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Abstract 
The main purpose of this article is to define the super characteristic classes on a super vector 
bundle over a superspace. As an application, we propose the examples of Riemann-Roch type for-
mula. We also introduce the helicity group and cohomology with respect to coefficient of the helic-
ity group. As an application, we propose the examples of Gauss-Bonnet type formula. 
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1. Introduction 
In this paper, we define various characteristic classes on a super vector bundle over a superspace, so called super 
characteristic classes. We also propose the super Riemann-Roch formulas and the super Gauss-Bonnet formulas 
as its application. In contrast, it is justified the definition of the super characteristic classes by establishing those 
formulas. In [1], we defined the super Chern classes with values in the super number ( )a b , ,a b∈  and we 
succeeded in applying the super ADHM construction of the super Yang-Mills instantons. But essentially the su-
per Chern classes ought to take with values in an integer a∈ . Meaning like it, we introduce the new defini-
tion of the super Chern classes with values in integer. In general, the characteristic classes consider that given 
the vector bundles it corresponds to some cohomology class of the base manifolds. Hence, we need the coho-
mology reflecting the properties of superspaces. Therefore, we will define the cohomology with respect to coef-
ficient of the some finitely generated group, which is called the helicity group. 

This article is organized as follows. After a brief sketch on the definition and examples of superspaces and its 
cohomology in Section 2 ([1]-[6]), main result in this paper is that we define the Chern class, Chern character, 
Todd class, Pontrjagin class, Eular class, Â -genus and L-genus as in the case of super category in Section 3. In 
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http://dx.doi.org/10.4236/apm.2015.56034
http://dx.doi.org/10.4236/apm.2015.56034
http://www.scirp.org
mailto:tani@nat.gunma-ct.ac.jp
http://creativecommons.org/licenses/by/4.0/


T. Taniguchi 
 

 
354 

Section 4, as an application, we have the Riemann-Roch type formula of super structure sheaf on the complex 
supercurves of dimension ( )1 N  with genus g. Moreover, it generalizes the structure sheaf to any super line 
sheaves. In particular, in the case of dimension ( )11 , with 1N =  supersymmetric structure, we obtain the 
Atiyah-Singer index type formula for any super line bundles. In Section 5, we attempt to define the helicity 
group and cohomology with respect to coefficient of the helicity group. In Section 6, we give the Gauss-Bonnet 
type formula on the complex supercurves of dimension ( )1 N  with genus g and the complex super projectve 
space of dimension ( )n N . 

2. Supermanifolds 
We will summarize the definitions here in order to establish terminology and notation ([1]-[6]). 

Definition 2.1 A superspace is defined to be a local ringed space ( )ˆˆ , MM M=   consisting a topological  

space M and a sheaf of 2 -graded supercommutative rings ,0 ,1
ˆ ˆ ˆ

M M M= ⊕    on it such that the stalk ,
ˆ

M x  
at any point Mx∈  is a local ring. 

In particular case of a superspace, a supermanifold is defined by the following. 
Definition 2.2 A supermanifold of dimension ( )n N  is a ringed space ( )ˆˆ , MM M=   with the following 

properties: 
1) the structure sheaf ,0 ,1

ˆ ˆ ˆ
M M M= ⊕    is a sheaf of 2 -graded supercommutative rings, 

2) Let 2
ˆ ,1 ,1

ˆ ˆ
M MM = +    be the ideal sheaf of nilpotents in ˆ

M . Then ( )ˆ
ˆ, :red red M MM M= =    is a 

classical manifold M of dimension n, so also called body. 
3) Let 2

ˆ ˆM M=    be the locally free red -module of rank ( )0 N . Then ˆ
M  is locally isomorphic to 

the exterior algebra ⋅Λ  . 
A supermanifold is said to be split if the isomorphism 3) holds globally. 
A local section ( )Mf O∈Γ  can be expressed as follows: 

( ) ( ) 1
1

101
,k

k
k

N
ii

i i
k i i N

f z f zθ θ θ
= ≤ < < ≤

= ∑ ∑




                           (1) 

where ( )1 2, , , nz z z z= 
, ( )

1 ki if z


 is a local coordinate function on redM  and ( )1 2, , , Nθ θ θ θ= 
 a local  

generator of ⋅Λ  . We refer to ( )1 2
1 2, , , , , , N

nz z z θ θ θ 
 as a local coordinate of a supermanifold M̂ . 

Example 2.1 1) The typical example is the real (or complex) linear superspace |n N  (or |n N ) which can 
be defined by 

( )( )| , ,n
n N n N⋅= Λ ⊗ 

     

( )( )| , ,n
n N n N⋅= Λ ⊗ 

     

where n
  (or n

 ) is the sheaf of the ring of differential functions on n  (or n ). It is easy to see that  

the |n N  is isomorphic to ( )( )( ),n n NS ⋅ ⋅⊗Λ   . 

2) A real super sphere of dimension ( )2n N  is defined by 

( )( )2 2, ,n
n N n N

S
S S ⋅= Λ ⊗   

where nS
  is the sheaf of the ring of differential functions on nS . 

3) A complex super projective space of dimensin ( )n N  is defined by 

( )( )( )| , 1 .n
n N n N

P
P P ⋅= Λ ⊗ −   

We denote by |
ˆ

n N nP P
=   the structure sheaf ( )( )1n

N
P

⋅Λ ⊗ −   of |n NP . A super holomorphic 
function 1) on |n NP  should be a function of total homogeneity 0 in 1n +  even variables ( )1 1, , nz z +


 and N 

odd variables ( )1, , Nθ θ
, that is ( )

1 ki if z


 has homogeneity ( )k− . Let ( ) ( )| |n N n n NP P P
d d= ⊗    be the 
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even line sheaf of degree d on |n NP  and ( ) ( )| |n N n n NP P P
d dΠ = Π ⊗    be the odd line sheaf of degree d on 

|n NP . 
4) A quaternionic super projective space of dimension ( )n N  is defined by 

( )( )( )| , 1 .n
n N n N

P
P P ⋅= Λ ⊗ − 

     

The above are examples of the supermanifolds in Definition 2.2. 
5) We have a new example of superspace in Definition 2.1 as follows. The complex supercurves of dimension 

( )1 N  with genus g is defined by 

( )
1
2ˆˆ , , ,N K⋅

Σ Σ

  
Σ = Σ = Σ Λ ⊗      

  

where *K TΣ Σ  is the canonical line bundle on the classical Riemann surfaces Σ  and 1K T−
Σ Σ . In the 

case of 1N = , it becomes the super Riemann surfaces with 1N =  SUSY structure (c.f. [7], p.162). In the case 
of 2N ≥ , we do not kown whether or not there exists a SUSY structure. 

We can construct the super Euler sequence as follows ([1]). 

( ) ( )| |
| 1| |0 1 1 0.n N n N

n N n N n N
P P

P TP+→ − → × → ⊗ − →   

Tensoring this with ( )| 1n NP
 , we have 

( ) ( )| |
| 1| |0 1 0.n N n N

n N n N n N
P P

P TP+→ → × ⊗ → →   

Considering the super determinant ( so called Berezin bundle ) of the super Euler sequence, we obtain 

( )|
| 1Ber 1 .n N

n N n N
P

TP n N+ += Π + −  

Dualizing this, we can write 

( )|
* | 1Ber 1 ,n N

n N n N
P

T P n N+ += Π − − +  

where * |Ber n NT P  calls the canonical super line bundle of |n NP  and Π  is the parity change functor. The fol- 
lowing is given by Manin ([5]). 

Lemma 2.1 

( )( ) ( ) ( )
( )

|

*1|
0 | 0

,
0 0 .

n N

d n N
n N

P

S d
H P d

d

+ ≥= 
<


  

( )( )|
| , 0, = 1,2, , 1.n N

p n N
P

H P d p n= −  

( )( )
( ) ( ) ( ) ( )( )

( )( )

*1 1| 1|
|

|

Ber 1
,

0 1 ,

d N n n N n N
n n N

n NP

S d N n
H P d

d N n

− + − + + + ⊗ ≤ − += 
> − +

 
  

where ( )*|Ber n N n N+= Π   and ( ) ( )| |n N n n NP P P
d d= ⊗   . 

The following is given by Penkov ([8]). 
Theorem 2.1 (Super Serre Duality) Let E be a complex super vector bundle over M̂ . Suppose that 

* ˆBerT M  is the canonical super line bundle of M̂ . Then we have the following. 

( ) ( )* * *ˆ ˆ ˆ, , Ber .p n pH M E H M E T M− ⊗  

3. Super Characteristic Class 
In this section, we will give a main result in this paper. Let ,0 ,1

ˆ ˆ ˆ
M M M= ⊕    denote the structure sheaf on 
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M̂ . Then we have an exact sequence (cf. [2], p.166 Lemma 2.1) 

exp *
,0 ,0

ˆ ˆ0 1,M MZ ι→ → → →   

where ι  is the natural injection and exp is defined by 

( ) ( ) ,0
ˆexp exp 2π for .Mf if f= ∈  

The ( )exp 1f =  implies f l= ∈ , l∈ . Hence ( )Ker exp =  . This induces the exact sequence of 
cohomology groups: 

( ) ( ) ( )1 1 * 2
,0 ,0

ˆ ˆˆ ˆ ˆ, , , .e
M MH M H M H Mδ→ → → →    

We can identify ( )1 *
,0

ˆˆ , MH M   with the equivalence classes of ( )1 0  or ( )0 1 -super line bundles over M̂ . 
Then we can define the super first Chern class of ( )1 0 -super line bundle L and ( )0 1 -super line bundle LΠ  
by 

( ) ( ) ( ) ( ) ( )1 *
1 1 ,0

ˆˆ, , , , .Mc L L c L L L L H Mδ δ= − = Π Π ∈   

Remark 3.1 Note that we can define N
N

⋅= Λ  . We consider the line sheaf ( )|2nP
d  over the complex 

super projective space |2nP . This line sheaf is decomposed into 

( ) ( ) ( ) ( ) ( )|2
1 2 1 21 1 2 .n n n n nP p p p p

d d d d dθ θ θ θ= + − + − + −      

The super first Chern calss and the classical first Chern class denote by 1c  and 1c , respectively. Then we 
have 

( )( )|21 ,nP
c d d= ∈  

( )( ) ( ) ( ) ( )|2
1 2 1 2

1 21 1 2 .n NP
c d d d d dθ θ θ θ == + − + − + − ∈   

Hence, we see that for the superline bundle L 

( ) ( ) ( ) ( )2 2
1 1

ˆ ˆ, , , .Nc L H M c L H M∈ ∈   

We will propose the axiomatic definition of super Chern classes (cf. [1] [2] [9]-[15]). We consider the 
category of complex ( )r s -super vector bundles over an ( )n N -superspace ( )ˆˆ , MM M=  . 

Axiom 1 For each complex super vector bundle E over M̂  and for each positive integer i, the i-th super 
Chern class ( ) ( )2 ˆ ,i

ic E H M∈   is given, and ( )0 1c E = . 
We set ( ) ( )0 iic E c E∞

=
= ∑  and call ( )c E  the total super Chern class of E. 

Axiom 2 (Naturality) 
Let E be a complex super vector bundle over a superspace N̂  and ( ) ( )ˆ ˆ: , ,M Nf M N→   a morphism of 

superspaces. Then 

( ) ( )( ) ( )* * * ˆ , ,c f E f c E H M= ∈   

where *f E  is the pull-back bundle over M̂ . 
Axiom 3 (Whitney sum formula) 
Let 1 2, , , qL L L  be complex line bundles of rank ( )1 0  or ( )0 1  and 1 2 qL L L⊕ ⊕ ⊕  be their Whitney 

sum. Then 

( ) ( ) ( ) ( )1 2 1 2 .q qc L L L c L c L c L⊕ ⊕ ⊕ = ⋅ 
 

Axiom 4 (Normalization) 
We put ( )( ) ( )( ) ( )| |

*
11 1 1 ,n N n N

n
P P

c c H P= + ∈    and ( )( ) ( )( ) ( )| |
*

11 1 1 ,n N n N
n

P P
c c H PΠ = + Π ∈   . 
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Then it can be axiomatically as follows: 

( )( ) ( )|
2

1 1 1 , ,n N
n

P
c H P= ∈    

( )( ) ( )( ) ( )| |
2

1 11 1 1 , ,n N n N
n

P P
c c H PΠ = − − ∈     

( ) ( )| |1 1 0.n N n NP P
c c= Π =   

In order to explicitly define the super characteristic classes we need the splitting principle ([2] Proposition 3.7) 
as follows. 

Proposition 3.1 (Bartocci, Bruzzo, Hernandez-Ruiperez) Let E be a complex ( )r s -super vector bundle over 
an ( )n N -supermanifold M̂ . Then there exists a supermanifold ( )ˆF M  and a proper fibration ( )ˆ ˆ: F M Mπ →  
such that 

1) The homomorphism ( ) ( )( )* * *ˆ ˆ: , ,H M H F Mπ →   is injective. 

2) The pull-back bundle *Eπ  splits into a direct sum of even complex line bundles il  of rank ( )1 0  and 
odd complex line bundles jm  of rank ( )0 1 : 

*
1 1 ,r sE l l m mπ ⊕ ⊕ ⊕ ⊕ ⊕    

( )* 1 1
1 1sdet .r sE l l m mπ − −⊗ ⊗ ⊗ ⊗ ⊗  

 

We will explicitly give the super characteristic classes. 
Definition 3.1 1) The total super Chern class ( ) ( )* ˆ ,c E H M∈   is defined by 

( ) ( ) ( ) ( )2

1 1

ˆ1 1 , , , .
r s

j k j k
j k

c E H Mγ δ γ δ
= =

= + − ∈∏ ∏   

2) The total super Chern character ( ) ( )* ˆ ,ch E H M∈   is defined by 

( )
1 1
e e .j k

r s

j k
ch E γ δ−

= =

= +∑ ∑  

3) The super Todd class ( ) ( )* ˆ ,td E H M∈   is defined by 

( )
1 1

.
1 e 1 ei j

r s
ji

i j
td E γ δ

δγ
−

= =

−
=

− −
∏ ∏  

4) The super Eular class ( )e E  is defined by 

( ) ( ) ( ) ( ) ( ) ( )orr s ne E c E r s n e E c E r s n+= + ≤ = + >  

5) Let E  be a real vector bundle of rank ( )2 2r s . The i-th super Pontrjagin class ( )ip E  and the total 
super Pontrjagin class are defined by 

( ) ( ) ( )21 ,i
i ip E c E= − ⊗    

( ) ( ) ( )2 2

1 1
1 1 .

r s

j k
j k

p E γ δ
= =

= + +∏ ∏


 

6) The super Â -genus ( ) ( )*ˆ ˆ ,A E H M∈   is defined by 

( ) ( ) ( )1 1

2 2ˆ .
sinh 2sinh 2

r s
j k

j k kj

A E
γ δ

δγ= =

=∏ ∏


 

7) The super L-genus ( ) ( )* ˆ ,L E H M∈   is defined by 
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( )
1 1

.
tanh tanh

r s
j k

j kj k

L E
γ δ
γ δ= =

=∏ ∏


 

We can consider that it is justified these definitions by the following (cf. [13] [14]). 
Lemma 3.1 The first few terms of ( )ch E  and ( )td E  are given by the following. 

( ) ( ) ( ) ( ) ( ) ( )( )2
0 1 1 2 1 2

1, , 2 ,
2

ch E r s ch E c E ch E c E c E= + = = −  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )3
3 1 1 2 3 0 1 1

1 13 3 , 1, ,
6 2

ch E c E c E c E c E td E td E c E= − + = =  

( ) ( ) ( )( ) ( ) ( ) ( )2
2 1 2 3 1 2

1 1, .
12 24

td E c E c E td E c E c E= + =  

Proof. Let E be a complex rank- ( )2 1  super vector bundle over a complex ( )4 4 -dimensional supermani-
fold M̂ . Then, total super Chern class is written by 

( ) ( )( )( )1 2 11 1 1 .c E γ γ δ= + + −  

Hence, we have 

( ) ( )2
1 1 2 1

ˆ , ,c E H Mγ γ δ= + − ∈   

( ) ( )4
2 1 2 1 1 2 1

ˆ , ,c E H Mγ γ γ δ γ δ= − − ∈   

( ) ( )6
3 1 2 1

ˆ , .c E H Mγ γ δ= − ∈   

The total super Chern character is written by 

( ) 1 2 1e e e .ch E γ γ δ−= + +  

Hence we have 

( ) ( )0
0

ˆ3 ,ch E H M= ∈ 
, 

( ) ( )2
1 1 2 1

ˆ ,ch E H Mγ γ δ= + − ∈  , 

( ) ( ) ( )2 2 2 4
2 1 2 1

1 ˆ ,
2!

ch E H Mγ γ δ= + + ∈  , 

( ) ( ) ( )3 3 3 6
3 1 2 1

1 ˆ ,
3!

ch E H Mγ γ δ= + − ∈  . 

It is well-known thtat 

2 3 41 1 11 0 ,
2 12 7201 e x

x x x x x− = + + + − +
−

  

2 3 41 1 11 0 .
2 12 7201 ex

x x x x x−
= − + + − +

−
  

Hence the total super Todd class is written by 

( ) 2 2 2
1 1 2 2 1 1

1 1 1 1 1 11 1 1 .
2 12 2 12 2 12

td E γ γ γ γ δ δ   = + + + + − +   
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Therefore we have 

( ) ( )0
0

ˆ1 ,td E H M= ∈  , 

( ) ( ) ( )2
1 1 2 1

1 ˆ ,
2

td E H Mγ γ δ= + − ∈  , 

( ) ( ) ( )2 2 2 4
2 1 2 1 1 2 1 1 2 1

1 ˆ3 3 3 ,
12

td E H Mγ γ γ δ γ δ γ γ δ= − − + + + ∈  , 

( ) ( ) ( )2 2 2 2 2 2 6
3 1 2 1 2 1 1 1 1 2 1 2 1 1 2 1

1 ˆ3 ,
24

td E H Mγ γ γ γ γ δ γ δ γ δ γ δ γ γ δ= + + − + − − ∈  . 

Then, they satisfy that 

( ) ( ) ( ) ( ) ( ) ( )( )2
0 1 1 2 1 2

1, , 2 ,
2

ch E r s ch E c E ch E c E c E= + = = −  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )3
3 1 1 2 3 0 1 1

1 13 3 , 1, ,
6 2

ch E c E c E c E c E td E td E c E= − + = =  

( ) ( ) ( )( ) ( ) ( ) ( )2
2 1 2 3 1 2

1 1, .
12 24

td E c E c E td E c E c E= + =  

 
Lemma 3.2 The first few terms of ( )Â E , ( )L E  and ( )p E  are given by the following. 

( ) ( ) ( ) ( ) ( ) ( )( )2
0 1 1 2 1 27 2

1 1ˆ ˆ ˆ1, , 7 4 , ,
24 2 3 5

A E A E p E A E p E p E= = − = −
× ×

       

( ) ( ) ( ) ( ) ( ) ( )( )2
0 1 1 2 1 2

1 11, , 7 , ,
3 45

L E L E p E L E p E p E= = = − +        

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 2 2 2 1 3 42 , 2 2 .p E c E c E p E c E c E c E c E= − = − +   

Proof. ( )Â E , ( )L E  and ( )p E  similarly form in the classical case. Therefore ( )Â E  and ( )L E  
are of same argument (cf. [13]). 

Let E be a complex rank- ( )2 2  super vector bundle over a complex ( )4 6 -dimensional supermanifold M̂ . 
The total super Chern class is written by 

( ) ( )( )( )( )1 2 1 21 1 1 1 .c E γ γ δ δ= + + − −  

Hence, we have 
( ) ( )2

1 1 2 1 2
ˆ ,c E H Mγ γ δ δ= + − − ∈  , 

( ) ( )4
2 1 2 1 1 1 2 2 1 2 2 1 2

ˆ ,c E H Mγ γ γ δ γ δ γ δ γ δ δ δ= − − − − + ∈  , 

( ) ( )6
3 1 2 1 1 2 2 1 1 2 2 1 2

ˆ ,c E H Mγ γ δ γ γ δ γ δ δ γ δ δ= − − + + ∈  , 

( ) ( )8
4 1 2 1 2

ˆ ,c E H Mγ γ δ δ= ∈  . 

The total super Pontrjagin class is written by 

( ) ( )( )( )( )2 2 2 2
1 2 1 21 1 1 1 .p E γ γ δ δ= + + + +



 

Hence, we have 
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( ) ( )2 2 2 2 4
1 1 2 1 2

ˆ ,p E H Mγ γ δ δ= + + + ∈  , 

( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 8
2 1 2 1 1 1 2 2 1 2 2 1 2

ˆ ,p E H Mγ γ γ δ γ δ γ δ γ δ δ δ= + + + + + ∈  . 

Then, they satisfy that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 2 2 2 1 3 42 , 2 2 .p E c E c E p E c E c E c E c E= − = − +   

 

4. Riemann-Roch Type Formula 

Let ( )
1
2ˆˆ , , N K⋅

Σ Σ

  
Σ = Σ = Σ Λ ⊗      

  be the complex supercurves with genus g, where *K TΣ Σ , 1K T−
Σ Σ ,  

in Example 2.1 (5). Then the canonical super line bundle on Σ̂  is explicitly written by 
1 1 1* * 2 2 2

ˆ
ˆ ˆˆBer .

N

K T T K K K
− − −

Σ Σ Σ Σ ΣΣ

   
= Σ = ⊗ Σ⊗ ⊗ ⊗ = ⊗      

   
   

Hence we have ( ) ( ) ( )( )ˆ1 1 2 2 2 1
2
Nc K g N g

Σ

 = − − = − − 
 

. 

Note that for any object E and F the parity change functor Π  satisfies 

( ) ( )2, .E F E F E F E F E FΠ ⊕Π = Π ⊕ Π ⊗Π = Π ⊗ = ⊗  

In general, if ( )ˆ ,M M ⋅= Λ   is a supermanifold, then its tangent bundle can be written by  
( )*ˆˆ

MTM TM= ⊗ ⊕   (cf. [16]). Hence we have 

1
2ˆˆ .

N

T T K
⊕

−

Σ Σ

   Σ ⊗ Σ⊕     
  

Using this decomposition, Euler number of ˆTΣ  get 

( ) ( ) ( ) ( ) ( ) ( )( )
1
2

1 1 1
ˆ ˆ 2 2 1 2 1 .

N

e T c T c T c K g N g N g
⊕

−

Σ

   Σ = Σ = Σ − = − − − = − −    
 

Note that ( ) ( )ˆ1 1
ˆc K c T

Σ
= − Σ . 

Theorem 4.1 Let Σ̂  be the complex ( )1 N -dimensional supercurves with genus g. Then, we have a Noether 
type formula as follows. 

( ) ( ) ( ) ( )0 1 1
1

ˆ ˆ ˆ ˆdim , dim , 2 2 .N NH O H O e T td T−
Σ ΣΣ − Σ = Σ = Σ  

Proof. Let ( )0dim ,g H KΣ= Σ  be the genus on the classical Riemann surfaces and 
1

0 2dim ,q H KΣ

 
= Σ  

 
 be  

the number of linear independent Dirac zero modes or harmonic spinors which is not topologically invariant. 
The structure sheaf of the complex supercurves have decomposition 

1 1 3
2 2 2 2ˆ

2 3

N N
NN N

K N K K K K
⊕

⋅
Σ Σ Σ Σ Σ Σ Σ

     
= Λ = + Π + + Π + +Π           

  . 

In the case of genus 2g ≥ , we have (cf. ([17])) 
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( )( ) ( )
( )
( )

0 2

1 1 3

dim , 1 0

0 0

p
p g p

H K p

p
Σ

− − ≥
  
Σ = =   
   <

 

In the case of genus 1g = , it always satisfies 0 1| 2dim , 1
p

NH T KΣ

 
=  

 
 for any p. In the case of genus 0g = , 

it satisfies 

( ) ( )
( )

0 1| 2
1 0

dim ,
0 0

p
N p p

H P K
pΣ

− ≤  =    >  
 

In the case of genus 2g ≥ , we have the following. 

( )

( )( )

1 1
0 0 0 02 2

3
0 02 2

3

ˆdim , dim , dim , dim ,
2

dim , dim ,
3

1 1 1
2

N

N

N

m

N
H K H H NK H K

N
H K H K

N N
Nq g m g

m

⊕

⋅
Σ Σ Σ Σ

Σ Σ

=

        Σ Λ = Σ + Σ + Σ                 
    

+ Σ + + Σ           
   

= + + + − −   
   

∑





 

( )

( )

1 1
1 1 1 12 2

3
1 12 2

1
0 0 02

0

ˆdim , dim , dim , dim ,
2

dim , dim ,
3

dim , dim , dim ,
2

dim ,

N

N

N
H K H H NK H K

N
H K H K

N
H K H NK H O

H

⊕

⋅
Σ Σ Σ Σ

Σ Σ

Σ Σ Σ

        Σ Λ = Σ + Σ + Σ                 
    

+ Σ + + Σ           
    

Σ + Σ + Σ         

+ Σ







1 2
02 2dim ,

3

2

NN
K H K

N
g Nq

− −

Σ Σ

    
+ + Σ           

 
= + +  

 



 

Note that equal of second make use of the classical Serre duality. Hence we obtain 

( ) ( )( )

( ) ( )

( )( ) ( ) ( )

1 1
0 12 2

3

3

1 1
1

ˆ ˆdim , dim , 1 1 1 1
2

1 1 1
2

ˆ ˆ2 2 1 2 2 .

N N
N

m

N

m

N N N

N N
H K H K g g m g

m

N N
m g

m

N g e T td T

⊕ ⊕

⋅ ⋅
Σ Σ

=

=

− −

             Σ Λ − Σ Λ = − + − + − −                       
    

= − + − −    
    

= − − = Σ = Σ

∑

∑  

In the case of genus 1g =  and 0g = , we can prove similarly.                                    
Corollary 4.1 Let Σ̂  be the complex ( )1 N -dimensional supercurves with genus g. Then we have a Riemann- 

Roch type formula as follows. 

( ) ( ) ( ) ( )( )[ ]0 1ˆ ˆ ˆˆ ˆ ˆdim , dim , 2 ,NH H ch td TΣ Σ ΣΣ − Σ = ⋅ Σ Σ    
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where [ ] ( )2 ,HΣ ∈ Σ   is the fundamental homology class. 
Proof. 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

0 1 1 0

1 1
1 1

ˆ ˆˆ ˆright hand side 2

1 ˆ ˆ ˆ2 1 0 1 2 2 left hand side
2

N

N N N

ch td T ch td T

c T c T e T

Σ Σ

− −

= ⋅ Σ + ⋅ Σ

 = × Σ + × = Σ = Σ = 
 

 
 

From Theorem 4.1, this completes the proof of Corollary 4.1.                                      
The following Corollary essentially has been obtained by [18]. It needs the 1N =  supersymmetric structure 

on the 1N =  super Riemann surfaces (cf. [7] [19] [20]). The following rewrite the result of [21] to the super 
characteristic classes. 

Corollary 4.2 Let Σ̂  be the complex ( )11 -dimensional super Riemann surfaces and ˆ
ˆL LΣ ΣΣ

= ⊗  be any 
super line bundles of rank ( )1 0  on Σ̂ . Then we have a Atiyah-Singer index type formula as follows. 

( ) ( )( )[ ]ˆ ˆ ˆ
ˆ ˆ ˆdimKer dimCoker 2 ,L L ch L td T

Σ Σ Σ
∂ − ∂ = ⋅ Σ Σ  

where [ ] ( )2 ,HΣ ∈ Σ   is the fundamental homology class. 
Proof. The canonical super line bundle ˆK

Σ  of a super Riemann surface Σ̂  can be defined by splitting the 
Berezin bundle * ˆBerT Σ  using the super complex structure *

ˆ ˆ
ˆBerT K K

Σ Σ
Σ ⊗ . We get an exact sequence ([21] 

[22]) 

 ˆ
ˆ

ˆ0 0.K∂
Σ Σ

→ → →   

We can define the operator [ ]ˆ d df z Dfθ∂ = , d d
d d

Df
z

θ
θ

= + , ( )ˆf Σ∈Γ  , ( ) ˆz θ ∈Σ . Note that the  

operator D  is 1N =  supersymmetric anti-holomorphic vector fields. Tensoring this exact sequence with any 
super line bundles ˆL

Σ , we have 

 ˆ
ˆ

ˆ ˆ ˆ ˆ
ˆ0 0.LL L L KΣ

∂

ΣΣ Σ Σ Σ
→ ⊗ → ⊗ →  

We can define the operator ( ) ( )ˆ ˆ

ˆ ˆ ˆ
L Lfs f s f s
Σ Σ

∂ = ∂ ⋅ + ⋅ ∂ , ( )ˆf Σ∈Γ  , ( )ˆs L
Σ

∈Γ . We can describe ( )0
ˆ

ˆ ,H L
Σ

Σ   

as the space of sections s of ˆL
Σ  satisfying the condition 

ˆ

ˆ 0L s
Σ

∂ = . The group ( )1
ˆ

ˆ ,H L
Σ

Σ  can be described as  

the space of sections ( )ˆ ˆL K
Σ Σ

Γ ⊗  modulo the image of the operator 
ˆ

ˆ
LΣ
∂ . Hence ( )ˆ

0
ˆ

ˆ ˆdimKer dim ,L H L
Σ Σ

∂ = Σ   

and ( )ˆ

1
ˆ

ˆ ˆdimCoker dim ,L H L
Σ Σ

∂ = Σ .                                                            

Let 0 1
ˆ, , , rZ Z Z M∈  be ( )1r +  distinct points and ( )1 2, , , N

i i i i iZ z θ θ θ= 
, ( )0,1,2, ,i r=  . Then the 

super meromorphic functions 

( ) ( )
10

inr N

i i
i

f Z h Z z z α α

α
θ θ

==

 = − − 
 

∑∏  

is coresponding to the super Weil divisor (cf. [18] [20]) 

[ ]
0

,
r

i i
i

D n Z
=

= ∑  

where ( )h Z  is a super holomorphic function. We put 
1

N
i ix z z α α

α θ θ
=

= − −∑ , B Sx x x= + , B ix z z= −  and  

1
N

S ix α α
α θ θ
=

= −∑ . Then the inverse element of x , which is unique, is given by the formula  

( )1 1 1
0

nN
B B Snx x x x− − −

=
= −∑  (cf. [23]). As an application, we have a main theorem as follows. 

Theorem 4.2 Let Σ̂  be the complex ( )1 N -dimensional supercurves with genus g and ˆ
ˆL LΣ ΣΣ

= ⊗  be  
any super line bundles of rank ( )1 0  on Σ̂ . Then we have a Riemann-Roch type formula as follows. 
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( ) ( ) ( ) ( )( )[ ]0 1
ˆ ˆ ˆ

ˆ ˆ ˆdim , dim , 2NH L H L ch L td T
Σ Σ Σ

Σ − Σ = ⋅ Σ Σ  

where [ ] ( )2 ,HΣ ∈ Σ   is the fundamental homology class. 
Proof. Let us consider the super divisor [ ]01D Z= ⋅  on Σ̂ . The local equation on D is defined by 

0 01
N

is z z α α
α θ θ
=

= − −∑  on a open set iU  of M̂ . If 0 iZ U∈ , then ( )0 0is Z = . The super Weil divisor can be 
considered as the super Cartier divisor. Then there is the exact sequence 

0
0

1
1

ˆ0 0.Zr
ZL ϕ−

Σ→ → → →   

The line sheaf 1L  corresponding to [ ]01D Z= ⋅  is defined by the transition functions 

( ) 1

0 01
N

ijg z z α α
α θ θ

−

=
= − −∑  

on i jU U . The sheaf 1
1L−  which is defined by 

( ) [ ]( ){ }1
1 01 0UU

L O U Zφ φ−
Σ= ∈ ⋅ =  

is the coherent ideal sheaf. The fiber 
0Z Z

  of 
0Z  is of zero in 0Z Z≠  and 1|2 1N −  in 0Z Z= . The sheaf 

0Z  is called the super skyscraper sheaf. Tensoring this with 1L , we have 

0
1 0

ˆ0 0.Zr
ZLψ

Σ→ → → →   

The map ψ  is defined by ( ) 1

0 01:
i ii

N
U UU z z α α

αψ θ θ
−

=
→ − −∑   on an open set iU  of Σ̂ . Taking co-  

homology, this gives a long exact sequence 

( ) ( ) ( )
( ) ( ) ( )

0

0

0 0 0
1

1 1 1
1

ˆˆ ˆ ˆ0 , , ,

ˆˆ ˆ ˆ, , , 0.

Z

Z

H H L H

H H L H

Σ

Σ

→ Σ → Σ → Σ

→ Σ → Σ → Σ →

 

 
 

Taking the alternative sum, we have 

( ) ( ) ( )
( ) ( ) ( )

0

0

0 0 0
1

1 1 1
1

ˆˆ ˆ ˆdim , dim , dim ,

ˆˆ ˆ ˆdim , dim , dim , 0.

Z

Z

H H L H

H H L H

Σ

Σ

Σ − Σ + Σ

− Σ + Σ − Σ =

 

 
 

Noting that ( )0

0 1|2 1ˆ ,
N

ZH −Σ =   and ( )0

1 ˆ , 0ZH Σ = , we have 

( ) ( ) ( ) ( )0 1 0 1
1 1

ˆ ˆˆ ˆ ˆ ˆdim , dim , dim , dim , 2 .NH H H L H LΣ ΣΣ − Σ = Σ − Σ −   

From ( )1 1 1c L =  and ( )1 12 2N N c L= , we have 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1
1 1 1 1

ˆ ˆˆ ˆ ˆ ˆdim , dim , dim , dim , 1 .H H H L H L N c LΣ ΣΣ − Σ = Σ − Σ − +   

We also take the exact sequence 

0ˆ ˆ 10 0.ZL L L
Σ Σ

→ → ⊗ → →  

This gives rise to a long exact sequence 

( ) ( ) ( )
( ) ( ) ( )

0

0

0 0 0
ˆ ˆ 1

1 1 1
ˆ ˆ 1

ˆ ˆ ˆ0 , , ,

ˆ ˆ ˆ, , , 0.

Z

Z

H L H L L H

H L H L L H

Σ Σ

Σ Σ

→ Σ → Σ ⊗ → Σ

→ Σ → Σ ⊗ → Σ →




 

Taking also the alternative sum, we have 
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( ) ( ) ( )
( ) ( ) ( )

0

0

0 0 0
ˆ ˆ 1

1 1 1
ˆ ˆ 1

ˆ ˆ ˆdim , dim , dim ,

ˆ ˆ ˆdim , dim , dim , 0.

Z

Z

H L H L L H

H L H L L H

Σ Σ

Σ Σ

Σ − Σ ⊗ + Σ

− Σ + Σ ⊗ − Σ =




 

Hence, we havet 

( ) ( ) ( ) ( )0 1 0 1
ˆ ˆ ˆ ˆ1 1

ˆ ˆ ˆ ˆdim , dim , dim , dim , 2 .NH L H L H L L H L L
Σ Σ Σ Σ

Σ − Σ = Σ ⊗ − Σ ⊗ −  

Note that ( ) ( ) ( )ˆ ˆ1 1 1 1 1c L c L c L L
Σ Σ
+ = ⊗ . So adding ( )ˆ12N c L

Σ
−  in both side, we see that 

( ) ( ) ( )
( ) ( ) ( )

0 1
ˆ ˆ ˆ1

0 1
ˆ ˆ ˆ1 1 1 1

ˆ ˆdim , dim , 2

ˆ ˆdim , dim , 2 .

N

N

H L H L c L

H L L H L L c L L

Σ Σ Σ

Σ Σ Σ

Σ − Σ −

= Σ ⊗ − Σ ⊗ − ⊗
 

Therefore, ( ) ( ) ( )0 1
ˆ ˆ ˆ1

ˆ ˆdim , dim , 2NH L H L c L
Σ Σ Σ

Σ − Σ −  is independent of ˆL
Σ , so that we can put ˆ

ˆL ΣΣ
= .  

From Theorem 6.1, ( ) ( ) ( ) ( )0 1
1 1

ˆ ˆ ˆˆ ˆ ˆdim , dim , 2 2N NH H c td TΣ Σ ΣΣ − Σ − = Σ   . This completes the proof of  

Theorem 4.2.                                                                               

5. Helicity Group 
Definition 5.1 The helicity rank of finitely generated group G is defined by the positive generator of linearly 
independent itself. The helicity rank is denoted by hrank G . The helicity rank of GΠ  is defined by the negative 
generator of linearly independent itself. The helicity rank of GG⊕  also is defined by twice the positive 
generator of linearly independent itself of G. 

We define the finitely generated group of two type as follows. 

1 1 , : fix ,a a n
n n

 
= ∈ ∈ 
 

    

( ) ( ) ( ){ }0 0, 1 1, 2 2, 3 3, .Π = Π = Π ± = Π ± = Π ± =     

Note that Π , 1
n
  and 1

n
 Π 
 

  are isomorphic to  ,   and 1
n
  as abelian groups, respectively.  

But its helicity rank is differently as follows. 
Example 5.1 hrank 1= , hrank 2⊕ =  , hrank 0m = , 

h
1 1rank
n n

  = 
 

 , ( )hrank n n= , ( )hrank 1Π = − , ( )hrank 2Π ⊕Π = −  , 

h
1 1rank
n n

  Π = −  
  

 , h
1rank

N N
n n

⊕
  = 
 

 , h
1rank

N N
n n

⊕  Π = −     
 . 

Definition 5.2 Let ( )ˆˆ , MM M=   be a ( )n N -dimensional complex supermanifold. Then the helicity group 
( )n N  is defined by the following. 

( ) ( ) ( )0 0

1 , , .
1

N
N

n N n NZ Z Z Z
n

⊕
⊕ = ⊕Π = = Π + 

    

The helicity rank of ( )n N  can be represented by 

( )hrank 1 .
1n N

N
n

= −
+

  

The super cohomology with coefficient in ( )n N  of an ( )n N -dimensional supermanifold ( )ˆˆ , MM   is 
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isomorphic to the ( )n N -valued cohomology with coefficient in   of the classical manifold M using the uni-
versal coefficient theorem. That is to say, we have the following. 

( )( ) ( ) ( ) ( )( ) ( )| |
1ˆ , , , , .

1

N
i i i i

n N n NH M H M H M H M
n

⊕  ⊗ ⊗ ⊕ ⊗Π   +  
         

This isomrphism is applied in section 6. 

6. Gauss-Bonnet Type Formula 
In this section, we will apply the super cohomology with coefficient in helicity group ( )|n N . 

Theorem 6.1 Let Σ̂  be the complex ( )1 N -dimensional supercurves with genus g. Then we have a Gauss- 
Bonnet type formula as follows. 

( ) ( )
2

h
0

1ˆ ˆ1 rank , .
2

N
i i

i
e T H

⊕

=

    Σ = − Σ ⊕Π        
∑    

Proof. Euler number of ˆTΣ  get 

( ) ( ) ( ) ( ) ( ) ( )( )
1
2

1 1 1
ˆ ˆ 2 2 1 2 1 .

N

e T c T c T c K g N g N g
⊕

−

Σ

   Σ = Σ = Σ − = − − − = − −    
 

Note that ( ) ( )ˆ1 1
ˆc K c T

Σ
= − Σ . On the other hand, the right hand side is  

( )( )1 2 1 1 2 1
2 2 2
N N Ng N g     − − − + − = − −     

     
. 

Both sides coincide.                                                                       
Theorem 6.2 Let |n NP  be the complex ( )n N -dimensional super projective space. Then, we have 

( ) ( )
2

| |
1 h

0

11 rank , .
1

Nn in N i n N

i
c TP H P

n

⊕

=

    = − ⊕Π    +    
∑    

Proof. 
From the super Euler sequence, we can compute the total Chern class of holomorphic tangent bundle |n NTP . 

Setting ( ) ( )|n NP
d d=   for simplicity’s sake and ( )( ) ( ) ( )

2
1 |1 ,n

n Nx c H P= ∈ ⊗  , we have 

( ) ( )( ) ( ) ( )
( )

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )

| 1|

-times1 -times

1

2 2 3

1 1 1 1 1

1 1 1 1 1 1

1
1 1 1 1

2 2 3

n N n N

Nn

n N

n

c TP c O c

c c x x

n N N
n x x n x Nx x x

+

+

+

 
 = ⊗ = ⊕ ⊕ ⊕Π ⊕ ⊕Π
 
 

= ⊕ ⊕ Π ⊕ ⊕ = + −

 +        
= + + + + + + × − + − +        

        

 

 

 

 

    

     

The sum of coefficient of x is the first super Chern number ( )|
1

n Nc TP . 

( ) ( ) ( )

( ) ( )( )

( )( )

|
1

2

|
0

2
|

|
0

1 1 1
1

rank ,

rank , right hand side

n N

n
i n

h n N
i

n
i n N

h n N
i

Nc TP n N n
n

H P

H P

=

=

 = + − = + − + 

= ⊗

= =

∑

∑

 



                     . 
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