λ λ∗ ==                          (2.15) 

respectively. 
The one-dimensional pattern formation results of Kealy and Wollkind [2] are summarized in the aα −  plane 

of Figure 3 for 0.001µ = . The traces of the Turing bifurcation boundary surface ( );ca a α µ=  and the plane 
2a α=  of Figure 1 are plotted in that figure versus ( )0 0.5α µ α ≤<  when 0.001µ = . Then the regions 

0 2a α< < , ( )2 ;ca aα α µ< <  and ( );ca a α µ>  can be identified with bare ground, stationary striped ve-
getative patterns, and homogeneous vegetative distributions, respectively, in that parameter space. Finally note 
that 2 0cq =  and 1cβ =  should 2α µ=  while (2.1) is satisfied identically for 0 0.5α α< < . 

Wishing to refine their one-dimensional pattern formation predictions summarized in Figure 3, Kealy and 
Wollkind [2] next considered the full two-dimensional hexagonal planform expansions of (2.2) and (2.3)-(2.4). 
Since σ  and 1a  were given by their one-dimensional analysis only 0a  and 2a  needed to be evaluated. 
Proceeding in the same manner as they did with the one-dimensional expansion to determine 1a , Kealy and 
Wollkind [2] employed the relevant Fredholm-type solvability conditions to yield explicit formulae (see the 
Appendix) for the remaining two Landau constants 

( ) ( )0 0 2 2 ;;,;a aa aα µ α µ= =                          (2.16) 

catalogued the critical points of equations (2.3)-(2.4); summarized their orbital stability behavior; and identified 
the potentially stable ones with various vegetative patterns obtaining the following critical point identifications: 
I, homogeneous distributions; II, stripes III+ , spots; and III− , gaps. Note, in this context, that I and II represent 
the same identifications as catalogued in Figure 3. The contour plots relevant to critical points III±  are depicted 
in Figure 4, where Figure 4(a) is for III+  and Figure 4(b), for III− . Here, the spatial variables are measured in 
units of cλ  while dark and light regions correspond to high and low densities, respectively, in accordance with 
the aerial photographs appearing in [6] and [10]. 

Kealy and Wollkind [2] first determined that critical point I was stable provided 0σ < . Then, since the exis-
tence and stability of critical points II and III±  depended upon them, they examined the signs of 1 24a a+ , 

1 2a a+ , 0a , and 2 12a a−  as functions of 2α µ>  by plotting those quantities as well as 2a  versus α  for 
( )0α α µ>  with 0.001µ =  which we reproduce in Figure 5 for 0 0.5α α< ≤ . Kealy and Wollkind [2] found 

that 0a  was identically positive while all the other relevant quantities in Figure 5 were positive for ( )0α α µ> , 
having zeroes less than 0α . Thus, since 0 2 1, 2 0aa a− >  only critical points II and III−  could be stable [11]. 
Note, in this context, that critical point III+  cannot be stable under these conditions and hence this model may 
only predict vegetative gaps but not spots. Finally, Kealy and Wollkind [2] represented their stability results 
graphically in the aα −  plane by generating the loci associated with c iσ σ=  with 1i = − , 1, and 2,  
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Figure 3. Stability diagram in the aα −  plane for our one- 
dimensional interaction-diffusion model system with 

( )0 10α α µ µ≅>  and 0.001µ = , denoting the predicted 
vegetative patterns. The curves depicted in this figure are 
cross-sections of the plane 0.001µ =  with the surfaces of 
Figure 1. Hence, the upper one is the Turing boundary 

( );ca a α µ=  with 0.001µ =  and the lower one, the 

straight line 2a α= .                                         
 

 
(a)                                                  (b) 

Figure 4. (a) A contour plot of the hexagonal array of spots for III+ ; (b) A contour plot of the hexagonal array of gaps for 
III− .                                                                                                        
 
respectively, for 
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( )
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1 2 00 1 0

1 1 22 2
1 2 1 2 1
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from (2.8) 
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Figure 5. Plots of 1 24a a+ , 1 2a a+ , 2 12a a− , and 0a  of (A.1) and (A.2) versus α  for ( )0 0.5α µ α ≤<  with 

0.001µ = , where plots of 1a  and 2a  are presented for purposes of comparison.                                        
 

( ) ( ) ( ); ; ,
ii

a a aσσ α µ α µ α µ= =                                     (2.18) 

where 

( ) ( ) ( ) ( )0 1 2; ; , , .; ;i i a a aσ α µ σ α µ α µ α µ=                                 (2.19) 

We plot these loci along with those of Figure 3 in Figure 6 for ( )0 0.5α µ α ≤<  and 0.001µ = . Using the 
stability criteria for critical points II and III−  [11], Kealy and Wollkind [2] made the morphological predictions 
that stripes could occur for 

1
2 a aσα < <  while hexagonal close-packed arrays of vegetative gaps could occur 

for 
2 1

a aaσ σ−
< < . Since homogeneous distributions of vegetation could occur for ca a> , there were two re-

gions of bistability: Namely, 
1c a aa σ−

< < , where homogeneous distributions and gaps could occur; and, 
2 1

a aaσ σ< < , where gaps and stripes could occur. Further bare ground occurred for 0 2a α< < . 
We close this section with the observation that in order to retain only terms through third-order in our expan-

sions of (2.3)-(2.4) its Landau constants must be in the relation [12] 

( )2
0 1 24a a a+                                     (2.20) 

which is satisfied for those quantities as depicted in Figure 5. 

3. Two-Dimensional Analysis: Rhombic-Planform Nonlinear Stability Results 
Wishing to refine further the two-dimensional hexagonal planform predictions summarized in Figure 6 and to 
investigate more precisely the possibility of occurrence of the low-threshold tiger bush patterns observed by 
Levefer and Lejeune [6], we next consider a rhombic-planform solution of system (1.1)-(1.2) of the form [7] 
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Figure 6. Plots of 

1
aσ−

, 
1

aσ , and 
2

aσ  of (2.19) as well as ca  and 2a α=  of Figure 3 versus α  for ( )0α α µ>  with 

0.001µ = . The right-hand panel is an enlargement depicting the intersection point between the vertical line 0.045α =  
and the 1.57cλ =  locus 3.08a α=  (see Section 4). Note that the plots of 

1
aσ−

 and ca  virtually coincide.                       
 
where 

( ) ( )0000 1, cos sin ,n z x yϕ ϕ= = +                                  (3.2) 

with an analogous expansion for ( ), ,w x y t , such that 

( )2 21
1 1 1 1 1 1~

d
,

d
A aA A
t

A b Bσ − +                                  (3.3) 

( )2 21
1 1 1 1 1 1~

d
.

d
B bB B
t

A a Bσ − +                                  (3.4) 

Here we are employing the notation jlkmn  for the coefficient of each term in (3.1) of the form 
( ) ( ) { }( )1 1 cosj l

cA t B t q kx mz+ . The terms on the right-hand side of (3.3)-(3.4) can be deduced by examining the 
amplitude functions in (3.1) proportional to ( )cos cq x  and ( )cos cq z , respectively. Then substituting this 
rhombic-planform solution of (3.1)-(3.2) into system (1.1)-(1.2), we obtain a sequence of problems, each of 
which corresponds to one of these terms. In order to catalogue the solutions of those problems we introduce the 
following notation. Denoting the interaction terms in (1.1)-(1.2) by 

( ) ( ) ( ) ( )2 2, ; , , ; 1 1 ,n w wn n w w wnnα α β β= = − + −Θ − Ψ                  (3.5) 

we define the expansion coefficients 

( ) ( )1 11,1; , 1,1; ,
!s! ! !

p s p s

ps psp s p sp p sn w n w
θ α ψ β

+ +∂ ∂
= Θ = Ψ

∂ ∂ ∂
=

∂
                 (3.6) 

which are tabulated below: 

( )
10 01 20 21 11 02 12 30 03

10 11 01 20 21 02 30 12 03

, 2 , 0;
2 , 1 , , 0.

θ θ θ θ α θ α θ θ θ θ
ψ ψ β ψ β ψ ψ β ψ ψ ψ ψ

= = = = = = =

= = − = − + = = − = = = =

= =
        (3.7) 

Solving those problems we find that 

( ) ( )1 1,, ,; ;c aaσ σ β α µ α µ= =                                  (3.8) 

while applying the same method of analysis, as employed for deducing (A.1) and (A.2), to the 2j = , 1l m= = , 
0k =  system yields the Fredholm-type solvability condition for the second rhombic-planform third-order Lan-

dau constant 
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(1)
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b                                     (3.10) 

as well as the solutions for the relevant second-order systems are catalogued in the Appendix. 
Having developed these formulae for its growth rate and Landau constants, we now turn our attention to the 

rhombic-planform amplitude Equations (3.3)-(3.4), which possess the following equivalence classes of critical 
points ( )0 0,A B : 

2 2
0 0 0 0 0 0 0

1 1 1

; II : , 0; V :  with I : 0 .B A B A B A
b

A
a a
σ σ

= = = =
+

= =              (3.11) 

Assuming that 1 1 1, 0aa b+ >  and investigating the stability of these critical points one finds that [7]: 

1 1 1 1I is stable for 0; II, for 0, and V, for 0, .;b a a bσ σ σ< > > > >          (3.12) 

Note that I and II, as in the one-dimensional analysis of the previous section, represent the uniform homoge-
neous and supercritical banded states, respectively, while V can be identified with a rhombic pattern possessing 
characteristic angle ϕ  [7]. 

We now use these criteria to pursue those goals stated at the beginning of this section. Toward that end, we 
first plot ( )1 , ;b α ϕ µ  versus ( ]0 ,0.5α α∈  for 0ϕ = , π 4 , 5π 13 , and π 2  with 310µ −=  in the four 
parts of Figure 7, respectively, each of which also includes a plot of the 1a  of Figure 5. Here 0ϕ =  
represents a limiting case where the rhombic pattern reduces to parallel stripes while π 2ϕ =  represents a 
square planform (see below). Upon comparing 1b  with 1a  in Figure 7, we see that 1 12b a=  for 0ϕ = , 
 

 
(a)                           (b) 

 
(c)                           (d) 

Figure 7. Plots of ( )1 , ;b α ϕ µ  of (3.9)-(3.10) (dashed curve) and ( )1 ;a α µ  of (A.1) (solid curve) versus ( )0 ,0.5α α∈  

with 0.001µ =  for ϕ =  (a) 0; (b) π 4 ; (c) 5π 13 , and (d) π 2 .                                                
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1 1a b>  for π 4ϕ =  and 5π 13  and 1 1b a>  for π 2ϕ = . Hence, since the latter condition violates the sta-
bility criterion of (3.12), we can conclude that stable square patterns do not occur for this problem when 

310µ −= . From (3.11)-(3.12) we can deduce that, to demonstrate conclusively a rhombic pattern of angle ϕ  
exists and is stable, we must show that 1 1 0a b± >  or, equivalently after Geddes et al. [13] defining the ratio of 
these Landau constants by γ , that 

( ) ( )
( )

1

1

, ;
, ;

;
1 1,

b
a
α ϕ µ

γ α ϕ µ
α µ

− < = <                                (3.13) 

provided, in addition, that 0σ >  or cβ β< . Next, we plot this ratio of Landau constants γ  versus [ ], π0ϕ ∈  
for the fixed values of 310µ −=  and 0.045α =  in Figure 8. Restricting ourselves to the interval of interest 

[ ]π 20,ϕ ∈ , we see from this figure that there are two bands of stable rhombic patterns flanking π 3ϕ =  for 
( )1 2

,l lϕ ϕ ϕ∈  or ( )1 2
,r rϕ ϕ ϕ∈  when cβ β<  where 

1 2 1 2
0.3279, 0.7940, 1.2055, 1.2556,l l r rϕ ϕ ϕ ϕ= = = =                  (3.14) 

which have been designated by vertical lines. Both of these lie between 1γ = −  and 1γ = , which have been 
designated by horizontal lines. In particular, consistent with Figure 7(b) and Figure 7(c) when 0.045α = , note 
that ( )1 2

π 4 ,l lϕ ϕ∈  while ( )1 2
5π 13 ,r rϕ ϕ∈ . In this context, observe that, for the special case of 1 0b > , (3.13) 

reduces to 0 1γ< <  or 1 1a b> . Observe from Figure 8 that 

( )0.045,0;0.001 2,γ =                                  (3.15) 

which is consistent with Figure 7(a). Also note that this figure has been drawn for the extended interval 
[ ]π 2, πϕ ∈  in order to demonstrate graphically the symmetry about π 2ϕ =  characteristic of rhombic pat-

terns since 

( ) ( )., π ; , ;γ α ϕ µ γ α ϕ µ=−                                  (3.16) 

Here, properties (3.15) and (3.16) are a consequence of mode interference occurring exactly at 0ϕ =  and 
modal interchange, respectively [14]. 

We have deferred until now a detailed morphological interpretation of the rhombic patterns that can be identi-
fied with critical point V for the values of the characteristic angle ϕ  relevant to Figure 7. Then, to lowest or-
der, the equilibrium vegetative pattern associated with that critical point satisfies 

( ) ( ) ( ) ( )0~ 1 ,  for c, os si, n ,A g x z z x yn x y t ϕ ϕ+ = +                      (3.17) 

where 
 

 
Figure 8. A plot of γ  of (3.13) versus ϕ  for 0.045α =  and 0.001µ = . 



B. J. Kealy-Dichone et al. 
 

 
1266 

( ) ( ) ( )π, cos 2 cos 2 .πc cxg x zz λ λ= +                            (3.18) 

The three parts of Figures 9-12 are threshold contour plots of (3.18) for 0ϕ = , π 4 , 5π 13 , and π 2  
with threshold values of 1− , 0, and 1, respectively. Here the spatial variables are again being measured in units 
of cλ  and regions exceeding that threshold in each part appear dark while those below it appear light. Hence 
from left to right the parts of these figures correspond to what Wollkind and Stephenson [7], Boonkorkuea et al. 
[8], and Cangelosi et al. [9] termed lower, zero, and upper threshold patterns, respectively. In this context note 
that ( ), 2g x z ≤ . Traditionally, most pattern formation analyses of this type have used the dimensional homo-
geneous vegetative solution value of eN  where [2] 

2
eRN Lβ =                                      (3.19) 

 

 
Figure 9. Striped patterns relevant to ( ),g x x  of (3.17)-(3.18) for 0ϕ =  with threshold values from left to right of (a) 

1− , (b) 0, and (c) 1.                                                                                        
 

 
Figure 10. Rhombic patterns relevant to ( ),g x z  of (3.17)-(3.18) for π 4ϕ =  with threshold values from left to right of 
(a) 1− , (b) 0, and (c) 1.                                                                                           
 

 
Figure 11. Rhombic patterns relevant to ( ),g x z  of (3.17)-(3.18) for 5π 13ϕ =  with threshold values from left to right of 
(a) 1− , (b) 0, and (c) 1.                                                                                        
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Figure 12. Square patterns relevant to ( ),g x z  of (3.17)-(3.18) for π 2ϕ =  with threshold values from left to right of (a) 

1− , (b) 0, and (c) 1.                                                                                         
 
as the threshold to trigger the color change from light to dark (see Figure 4). Thus all spatial regions characte-
rized by e eN NN n= <  appear light and those characterized by eN N≥ , dark, where again light regions cor-
respond to low plant biomass density or bare ground and dark ones to high plant biomass density. This is equiv-
alent to our zero threshold cases of Figures 9-12 upon assuming, without loss of generality, that 0 0A > . Ex-
plicitly denoting 

( ) ( ) ( ); ; ;  with 1, 1,  and 2,
i i iσ α µβ α µ β α µ = −=                      (3.20) 

Kealy and Wollkind [2] plotted ( );iβ β α µ=  for 1i = − , 0, and 1, as well as the marginal stability curve 
( )0 ;cβ β β α µ= =  in the α β−  plane with 0.001µ =  for 0 4α α< < . Analogous to the morphological 

stability predictions of Figure 6, they concluded that homogeneous distributions could occur for cβ β> , 
stripes for 11 β β< < , and gaps for 2 1β β β−< < . We reproduce these results in Figure 13 for 0 0.5α α< ≤  
and defining 

( ) ( ) 1 2
2; ; ,cN L Rα µ β α µ=                                (3.21) 

adopt the protocol that cN  represents this threshold instead. Then, where 2β β>  or e cN N> , the lower 
threshold patterns of Figures 9-12 would occur while, where 2β β<  or ceN N< , the upper threshold patterns 
would occur. Given their similarity of appearance to the hexagonal vegetative patterns of Figure 4 we shall now 
label these lower and upper threshold rhombic vegetative arrays as pseudo gaps and pseudo spots and denote 
them by V−  and V+ , respectively. In this context, after Sekimura et al. [15], the lower and upper threshold 
patterns of Figure 12 could be labeled as square gaps and square spots, respectively. 

4. Synthesis, Aridity Classification Scheme, and Comparisons 
We first wish to synthesize the morphological stability predictions summarized in Section 2 and developed in 
Section 3, respectively. To do so, we begin by considering our rhombic pattern formation results of the latter 
section in conjunction with the hexagonal pattern formation ones of the former section. Extrapolating from the 
conclusions of Golovin et al. [16] and Schatz et al. [17], who demonstrated theoretically and experimentally, 
respectively, that square patterns only occurred for Marangoni convection with poorly conducting boundaries in 
the neighborhood of the marginal stability curve where supercritical Bénard cells but not rolls would normally 
be predicted from a hexagonal planform analysis, we can deduce that our stable rhombic vegetative patterns will 
only occur in the region of parameter space satisfying 1 cβ β β< <  in Figure 13 or, equivalently, 

1 ca a aσ < <  
in Figure 6. Since 1 2β β>  (see Figure 13), these stable rhombic patterns will be of the lower threshold V−  
variety or pseudo gaps. Hence, we can synthesize our morphological stability predictions of Section 2 and Sec-
tion 3 by means of Table 1 which identifies the relevant regions of parameter space in Figure 6 and Figure 13 
with the stable vegetative patterns that can occur in those regions. 

Observe from Figure 6 that the plot of 
1

aσ−
 seems to be visibly coincident with the Turing boundary ca . In 

this context, note that, for the parameter value of 0.045α =  relevant to tiger bush [3], 
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Figure 13. Plots of the marginal curves of (2.6)-(2.7) and (3.20)-(3.21) versus ( )0 ,0.5α α∈  with 0.001µ = . 

 

1 1 2
0.1448, 0.1442, 0.1 0.1386, 2 0.09009 .1 8,ca a aa aσ σ σ α

−
= = = == =          (4.1) 

The locus 0.045α =  is designated by the vertical line appearing in Figure 6. Since the behavior portrayed in 
(4.1) occurs for all ( ]0 ,0.50α α∈  and deviations of this sort are well within the allowable observational error, 
we shall take 

1 ca aσ−
≅                                         (4.2) 

in what follows. Under this simplification the rainfall column of the morphological stability predictions of Table 
1 reduces to that of Table 2. 

We represent generic versions of these patterns in Figure 14. Here we have made use of the fact that 
2

aσ  
serves as the critical threshold which can be deduced from our adoption of 2β  for that purpose in conjunction 
with Table 1. Hence we may conclude that lower, zero, or upper threshold patterns occur for a greater than, 
equal to, or lesser than 

2
aσ , respectively. Note that the gap and pseudo gap patterns depicted in Figure 14 are 

of the lower threshold type since they occur for 
2

a aσ>  as opposed to the gap pattern of Figure 4(b) which 
was implicitly of the zero-threshold type while the depicted stripe patterns are of all the three threshold types 
appearing in Figure 9. We now after von Hardenberg et al. [18] offer an aridity classification scheme along a 
rainfall gradient in Table 3 based upon the results of Table 2 particularized to those values of (4.1) for

0.045α =  and 0.001µ = . 
Kealy and Wollkind [2] compared their theoretical predictions with relevant observational evidence involving 

periodic self-organized vegetative patterns of tiger and pearled bush occurring in homogeneous ecosystems (re-
viewed by Rietkerk et al. [19]). Tiger bush tends to consist of parallel vegetative stripes. When the ground sur-
face slopes, these stripes migrate upslope while when that surface is practically flat static banded vegetation 
patterns result. Couteron et al. [1] catalogued those differences between these two-types of banded thicket pat-
terns. The static banded states provided good qualitative agreement with tiger bush patterns found in arid flat 
environments while the upslope migrating stripes predicted by Klausmeier [3], Sherratt [20], and Sherratt and 
Lord [21] provided such agreement with those found in sloping environments. Hence, Wollkind and Kealy [2]  
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(a)                                                     (b) 

 
(c)                                    (d) 

Figure 14. Predicted generic vegetative patterns relevant to Table 3 for (a) 
1 ca a aσ < <  Pseudo Gaps and Gaps; (b) 

2 1
a aaσ σ< <  Gaps and Low-threshold Stripes; (c) 

2
a aσ= , Zero-threshold Stripes; (d) 

2
2 a aσα < < , High-threshold Stripes.                  

 
Table 1. Synthesized morphological stability predicitions for Figure 6 and Figure 13.                                

β  range a  range Stable patterns 

1β β−>  
1

a aσ−
>  Homogeneous 

1cβ β β−< <  
1c a aa σ−

< <  Homogeneous and gaps 

1 cβ β β< <  
1 ca a aσ < <  Gaps and pseudo gaps 

2 1β β β< <  
2 1

a aaσ σ< <  Gaps and stripes 

21 β β< ≤  
2

2 a aσα < ≤  Stripes 

 0 2a α< <  Bare ground 

 
Table 2. Simplified morphological stability predictions along a rainfall gradient.                                      

a  range Stable patterns 

1 ca a aσ−
> ≅  Homogeneous 

1 ca a aσ < <  Gaps and pseudo gaps 

2 1
a aaσ σ< <  Gaps and stripes 

2
2 a aσα < ≤  Stripes 

0 2a α< <  Bare ground 

 
identified their parallel stationary diffusive instability stripes with those tiger bush patterns found on plateaus. In 
order to demonstrate that their model also provided good quantitative agreement with observed tiger bush pat-
terning, they considered Figure 1 of Lefever and Lejeune [6] which is a photograph of regular parallel stripes  
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Table 3. Aridity classification scheme along a rainfall gradient for 0.045α = .                                        

Aridity classification a  range Stable patterns 

Dry-subhumid 0.1442a >  Homogeneous 

Semiarid 0.14420.1198 a< <  Gaps and pseudo gaps or stripes 

Arid 0.0900 0.1198a< <  Stripes 

Hyperarid 0 0.0900a< <  Bare ground 

 
consisting of Acacia bussei trees in the Go-Gub area of Somaliland. These stripes are about 100 m wide while 
the width of the separating interstripes is about 50m. Thus the dimensional wavelength associated with this pat-
tern is approximately 

15 m.0cλ
∗ =                                             (4.3) 

To compare these predicted pattern wavelengths of (2.15) with this result, they first reformulated the wave-
number expression of (2.6) by solving the marginal stability curve ( );cβ β α µ=  for α µ  to obtain 

( )3 1 2 2 1 ,α µ β β β= − + −                                     (4.4) 

and then substituting (4.4) into (2.6) found that 

( )2 1 2 1 .cq β β β= − + −                                      (4.5) 

Now, employing this formula of (4.5) in (2.15) and making use of the definition of β  from (1.3), they 
represented 

( )0 ,cλ λ α α=                                         (4.6) 

and 

( ) ( )1 2
2 0 .;c LDλ λ α α∗ =                                     (4.7) 

Introducing the evaporation rate and surface water diffusion values from Klausmeier [3] and Rietkerk et al. 
[5], respectively, 

2
2yr  and m d4 100 ,DL ==                                      (4.8) 

into (4.6)-(4.7) then yielded 

95.5 ,mc cλ λ∗ =                                          (4.9) 

which, upon comparison with (4.3), implied that 
1.57.cλ =                                          (4.10) 

Finally, inverting (4.6), Kealy and Wollkind [2] obtained 

( ) ( ) 1 2 1 2 with 1 ,c c c cs za s zλ α λ = +=                            (4.11) 

where 

( )22 4 2 1  and π .2c c c c c cqz q q q λ= − + + =+                          (4.12) 

They then used (4.11)-(4.12) to plot lines of various constant wavelength cλ  in the striped patterned region 
in their figure analogous to our Figure 3 which we reproduce in Figure 15 but for ( )0 0.5α µ α ≤<  with 

0.001µ = . From (4.11)-(4.12), Kealy and Wollkind [2] deduced that the 1.57cλ =  contour in Figure 15 satis-
fied the linear relationship 

8 .3.0a α=                                    (4.13) 
Recalling that tree 0.045α = , this corresponds to tree 0.1386a =  and is consistent with Klausmeier’s [3]  
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Figure 15. A reproduction of the aα −  plane of Figure 3 denoting the lines of various constant wavelength cλ  as 
determined by (4.11)-(4.12) in the striped vegetation patterned region. Here the line 2a α=  corresponds to cλ →∞ .           
 
assertion that [ ]tree 0.077,0.230a ∈ . These results are catalogued in Table 4 and represented graphically in 
Figure 6 by the point of intersection between the vertical line 0.045α =  and the linear locus of (4.13). 

Observed from Table 2 and Figure 14, that stripes of this sort, occurring at the upper bound of allowable a - 
values for such patterns in what we have classified as the semiarid region by Figure 3, are of the low-
er-threshold variety. In order to obtain the required 2 to 1 width ratio between stripes and interstripes, it is only 
necessary that we adopt a critical threshold of 1 2eA−  [2]. Note that this corresponds to the lower threshold 
part of Figure 9 which was for a threshold value of 1−  since ( ) ( ), 2cos 2π cg x z x λ=  when 0ϕ = . Antic-
ipating this result, that part of Figure 9 has been employed as the representative lower-threshold stripe pattern in 
Figure 14. Hence our prediction of vegetative parallel stripes is in both good qualitative and quantitative agree-
ment with these tiger bush patterns made up of acacia trees. 

We conclude this discussion with an ecological interpretation of the hexagonal close-packed vegetative dis-
tribution of gaps and rhombic arrays of pseudo gaps also predicted in the region classified as semiarid in Table 
3. Such patterns are generally identified with pearled or spotted bush made up of bare spots uniformly distri-
buted in dense vegetation or vegetative nets within which interior patches of low density occur [8]. In this con-
text, Deblauwe et al. [22] reported a region in Sudan where only gapped and one-dimensional isotropic vegeta-
tive patterns occurred with a transition from the former to the latter as rainfall decreased. An occurrence of this 
sort is consistent with our model’s morphological predictions summarized in Table 3. 

We close by discussing our results in relation to those obtained for the Gray-Scott chemical reaction-diffusion 
model system. Recently, van der Stelt et al. [23] performed a nonlinear stability analysis in the limit of large 
advection on a one-dimensional version of what they termed a Generalized Klausmeier-Gray-Scott model, 
which when restricted to Fickian diffusion can be shown to be equivalent to the one treated by Ursino [24] who 
performed a linear stability analysis of the Klausmeier model including surface water diffusion as well. Further, 
van der Stelt et al. [23] stated that the nonlinear stability results of Morgan et al. [25] on the one-dimensional 
Gray-Scott model were strongly related to the corresponding ones of Kealy and Wollkind [2]. To show the  
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Table 4. Parameter values for acacia trees relevant to tiger bush patterns of wavelength 150 m.                            

α  a  cλ  cλ
∗  

0.045 0.1386 1.57 150m 

 
validity of this statement, we first need to consider the Gray-Scott nondimensionalized reaction-diffusion model 
system [26] for the chemical species ( ), ,U U X Y τ=  and ( ), ,V V X Y τ=  where ( ),X Y ≡  a two-dimen- 
sional co-ordinate system and τ ≡  time given by 

( ) 2
21 ,UF U UU D UV U

τ
−

∂
+ ∆

∂
= −                                   (4.14) 

( )2
2 ,VUV F k V DV V

τ
= + +

∂
− ∆

∂
                                   (4.15) 

defined on an unbounded planar domain. Here, 2 2 2 2
2 X Y∆ ≡ ∂ ∂ + ∂ ∂  and ,U VD  are the species diffusion 

coefficients while F and k represent flow and reaction rates, respectively. Now introducing the rescaled variables 
and parameters 

( ) ( ) 0 0,, , , , ,x y X Y d t F n V V w U Uτ= = = =                      (4.16) 

where 

( ) ( )0 0, , 1 1 , , ,UU VD F Fd V U k F D DFβ β α µ= + =+= = =         (4.17) 

system (4.14)-(4.15) is transformed into our interaction-diffusion model system (1.1)-(1.2). van der Stelt et al. 
[23] formulated their Generalized Klausmeier-Gray-Scott model from the traditional Gray-Scott model (4.14)- 
(4.15) by adding an advection term of the form 

C U
X
∂
∂

                                          (4.18) 

to the right-hand side of (4.14) and letting 

F k E+ =                                          (4.19) 
in (4.15) where E was an unconstrained constant independent of F. Then from (4.17) and (4.19) we can make 
the identification that 

.E Fα =                                          (4.20) 

Observe that when 0C =  and 2 2
2 X∆ ≡ ∂ ∂  this reduces to the one-dimensional Gray-Scott model system 

analyzed by Morgan et al. [25]. Then by virtue of the conversion demonstrated above that model is isomorphic 
to the one-dimensional Kealy-Wollkind [2] interaction-diffusion system (1.1)-(1.2) with 2 2 2x∇ ≡ ∂ ∂ . 

So far we have limited our discussion to analyses for which the wavenumber was restricted to the critical wa-
venumber of linear stability theory alone. In order to investigate the consequence of considering other wave-
numbers in the instability sideband centered about this critical wavenumber, we would need to convert our Lan-
dau-type amplitude equations in time to Ginzburg-Landau partial differential equations by adding the appropri-
ate spatial derivative terms to them. That was precisely what Morgan et al. [25] did in their analysis of the Gray- 
Scott model. In particular for 0.01µ =  ( 1UD = , 0.01VD = ) and 0.96α =  ( 0.09F = , 0.86E = ), they 
showed that stationary periodic solutions would occur in a subinterval of that instability interval (the so-called 
Busse bubble of the Eckhaus side-band). Given the isomorphism just described, this result may be directly ap-
plied to our problem. Then, as reviewed in detail by Wollkind et al. [12], a two-dimensional analysis would 
yield two additional instabilities besides these parallel modes: Namely, zig-zag and cross-band relevant to the 
interaction of oblique and perpendicular modes, respectively. In the semiarid and arid regions of Table 3 where 
stable parallel stripes are predicted, the equivalence class designated as II in Section 2 actually contains three 
solutions making angles of 60˚ with each other, no two of which can be stable simultaneously [27]. All of these 
modes when randomly selected by initial conditions can collectively produce quite complicated labyrinthine 
mazes [8], which are also characteristic of certain tiger bush vegetative patterns found in arid flat environments 
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[19]. Such an occurrence is also consistent with the type of isotropic one-dimensional patterns found by Deb-
lauwe et al. [22] in the Sudan region described earlier. 

Note that the parameter values 1 2µ =  ( 2U VD D= , 510VD −= ) and 3.95α =  ( 0.02F = , 0.059k = ) for 
the Gray-Scott system (4.14)-(4.15) relevant to modeling its specific chemical reaction do not produce Turing 
patterns [28]. This raises the question of over what parameter ranges our results are valid. From condition (2.1) 
and the fact that 1β ≥ , we require 

1 2 0.β α α+ − ≥ − >                                    (4.21) 

This condition is certainly satisfied by the ecologically meaningful α  and µ  ranges depicted in Figure 1 
([3] [5]) for which 

( )010 0.5, 0.000 0.1 001.µ α µ α µ< ≤ ≤≅ <                      (4.22) 

When (4.21) is violated, Klausmeier’s [3] nonspatial model can produce limit cycles oscillating about the 
community equilibrium point or excitable behavior related to the trivial equilibrium point. Note that the 
Gray-Scott model system (4.14)-(4.15) having no parameter restriction of this sort behaves very differently. 
Thus not all results deduced for that chemical reaction can be directly extended to our ecological interaction. 

Finally, recalling that 1e en w= =  is the community equilibrium point of the Kealy-Wollkind [2] interac-
tion-diffusion model system (1.1)-(1.2), then from (4.16)-(4.17) 

0 0, ,e eV UV U= =                                      (4.23) 

represents the corresponding equilibrium point of the Gray-Scott reaction-diffusion model system (4.14)-(4.15). 
Hence from (4.17) and (4.23) we may conclude that 

2 ,eV Fβ =                                          (4.24) 

which is equivalent to (3.19). 
We end by restating von Hardenberg et al.’s [18] contention that the power of model systems such as ours of 

(1.1)-(1.2) is their predicted sequence of stable states along a rainfall gradient can be used to motivate aridity 
classification schemes of the sort offered in Table 3 that, in general, can be characterized by three rainfall thre-
sholds 

2
2 ,ca aσα < <                                    (4.25) 

which, when particularized to tree 0.045α =  for acacia trees, become 

0 1 20.0900 0.1198 0.1442.p pp = < = < =                      (4.26) 

Here we are employing the notation of von Hardenberg et al. [18] for these three rainfall thresholds and in 
Table 3 introduced the following possible aridity classes based upon the inherent vegetative states of our sys-
tem: 

Dry-subhumid ( )2a p> —The only vegetative state the system supports corresponds to a uniform homoge-
neous distribution. 

Semiarid ( )1 2p a p< < —The only vegetative states the system supports correspond to gaps and pseudo gaps 
or stripes of lower threshold type. 

Arid ( )0 1p a p< < —The only vegetative state the system supports corresponds to stripes of upper threshold 
type. 

Hyperarid ( )00 a p< < —The only possible stable state the system supports is bare ground. 
As noted by von Hardenberg et al. [18] the utility of the prospective aridity classification scheme is that it al-

lows for future predictions for a dryland region based upon its present vegetative state. Recalling that the bare 
ground state always exists and is stable, regions whose aridity classes imply only the existence of this stable 
state or its coexistence with the occurrence of upper threshold vegetative patterns are vulnerable to desertifica-
tion which can then be reversed by the land management strategies of crust disturbance for soil, seed augmenta-
tion for plants, and irrigation for surface water. Meron et al. [29] provided a positive-feedback cycling mechan-
ism to explain the formation of bare patches characteristic of vegetative patterning along such a precipitation 
gradient. Note that a process of this sort occurs in all directions for bare gaps or pseudo gaps but only in two 
directions for bare interstripes. 
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In summary, after reprising the one-dimensional and hexagonal planform results of Kealy and Wollkind [2] 
for their interaction-diffusion plant-surface water model system in an arid flat environment, we extended that 
analysis by performing a rhombic planform analysis as well. We found that, although square vegetative patterns 
could not occur for our system, rhombic arrays of other characteristic angles included in two bands flanking 
π 3  were allowable. These occurred in that region of our diffusive instability parameter space where only sta-
ble gapped patterns but not stripes or uniform homogeneous distributions were predicted by the hexagonal anal-
ysis. Defining a critical plant biomass threshold to interpret such rhombic arrays, those patterns were of a lower 
threshold type or pseudo gaps. 

Our main result could be represented by closed form plots in the rainfall a versus plant loss α  dimension-
less parameter space for an appropriate fixed value of plant biomass-surface water diffusivity ratio µ . Since the 
upper boundary of the region where gaps can occur virtually coincided with the Turing marginal stability curve 
in that parameter space, we took them to be equivalent. Under this simplification, we identified regions in that 
parameter space corresponding to bare ground, stationary striped vegetative patterns of upper plant biomass 
threshold type, bistability between vegetative gaps and stripes or pseudo gaps of lower plant biomass threshold 
type, and homogeneous distributions of vegetation as the rainfall parameter a was increased. Then that predicted 
sequence of stable states along a rainfall gradient was shown to be in agreement with tiger and pearled bush pat-
terns observed on arid plateaus. In addition, we showed our system to be isomorphic to the Gray-Scott chemical 
reaction-diffusion model and used that isomorphism to draw some conclusions about side-band instabilities as 
applied to vegetative pattern formation. 

Finally, we introduced an aridity classification scheme, with classes based upon the inherent vegetative pat-
terns included in that predicted morphological sequence along a rainfall gradient, which could be used both to 
forecast the possibility of desertification and to propose land management strategies to reverse this process. Im-
plicit to our continuum formulation were the assumptions that the pattern wavelength was much greater than the 
mean coverage diameter of an individual plant but much less than the length scale characteristic of the arid en-
vironment which allowed us to have considered our interaction-diffusion equations on an unbounded spatial 
domain [30]. 

We conclude by noting that although these results of our weakly nonlinear stability analyses are only asymp-
totically valid in the neighborhood of the marginal stability curve and the Go-Gub acacia tiger bush example as 
well as the occurrence of the rhombic vegetative arrays were restricted to such a region, numerical simulations 
of pattern formation for several reaction-diffusion systems or model evolution equations have shown that theo-
retical predictions of this sort can often be extended to those regions of the relevant parameter space relatively 
far from the marginal curve [8] [31]. 
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we catalogue the explicit formulae for the Landau constants appearing in Kealy and Wollkind [2]: 
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and 

( )20 11 11 112 .r n wn= +  

Observe, as Wollkind and Stephenson [7] have pointed out, that the expression for 2a  does not contain the 
component 0220 c

n
β β=

 since its coefficient vanishes identically in this limit by virtue of the formula for 0a  and 
hence is often referred to as a free mode. 

Finally, we catalogue the components relevant to the second rhombic-planform third-order Landau constant 
of (3.9)-(3.10): 
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