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Abstract 
The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a 
benchmark for testing control algorithms. It is unstable without control. The process is non linear 
and unstable with one input signal and several output signals. It is hence obvious that feedback of 
the state of the pendulum is needed to stabilize the pendulum. The aim of the study is to stabilize 
the pendulum such that the position of the carriage on the track is controlled quickly and accu-
rately. The problem involves an arm, able to move horizontally in angular motion, and a pendulum, 
hinged to the arm at the bottom of its length such that the pendulum can move in the same plane 
as the arm. The conventional PID controller can be used for virtually any process condition. This 
makes elimination the offset of the proportional mode possible and still provides fast response. In 
this paper, we have modelled the system and studied conventional controller and LQR controller. 
It is observed that the LQR method works better compared to conventional controller. 
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1. Introduction 
Inverted pendulum is one of the most difficult systems to control in the field of control engineering, because it is 
a non-linear as well as an unstable system. It provides a platform to test various control techniques and is used to 
simulate experiments such as walking robots, missile guidance and flying objects in space. To design a control 
system that keeps the pendulum balanced and tracks the cart to a commanded position, the conventional PID 
controller is still used in industries, because of its simple in control structure, not too expensive and elective for 
a linear system. The conventional PID controller can be used for virtually any process condition. This makes 
elimination the offset of the proportional mode possible and still provides fast response. 
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Generally, all systems are initially checked with conventional controllers including P, PI, and PID [1] since it 
is easy to develop and implement. Various methods are available for tuning these controllers. If the response is 
not satisfactory advanced, controllers are considered. When the system is non-linear and with significant delay, 
conventional controllers cannot give a satisfactory result [2]. LQR controller is a suitable alternative in such case. 
It can deal with non-linear systems efficiently. Pole placement methods like Ackerman’s formula are very 
popular in designing the state feedback gain K and hence to place the poles in desired locations [3]-[5]. But in 
these methods, we need to specify the desired poles to seek the SVFB gain. Also these methods are only appli-
cable for single input systems. However, it is very inconvenient to specify all the closed loop poles and we 
would like to have a technique that works for many numbers of inputs. Due to these constrains, we make use of 
the theory of optimal control for the design of a better controller. Optimal controllers are designed in sense of 
using the least required control effort to maintain equilibrium [6]. Optimal control principle is inspired from 
naturally occurring systems which are optimal.  

In Section 2, the problem is identified and defined. In Section 3, a detailed description about the experimental 
setup and system modelling is given. Section 4 describes about the designing of PID controller and LQR con-
troller for the system. In Section 5, the simulation results are compared and Section 6 contains conclusion. 

2. Problem Definition 
The problem of controlling an inverted pendulum is to balance the pendulum in its upright position by moving 
the arm in opposite direction. The control output is limited by several constraints like the speed of motor con-
trolling the arm. In this study, simulation of control in inverted pendulum system has been carried out using 
MATLAB and Simulink software. 

3. Experimental Setup and Description 
A Quanser rotary inverted pendulum which we used for modelling is shown in Figure 1. The inverted pendulum 
is hinged to its arm. 

The horizontal movement of the arm and the pendulum vertical position angle are measured by optical en-
coder. The encoders produce 4096 pulses for revolution, which gives a very reasonable precision in measure-
ment. The arm motion is actuated by a DC motor. The DC motor is controlling the rotary motion of the arm. 
Encoder is used to feedback the angular position of the pendulum to servo electronics to generate actuating sig-
nal. The controller circuits provide the controlling signal which then drives the arm through the servomotor. Ro-
tary motion of the arm applies moments on the inverted pendulum and keeps the pendulum upright. 

To model the inverted model we consider a much more simplified model as shown in Figure 2. The system 
dynamics can be studied from its energy relations [7] 
 

 
Figure 1. The quaser inverted pendulum system.                         
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Figure 2. Diagram model for the system.                    

 
The kinetic and potential energies are given by the following equations: 

cospot p pE M gl α=                                       (1) 

( ) ( )2 21 1cos sin
2 2kinP p p p pE M l M lθ α α α= +

                               (2) 

( )21
2kinArm pE J θ=                                       (3) 

where Jp and Mp are arm inertia and pendulum mass respectively. Applying Lagrangian formula for the equa-
tions the state space model is obtained 
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τ  is the torque of the motor. Known constant values are given in the table 1 shown below. 
Substituting the known values in the equations we obtain the state space model of the system. The new state 

description of the system with voltage as input is given below: 

0 0 1 0 0
0 0 0 1 0
0 22.37 0.2982 0 8.9578
0 36.2 0.0765 0 2.2980
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The transfer function model of the system obtained is given as: 

( )
2

4 3 2

2.298 0.000187 2.8 15
0.298 36.2 9.083
s s eG s

s s s s
− − −

=
+ − −

                          (6) 

4. Controller Design 
In this section, the LQR controller and PID controller design is discussed, also the controller design using 
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MATLAB and Simulink is discussed in this section 

4.1. PID controller Design 
PID controller is the most widely used controllers for industrial applications [8]. PID controller design schemes 
are easy and robust in nature [9]. Defining “u” as the controller output, the final PID algorithm is of the form: 

( ) ( ) ( )
0

dd
dp i p

t
u K e t K e K e t

t
τ τ= + +∫  

where Kp, Ki, Kd are proportional, integral and derivative gains respectively which are the tuning parameters 
used to design a PID controller. We used the transfer function model of the system to design a PID controller in 
Simulink. The Simulink model of the PID controller is given in Figure 3. 

The values of tuning parameters Kp, Ki, and Kd are 516.35, 431.787 and 61.63 respectively.  

4.2. LQR Controller Design 
In this section, an LQR controller is developed for the inverted pendulum system. The LQR method uses the 
state feedback approach for controller design. As discussed, the system is expressed in state variable form as
x Ax Bu= + . We assume that all the states are measurable. The state variable feedback control can be found 
from the expression u Kx v= − + .  

Using this control closed loop system becomes ( ) cx A BK x Bv A x Bv= − + = +  with Ac the closed loop plant 
matrix and v(t) the new command input. C and D matrices are not used in the SVFB design.  

To design an optimal SVFB we may define a performance index.  
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Substituting the SVFB we yields 
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We assume v(t) as zero as our only concern is internal stability of the system. The objective is to select the K 
that minimizes the performance index J. Q and R must be selected to be positive semi-definite and positive defi-
nite in order to minimize J. The feedback gain matrix K in LOR is solved using the equation 1 TK R B P−= . To 
seek P we make use of a very important formula in modern control theory known as Algebraic Riccati Equation 
(ARE). 

T 1 T 0A P PA Q PBR B P−+ + − =  

The design procedure for finding the feedback gain K for LQR can be formulated to 3 simple steps: 
• Select the design parameter matrices Q and R. 
• Find P by solving the ARE. 
• Find the state feedback matrix K using 1 T .K R B P−=  
 

 
Figure 3. Simulink model for PID control of Inverted pendulum.                                                   
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The LQR guarantees pole placement and stability to the closed loop system as long as two LQR theorems 
[References] hold: 

LQR theorem 1 
Let the system (A, B) be reachable. Let R be positive definite and Q be positive definite. Then the closed 

loopsystem (A-BK) is asymptotically stable. 
LQR theorem 2 
Let the system (A, B) be stabilizable. Let R be positive definite, Q be positive semi definite, and ( ),A Q  be 

observable. Then the closed loop system (A-BK) is asymptotically stable. The simulink model for state feedback 
controller is shown in Figure 4. 

The SVFB gain K is found using lqr command in Matlab and this gain is given in the Simulink model to ob-
tain the outout. 

The value of Q matrix which gave the best pole placement was [100 0 0 0; 0 1 0 0; 0 0 200 0; 0 0 0 1] and R 
matrix was selected as [1]. 

The value of K derived is [−10.0000 719.0337 −17.8791 129.8297]. 

5. Results and Discussion 
The PID and LQR controller performance for the system is simulated MATLAB Simulink. Q and R values are 
selected based on fine tuning by trial and error method. Responses of both the systems are studied with a square 
wave as input. The results of both the controllers are discussed in this section. 

5.1. PID Controller Response 
The response of the system with PID controller is shown in Figure 5. PID controller tuning for the proposed 
system model is showing only a very narrow region of stability. When the gains are increased, the system is set-
tled fast but the overshoot is very high. When we reduce the overshoot by reducing the gain, the settling time 
has to pay the price. Figure 5 shows a reasonably good response obtained by tuning the PID controller.  

5.2. LQR Response 
The LQR controller gives a much stable and robust response for the system. The response of the system with 
LQR controller is given in Figure 6. 
 

 
Figure 4. Simulink model for state feedback control.                                         
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Figure 5. Response of system with PID controller.                          

 

 
Figure 6. Regulatory response of PI controller and FLC.                   

 
There is a considerable reduction in overshoot and settling time with the LQR controller. The response is 

more stable and robust. 
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